
18-500 Design Review Report - March 2, 2020 Page 1 of 9

3D Printing Error Detection System
Authors: Joshua Bas, Hannah Preston, Lucas Moiseyev: Electrical and Computer Engineering, Carnegie Mellon

University

Abstract—We aim to close the loop on Fused Depo-
sition Modeling (FDM) 3D printing. The project will
be developed as an extension of an already existing 3D
printing monitoring program, OctoPrint. Using inputs
from two cameras we will run custom computer vision
(CV) algorithms on a Raspberry Pi (RPi) to detect
four major classes of printing errors. The system will
generate 3D models from user-inputed g-code and then
compare them against active prints. Should an error
occur, our system will alert the user via a modified
version of the OctoPrint web interface. Upon user con-
firmation, our system will send a stop command to the
printer to abort the active print.

Index Terms—additive manufacturing, blob detec-
tion, epipolar geometry, fused deposition modeling,
g-code, point clouds, stereo imagery, triangulation

1 INTRODUCTION

Despite rapidly becoming a cornerstone of Maker cul-
ture, 3D printing has remained an error-prone method of
manufacturing. Due to imperfections in model design, sys-
tem miscalibrations, and other environmental factors, FDM
prints often encounter a range of defects and outright fail-
ures. While some errors are insignificant and cause neg-
ligible harm to the appearance or function of the printed
object, others - especially those that occur early on in the
printing process - can result in serious misprints. The pri-
mary cost of failed prints is time. Most non-trivial print
jobs take several hours to complete, and the manufacturer
has to completely restart the process if a severe error oc-
curs. These errors thus critically bottleneck the rapid pro-
totyping process flow.

Though some systems exist to monitor 3D prints via
live video stream and others provide retroactive error de-
tection on completed parts, we have yet to see a system
that accurately detects errors in real time. We seek to ad-
dress this critical application gap using a set of computer
vision algorithms. The system we will design covers ECE
areas spanning Software, Signals & Systems (through im-
age processing), and Hardware. Our approach uses stereo
imagery to generate a sparse reconstruction of the current
print which can then be compared to the expected model.
Other systems employ the use of the Canny edge detector.
However, this only accounts for one print orientation and
is not robust enough to achieve the high accuracy rates we
require. Of course, our design uses a blob detector for re-
dundancy checks. For the design to succeed, an actual error
must be classified as such 85% of the time. A check must be
completed upon layer completion, and an actual error must

be classified within 5 checks. Once an error is classified, the
system will notify the user and offer the opportunity to stop
the print. The scope of our design is limited to hobbyist
level FDM 3D printers. To develop, test, and demo our
design, we will primarily use the PrintrBot platform.

2 DESIGN REQUIREMENTS

2.1 Relevant Equations

In order to determine hardware specifications, we
looked at various equations. Angle of view (AOV) is de-
fined as the “angle of a 360-degree circle that is visible”
[4]. We take the working distance as the distance from the
lens to the object under inspection. Thus, our field of view
is “how much of a scene is visible” [4] for a specific work-
ing distance. Our depth of view is the difference between
the farthest object in the scene that is still in focus and
the nearest object that is still in focus, i.e. the distance of
focus centered on our object under inspection.

In order to calculate the required sensor resolution rh
by rv, let p be the number of pixels we allow to detect
the smallest object in the field of view. Let s be the size
in millimeters of the smallest object in the field of view.
Lastly, FOVh and FOVv are the horizontal and vertical
field of view in millimeters, respectively. Then the general
resolution equation is

r = p(
FOV

s
) (1)

Considerations for lenses were also based on the gen-
eral principle that lenses with shorter focal lengths tend to
have a deeper depth of view than those with larger focal
lengths. However, we discovered that distortion may occur
if the focal length is less than 12 mm. The focal length is
calculated as

f =
W

2
arctan(

θ

2
) (2)

where W is the width of the camera sensor in pixels and θ
is our AOV in radians.

2.2 Error Types

There are many different types of printer failures, and
causes of those errors. Our system must detect four key
error modes:

1. Lack of build plate adhesion

2. Extrusion stopping mid-print

3. Layer shifting

4. ”Hair-balling”

18-500 Design Review Report - March 2, 2020 Page 2 of 9

We have narrowed our scope to detecting these four er-
rors because they seem to be the most common types. Of
course, user experience plays a role into the frequency and
type of the errors produced; our system will simply com-
pare the resulting print to the reference model.

