
3D Printing Error Detection
System

Team E1
Lucas Moiseyev, Hannah Preston, Joshua Bas

Project Summary - Rescoped
● Monitor active 3D prints,

detecting errors as they
occur, and alert users of
potential errors

● Errors to Detect:
○ Extrusion stops mid-print
○ Failing to adhere to the print

bed

● Target Printer: PrintrBot
Simple Wood

System Requirements Review

Size & Weight07 ● Within 6 x 3 inches
● Weights less than 4lbs

Error Detection Rate02 ● Detected within 10 checks (~1mm)

Error Detection Accuracy (Average)03 ● 85% accurate

Error Check Rate01
● Calculate when a layer should be completed
● Check on layer completion
● Otherwise, check every second

Sensor Coverage Region08 ● Covers a 8.9L x 6.7W x 6.7H inch space

Runtime ● Must run at least 6 hours uninterrupted06

False Positive Rate04 ● 20% of each detected error is actually not an error

False Negative Rate05 ● 10% of each real error is not detected

Process Flow
● From g-code of print, we

create 3d models of the
print at each different
z-layer

● At the end of printing a
layer, the camera takes a
photo of the current state

● Compare the two images
to check for errors

Solution - Overall System:
● Descoped to a single custom mount for the raspberry

pi camera: M1
● Raspberry Pi runs OctoPi (a custom version of the

Raspbian OS without a desktop)
● Connects to 3D printer via microUSB

M1

● Connects to
OctoPrint
web
command
through
WIFI

Solution - G-Code Modeling
● Parser combs through g-code for movement commands (G0 and G1) and

separates them into x, y, and z coordinate arrays
● Plot rotated model at different layers
● Mask out grid lines from python’s plotter

Solution - Edge and Error Detection:
● Match corresponding points between image and 3D model
● Project 3D model to image plane
● Find edges on image and projected 3D model
● Compare using Hausdorff distance

○ Using this distance metric because it is suitable for template matching

Apply double
threshold to
determine
true edges

Smooth
image

to
reduce
noise

Track
edges by
hysteresis

Find
intensity
gradients

of the
image

Apply non-maximum
suppression to get rid
of obvious outliers /

false edges

A Series of
Unfortunate Events:
● Printer broke

○ Design fault on Rev F4
PrintrBot boards

○ Mosfet input takes 12V without
any resistor in between

● Laptop exploded
● Printer broke...again

Fixing the Printer:
- SOP-23-3 package NPN

BJT replaced the mosfet
- Original Mosfet was

internally shorted
- Probe not producing

enough voltage to flip BJT

Design Trade Offs
● Software:

○ Point Cloud vs. Blob vs. Edge Detection

● Hardware:
○ Stereo cameras vs. single camera
○ TOF vs no TOF

● Design Goal:
○ Generalized vs. Specific target printer

Metrics and Validation Plan and Results
● Method: Programmatic Error

○ Load faulty g-code into parser / renderer and get series of images
○ Load correct g-code into parser / renderer and get series of images
○ Compare the two using error detector to see if errors are caught

Project Management
● Project broken down into key areas

○ G-code
○ Edge detection
○ Error detection

● Additional time was eaten by unexpected
hardware debugging

● Implementation and
testing was severely
impacted by
quarantine/remote
work situation

● Design was also
impacted by
technical issues

● Overall team
cohesion suffered