2.3 Sensor Coverage Region

The two cameras we use must cover a region of 8.9L
x 6.7W x 6.7H inches. This requirement was taken from
averaging the build areas of several hobbyist 3D printers,
prior to choosing the PrintrBot as our sole development
and testing platform. The PrintrBot’s build area is 7.3L x
4.6W inches. (Considering that strictly following the larger
coverage requirement will likely introduce noise to our sys-
tem, we can solve this issue by defining a bounding box of
computation specific to the printer in use.) Committing the
coverage region to match the larger averaged volume rather
than the PrintrBot’s will better allow for cross-printer test-
ing later on.

2.4 Error Check Rate

Our system must check the printed object upon layer
completion. The PrintrBot has a max extruder transla-
tional speed of 150mm/sec and a standard nozzle tip of
0.4mm; converted to millimeters, the print bed area is
185.42L x 116.84W. We can divide the bed up into units
of 0.4mm width strips, each having a length of 185.42mm.
One strip would take the PrintrBot 1.236 seconds. The
worst case time for the PrintrBot to complete one layer is
361.036 seconds, or about 6 minutes. Of course, the best
case time (for one layer) consists of the PrintrBot extruding
at a point, without having to move. Given the bed size and
the default speed of the extruder, we think that checking
the object upon layer completion is reasonable. However,
we do recognize that the extruder speed and actual layer
size is dependent on the specific print. The hardware and
software implementation will have to be optimized in order
to meet this requirement for smaller layer areas.

2.5 Error Detection Rate

We also want the system to detect an actual error within
5 error check cycles. Following from the above discussion,
our worst case time from error introduction to error detec-
tion would be 30 minutes. Furthermore, after 5 cycles, the
layer height would be about 2mm. However, the average
case does not reflect this upper time limit. We believe that
this worst case time limit and the 2mm layer height until
detection are reasonable.

2.6 Error Detection Accuracy

We want our system to be highly accurate. After study-
ing the literature, we found that current systems with less
complicated algorithms can detect errors with a maximum
accuracy of 80%. With our stereo imagery algorithm, and

our fallback of blob detection, we believe our system can
perform with an accuracy of 85% – that is, an actual error
is classified as an error 85% of the time.

2.7 False Positive Rate

Our false positive rate must be within 20% – an error
is indicated when a real error has not occurred 20% of the
time.

2.8 False Negative Rate

Our false negative rate must be within 10% – a real
error is not classified as an error 10% of the time.

2.9 Runtime

We require that our system is able to function for at
least 6 hours. This requirement is derived from averaging
test-print print times. A long runtime is necessary because
the objective of the project is to save the time invested
into the print; the shorter the print job, the less useful our
system becomes.

2.10 Size and Weight

The size of the final device should not be more than 6L
x 3W inches. The final weight of the system should not
exceed 4 pounds.

2.11 Validation Plan

Testing the system’s accuracy, false positive rate, and
false negative rate involves running our system on a print.
Initial tests would look like:

1. Begin a print job

2. Pause the PrintrBot and our system

3. Physically induce one of the four targeted errors

4. Resume the PrintrBot and our system

5. Record whether the error was detected within 5 error
checks

To test more efficiently, we can use a model designed to
testbench 3D printers. This test print contains hard slopes
and overhangs that are more likely to cause errors. We
also can design our own test vector that contains errors at
predefined locations. For our minimal viable project, we
should limit our testing to a couple of print models; once
we can meet system requirements with those prints, we can
work towards achieving more reliable results with a greater
number of objects.

In order to test the device weight restriction, we can use
a simple scale. Likewise, to test our runtime requirement,
we can initiate a print that is expected to last for more
than six hours. System status reports are timestamped and

18-500 Design Review Report - March 2, 2020 Page 3 of 9

logged into a file. To validate that our cameras achieve the
correct coverage region, we can just visually confirm that
the camera setup results in the correct coverage. For more
automated testing, we can optionally take the area of the
trapezoid of coverage. To get the vertices of this trapezoid,
we can follow the computation described below [1]:

1. Let τ = ε
cos(θ2+ψ)

. If τ > T or θ2 +ψ < 90◦, stop the

calculation.

2. If P0 = (0, 0) and ψ = 0, the FOV is made of ver-
tices {p′1, p′2, p′3, p′4}, each point p′i being composed of
{x′i, y′i}:



h× tan(ψ)
h

cos(ψ) × {+ tan(θ12)}
h× tan(ψ)

h
cos(ψ) × {− tan(θ12)}
h× tan(ψ + θ2)
h

cos(ψ+θ2)
× {+ tan(θ12)}

h× tan(ψ + θ2)
h

cos(ψ+θ2)
× {− tan(θ12)}


=



x′1
y′1
x′2
y′2
x′3
y′3
x′4
y′4



3. Calculate vertex p′′i by rotating p′i by φ:

[
cos(φ) − sin(φ)
sin(φ) cos(φ)

] [
x′i
y′i

]
=

[
x′′i
y′′i

]

4. Add actual camera installation information to each
p′′i :

[
x′′i
y′′i

]
+

[
x0
y0

]
=

[
xi
yi

]

where x0, y0 is the camera installation location; ε is the
camera installation height; φ is the horizontal angle; ψ is
the vertical angle; (θ1, θ2) are the respective horizontal and
vertical viewing angles of the captured scene; and T is the
maximum recognition distance. For a particular camera,
the installation coordinate is P0(x0, y0) at height ε and the
recognition distance is τ .

3 ARCHITECTURE OVERVIEW

3.1 Raspberry Pi & RPi Shield

Figure 1: Block Diagram

3.2 Point Cloud Analysis

For our primary accuracy check, we will be implement-
ing point cloud analysis. This is essentially a way to rep-
resent our data in a 3D manner, and then compare the
simulated 3D model from the g-code with the current sta-
tus of the active print.

Figure 2: Point Cloud Analysis Block Diagram

3.3 Blob & Edge Detection

This is the basic approach we want to take for both
our blob detection and edge detection. Because we hope
to have the point cloud analysis be the primary accuracy
check, this will function as a redundancy check to check for
any very sudden and obvious changes in the print.

18-500 Design Review Report - March 2, 2020 Page 4 of 9

Figure 3: Blob & Edge Detection Block Diagram

4 DESIGN TRADE STUDIES

4.1 Solution Approaches

We researched and discussed various approaches to ad-
dressing our problem. Our first idea was more hardware-
based. We would have designed and implemented a custom
single board computer that included all the necessary ports
and power management modules required. We would have
had a single front-facing camera that solely performed edge
detection. This approach was flexible in that we could have
made our device blind to the type of 3D printer in use. Af-
ter discussing our concept with Professor Rowe, we realized
that this approach focused too heavily on the exercise of
designing the custom board, and did not present a thought-
out solution for the computer vision aspect of the project.

Our next approach consisted of the RaspberryPi plat-
form, a front-facing camera, and a corner camera (this was
when we were still considering the Ultimaker3 as our printer
of choice; it has a built-in camera). Here we would have
created a 3D model of the g-code and warped it into a 2D
image to compare with the camera outputs. Our primary
vision algorithm would have been the Canny edge detector.
Because we realized that miscalibrations would introduce
system errors that could lead the system to believe that a
print error occurred, we included a set of perceptrons that
would manage the system parameters according to system
output and user confirmation. However, the literature sug-
gested the sole reliance on the blob detector in our context
produced inconsistent results, ranging from 60% to 80% ac-
curate. In any case, we desire an 85% accuracy. The per-
ceptron idea also seemed like an effort to fix issues intrinsic
to our system anyways; it would be better to figure out
those root problems. This report describes and discusses
the design we aim to follow for the rest of the semester.

4.2 3D Printer

We initially considered several 3D printer setups. Our
main limitations in this area were the budget constraints
and access to readily-available printers. At first, we wanted

our design to be used on multiple brands of printers. How-
ever, we ultimately decided to develop, test, and demo with
one type of printer for our minimum viable project.

We first considered the Dremel printers, found in the
TechSpark makerspace. Because we would not be allowed
to move a Dremel to the demo area, we quickly decided
to not proceed with this brand. However, TechSpark did
give us permission to experiment with and move the Ulti-
maker3+ printer. While we began the design phase with
this printer in mind, our research led us to the conclusion
that the Ultimaker3+ model we had did not allow easy
access to its main serial bus; thus getting OctoPrint to
connect to the Ultimaker3 would be a huge undertaking
beyond the scope of our project.

We are ultimately proceeding with the PrintrBot plat-
form. This type of printer is highly modifiable and offers
much easier access to the hardware. Because of the open-
end nature of the printer, we are much better able to de-
sign fixtures to hold our sensors in place. Lastly, OctoPrint
works seamlessly with this printer, so we could easily build
our system on the OctoPrint framework.

4.3 Camera & Lens

Choosing a camera required assigning values to our de-
sired FOV and the number of pixels allocated to detect
the smallest object. In order to meet our coverage require-
ment, we decided that an FOVh of 215mm and an FOVv
of 300mm were sufficient. We think that starting off with
2 pixels to detect a 0.5mm object would be a good starting
point. Following equation (1), our minimum resolution is
860 x 1200. Since we are doing stereo imagery, we need to
choose at least two cameras.

The first camera we came upon was the OpenMV Cam
H7. This is a camera module that was created for CV
usage. It has a lot of different features related to image
and video processing, including marker tracking, line/cir-
cle/rectangle shape detection, frame differencing, and tem-
plate matching. We ultimately steered away from this cam-
era because it could essentially do a lot of our project for us,
thus leaving the team with very little to contribute besides
just programming the module.

We also discovered the Sony Spresense 5MP Camera,
prompting us to do a study on its companion board de-
scribed below. It supports 1920 x 1030 resolution videos at
30 frame/s, which is well above our minimum required reso-
lution. However, the companion board did not meet design
requirements, so we could not proceed with this camera.

Next we looked at the Pixy2 CMUcam5 Sensor. The
Pixy2 is a camera that has been used for many different
maker-type projects, so we obviously wanted to look into
it in more detail. In terms our our project and features
that it had wouldn’t really contribute anything useful be-
sides line tracking. As we continued to look into different
cameras, we came to the conclusion that we didn’t care
as much about the additional features of the module and
rather wanted to select a camera module that had good

18-500 Design Review Report - March 2, 2020 Page 5 of 9

compression capabilities, would be easy to communicate
with, and had easily replaceable lens.

The Raspberry Pi Camera Module v2 has a sensor reso-
lution of 2592 x 1944 pixels. This also meets the minimum
resolution requirements. Since the RPi only has one CSI
port, we can interface with the RPi camera module via CSI,
and our serial camera via TTL without interferance. One
concern is accounting for the latency differences in serial
and parallel communication. However, we decided we can
work with the RPi Camera Module v2 as our first sensor.

For our second camera, other choices we looked at were
the the UCAM-III Serial Camera Module and the TTL
Serial JPEG Camera with NTSC Video. Both of these
cameras have a pixel size of 5.6 x 5.6 µm. They also both
feature good compression in terms of being able to take
relatively high quality photos but still keeping the file size
relatively small. We ultimately chose the TTL Serial JPEG
Camera because it uses TTL communication and will also
be able to work with the module using Python.

However, because we still want the lens to have the
widest possible viewing angle, we are using the UCAM-
III-116 lens, which has a 116◦ Horizontal Field of View
(HFOV), in comparison to the TTL Serial Module’s 56◦

HFOV and the Lens Board’s 56◦ view. The lenses are in-
terchangeable using a M12 lens mount, so we can easily
make this replacement.

4.4 Microprocessor

We considered the Sony Spresense main board primarily
because it is required under the Spresense hardware ecosys-
tem. It is a low-power hexacore micro-controller that op-
erates around 156MHz. This board offers 2D acceleration
and one parallel camera interface. Since our design imple-
mentation changed to involve two cameras, and because its
clock rate is lower than other modules, we decided to not
proceed with this board.

We also looked at a RaspberryPi variant, the Compute
Module 3+. This board actually contains the same pro-
cessor as the RPi 3B+, but gives the user access to many
more IO ports, including the extra CSI camera interface.
A disadvantage of the Compute module is its form factor:
it plugs into a DDR2 SODIMM connector. To solve this,
we found the open-source StereoPi. This carrier board is
designed specifically for the Compute module and stereo
video capabilities. To this end, we have convenient access
to those CSI ports. We also have network access via Eth-
ernet. Lastly, since the Compute module is essentially the
RPi 3B+, we also can run Raspbian distributions, such as
OctoPi.

The RaspberryPi 3B+ is a familiar platform for the
quad-core BCM2837 processor, which is intended for mo-
bile applications. This RPi is specified to operate at
1.4GHz, much faster than the Spresense; this is benefi-
cial since we are running non-trivial computer vision al-
gorithms. This platform also has networking capabilities,
allowing us to access the 3D printer remotely. However,
while the BCM2837 officially supports two camera inputs,

the RPi designers only included one CSI port for a cam-
era. We decided to choose the RPi 3B+ as our platform
because it does not require carrier boards, we can run a sec-
ond camera through UART, and it has networking abilities
built-in.

5 SYSTEM DESCRIPTION

5.1 Camera Placement

Figure 4: Camera Placement

Our minimum viable project will consist of a two cam-
era setup. C1 and 12, seen in Figure 4, will output the
images used for our point cloud analysis. These camera
are pointing at the build plate at an angle such that their
depth of field is maximized.

5.2 System Core

The system core interacts with, and is essentially a plu-
gin for, OctoPrint. This module will generate the signal
for the error check, and will include function calls to the
point cloud analysis subsystem described below. This er-
ror check signal is asserted when the command to increment
the extruder z-direction is sent to the PrintrBot. Upon de-
vice start, the system core will wait for the user to input
a g-code file and a list of parameters. These parameters
will primarily include the RGB value of the filament the
print job will use. This color parameter will be used dur-
ing the blob detector redundancy check. For debugging
purposes, other parameters might include threshold values
and options to choose between various similarity metrics.
The system core will run the detection algorithms while the
print job status is active. Using the OctoPrint framework,
we will be able to capture the specific g-code command
currently being executed for the particular layer. Deter-
mining the layer just completed is required for the point
cloud comparison.

When an error is detected, the system core will notify
the user via the OctoPrint user interface. The user will
be shown a disparity map between the g-code point cloud
and the point cloud for the printed object. Then, the user
will be able to choose whether the print will continue. If
print termination is selected, the system core will send the

18-500 Design Review Report - March 2, 2020 Page 6 of 9

appropriate set of commands to the PrintrBot. For our
minimal viable project, the PrintrBot will be paused while
the system core performs these checks. Lastly, the system
core will handle the creation and logging of system status in
a human-readable format pursuant to our validation plan.

5.3 Point Cloud Analysis

Our method of detecting errors in the current print will
consist of comparing two point clouds at the completion of
each print layer. Data derived from the g-code will be pre-
processed into the reference point cloud (RPC). We will
construct a print point cloud (PPC) using data gathered
from our various sensors. If the disparity between these
point clouds surpasses some threshold, we will indicate to
the user that a print error has occurred at that layer. We
will be developing in Python and using OpenCV functions
to implement the math discussed below and create custom
programs as needed.

5.3.1 RPC Construction

In order to generate the RPC, we first must interpret
the g-code commands. The process is [3]:

1. Simulate the g-code visually using Matplotlib or a
similar tool

2. Close holes to disregard infill

3. Gather the boundary coordinates from each layer

4. Export to XYZ file

Since our camera system is fixed (i.e. extrinsic and intrinsic
parameters do not change), we should translate the RPC
encoded in the XYZ file so that its centroid is at the origin;
afterwards, the RPC should also be warped (via a projec-
tive transform) to the cameras image plane to facilitate
easier comparison with the PPC. This is done via

(x′, y′) = (f
x

z
, f
y

z
)

To allow for optional checking against the original STL file,
we could also use MeshLab or a similar tool to mesh the
coordinate file into an STL.

As a general note, we see that the [7] simplified intrinsic
camera matrix is

K =

f 0 cx
0 f cy
0 0 1


5.3.2 PPC Construction

To generate the PPC, we will follow the algorithm given
below [6]:

1. Gather images of the current layer

2. Compute fundamental matrix F between the two im-
ages

3. Find epipolar line l′ using F

4. Select point x′ on l′

5. Compute the 3D point set using triangulation

To reconstruct a 3D model from two camera images, we
need to determine the fundamental matrix F . F is a non-
unique mapping of points to lines with uncalibrated cam-
eras [7]. F is estimate via the 8-point algorithm (here we
plan to use code from a previous project). For the set of
points x from image 1, we compute the epipolar line l′ via

l′ = Fx

Since the search for the corresponding point x′i of xi is
now linear, we can use various similarity functions to se-
lect the best corresponding point. For our approach, we
needed a quick similarity measure, so we chose the sum of
differences (SAD).

Once we have a set of matched points, we can triangu-
late by solving another SVD problem involving the camera
projection matrices P and P ′ and the corresponding points
we just found [6]:

AX = 0

where

A =


ypT3 − pT2
pT1 − xpT3
y′p′

T
3 − p′

T
2

p′
T
1 − x′p′

T
3


5.3.3 Comparison

Comparing the RPC and the PPC begins with receiving
the layer index that was just completed and removing the
points constituting future work from the RPC. The next
steps involve translating the PPC to the origin and calcu-
lating the similarity between the each point using Euclidean
distance. We chose this distance metric because the Eu-
clidean distance captures the magnitude of the vector from
point to point, whereas, say, the cosine distance disregards
the magnitude in favor of the angle between vectors. If any
distance between two correlated points is greater than the
mean of the resulting distances by 3 times the standard
deviation, the user is notified of the potential error. This
particular threshold was chosen after reading Holzmond’s
paper [5], where a similar comparison process is used. This
threshold is a good place to start and can be tweaked dur-
ing the implementation process to optimize performance.

5.4 Blob Detection

We are including a blob detection algorithm in conjunc-
tion with our stereo imagery algorithm. The blob detection
serves as a redundancy check on our system, but it also ef-
ficiently accounts for sudden movements on the print.

1. The user will provide some insight to our program by
giving it an estimate of the color of the material be-
ing extruded. This is to make computations simpler
by already knowing what rough color to look for.

18-500 Design Review Report - March 2, 2020 Page 7 of 9

2. The camera output will be an image in RGB format,
but HSV (Hue, Saturation, Value) is the more com-
mon format for CV usage. Because the R, G, and
B components of an object’s color in a digital image
are all correlated with the amount of light hitting
the object, and therefore with each other, image de-
scriptions in terms of those components make object
discrimination difficult. But because our goal is ob-
ject detection, roughly separating hue, lightness, and
chroma or saturation is effective, because there is no
particular reason to strictly mimic human color re-
sponse.

3. This is in collaboration with the camera placement.
We want to find consistent objects where their place-
ments don’t often change, and use those as points of
reference to be able to get a more specific view of
the print. To do this, we will be implementing some
sort of scale-invariant feature transform algorithm to
best “locate” and crop in on the actual focus of the
camera – the print.

4. Next is the conversion of the image into a binary im-
age – aka a black and white image. Using the thresh-
old value from the user, we will attempt to “keep” all
the pixel values within a certain range, and then “re-
move” all the pixels that don’t fall within the thresh-
old. This will ideally give us a black and white image,
where the white values should be roughly the outline
of the print.

5. Once we have the binary image, we can perform basic
blob detection on this to smooth out any edges and
to make one cohesive item in the image.

6. Once we have the binary image, we can perform basic
blob detection on this to smooth out any edges and
to make one cohesive item in the image.

6 PROJECT MANAGEMENT

6.1 Schedule

Since we are technically behind our schedule (see Ap-
pendix A), we are starting immediately on our respective
responsibilities in order to complete this project with high
accuracy. During our Spring Break, we do not have expec-
tations of work being done, but we will need to work hard
afterwards to ensure we have about a week or so to perform
integration and validation tests.

6.2 Team Member Responsibilities

Since the project objective presents a software problem,
we have designated two members on our team to work on
the software portions. However, there will be hardware
integration.

Joshua will primarily be working on the system core.
He will also contribute to the print point cloud and com-
parison code. In a secondary role, he will help Hannah with
the g-code interpretation and visualization.

Hannah will primarily work on the g-code interpreta-
tion and visualization for the reference point cloud. Since
she has experience with signals and systems, she will also
implement the blob detection and edge detection. She will
coordinate with Joshua on integrating her contributions to
the system core, on which she will also work secondarily.

Lucas will be focusing on the hardware aspect of the
project. This includes placement of the two cameras and
designing any fixtures to meet our weight requirements.
Being in charge of the RPi setup as well, Lucas will also
communicate with Joshua on interfacing the system core
plugin with OctoPrint.

While each person will be in charge of unit testing their
subsystems, the team as a whole will perform integration
testing. Ultimately, we will perform the validation tests
described previously in the Design Requirements section.

6.3 Budget

As can be seen in Appendix B, we are using our budget
primarily for the processing platform and camera choices.
In terms of software tool, we are developing with Python
since OctoPrint interfaces with the system core plugin in
Python. Various support modules – OpenCV, NumPy,
MatplotLib, Sci-Kit Image – are used for our computer
vision algorithms. MeshLab is an optional system we can
use to check our RPC generator. We are using RoboClub’s
PrintrBot, but since it was assembled prior to our acquiring
it, we do not know how much it cost to build. Our code
will be controlled via Git/GitHub.

6.4 Risk Management

The biggest risk factor is our hardware limiting the soft-
ware implementation we have chosen. We are manipulat-
ing very large data sets and performing multiple searches
during each error check. If the CPU on the one RPi can-
not handle the load of interfacing with OctoPrint, trans-
ferring data, running the intensive point cloud analysis we
have proposed, one solution would be to offload some of
the work to the built-in GPU. We would definitely find
an existing library and compiler; the alternative would be
to learn GPU programming and reading through the RPi
GPU datasheet, which is an undertaking that is beyond
the scope of this project. Another solution would be to
have multiple RPi’s working in parallel to process the bulk
of the computer vision workload, and interface with Octo-
Print on a dedicated RPi. In this configuration, the bottle-
neck would most likely be the data transfers. Lastly, if the
latency is too great, we would have to resort to looking for
an entirely new microprocessor.

Another risk factor is the system having a higher false
positive rate than expected. Although a high false positive
rate is preferable to a high false negative rate, we want to

18-500 Design Review Report - March 2, 2020 Page 8 of 9

also have a low false positive rate. If we come across this
issue, we can tune the various similarity metrics we used in
order to mitigate this risk.

A minor risk is that the fixture we construct to hold our
sensors and devices is too heavy to meet specifications. A
simple solution is to change the fixture’s material proper-
ties. For example, if our armature is built from 3D printed
material, we can just make the infill less dense.

7 RELATED WORK

A team at the University of Stuttgart[2] aimed to de-
tect detachment, missing material flow, and deformity er-
rors. Surface errors and deviations from the models were
also discussed but not addressed due to the complexity of
the problem. The paper details the use of blob detection to
track the printed object and infer sudden movements. The
Canny edge detection is performed during a pre-processing
stage to find the upper surface of the print bed. This de-
sign achieved a detection rate of 60 to 80 percent and also
had a false positive rate of 60 to 80 percent.

8 SUMMARY

In short, we have designed an error detection system
for the PrintrBot, a hobbyist 3D printer. The approach
we chose encompasses primarily the Software and Signals
& Systems areas of ECE. Our system will run computer
vision algorithms to generate a digitized 3D model of the
current print for comparison to our reference model. We
are prioritizing our accuracy rate of 85%, among the other
requirements described previously.

References

[1] Jun-Woo Ahn et al. “Two Phase Algorithm for Opti-
mal Camera Placement”. In: Scientific Programming
2016 (July 2016).

[2] Felix Baumann and Dieter Roller. “Vision based error
detection for 3D printing processes”. In: 2016.

[3] Felix Baumann et al. “From GCode to STL: Recon-
struct Models from 3D Printing as a Service”. In: 2017.

[4] Tim Dobbert. Matchmoving: The Invisible Art of
Camera Tracking. Sybex, Nov. 2012.

[5] Oliver Holzmond and Xiaodong Li. “In situ real time
defect detection of 3D printed parts”. In: Additive
Manufacturing 17 (Aug. 2017), pp. 135 –142.

[6] Kris Kitani and Ioannis Gkioulekas. “Two-view geom-
etry”. In: 16-385 Computer Vision Lecture 10 (2019).

[7] Richard Szeliski. Computer Vision: Algorithms and
Applications. Springer, 2010.

18-500 Design Review Report - March 2, 2020 Page 9 of 9

Appendix A

Figure 5: Gantt Chart

Appendix B

Bill of Materials
Part Name Function Source # Unit

Price
RaspberryPi 3B+ Microprocessor Adafruit 2 $35.00
RaspberryPi Camera Board v2 Camera 1 Amazon 1 $18.99
TTL Serial JPEG Camera with
NTSC Video

Camera 2 Adafruit 1 $39.95

UCAM-III-116LENS Wide camera lens (116◦ HFOV) Digi-Key 2 $10.19
PrintrBot 3D Printer RoboClub 1 —
Python 3.7 Primary Programming Language — — —
OpenCV Computer Vision Module — — —
NumPy Scientific Computing Module — — —
Sci-Kit Image Image Processing Module — — —
MatplotLib Plotting Module — — —
Git/Github Versioning Control Software — — —
MeshLab (optional) STL Mesh Generator — — —

Total $149.32

