
18-500 Final Report - March 2, 2020 Page 1 of 18

Tetris: A Frame Perfect Game Adventure
Authors: Eric Chen, Alton Olson, Deanyone Su

Electrical and Computer Engineering, Carnegie Mellon University

Abstract—A FPGA-based system that is capable of
generating a modern 2-player Tetris game that largely
follows the Tetris Design Guideline, though it is not
necessarily Guideline-compliant. This system provides
frame-perfect responsiveness to the user(s) in addition
to displaying information about both the user’s game
state and the opponent’s game state over VGA. The
user primarily interacts with a custom-designed, re-
versible controller and receives auditory information
from an external DAC which drives a 3.5mm jack. 2-
player battles are enabled on a custom, local network
connection over 2x20 general-purpose input/output
(GPIO) pins.

Index Terms—arcade, emulation, FPGA, frame-
perfect, game, local area network, low-latency, network-
ing, PCB, synthesizer, SystemVerilog, Tetris, Verilog

1 INTRODUCTION

Most modern Tetris implementations rely on a CPU to
express the intricacies of the fundamental game mechan-
ics. Mechanics like the Super Rotation System (SRS), De-
layed Auto Start (DAS), and tspins are easier to implement
and debug in a traditional software programming language.
However, CPU-based implementations suffer from two ma-
jor flaws: input latency and resource contention.

The input/output (I/O) stack in modern computers at-
tempt to strike a balance between performance and load on
the processor to avoid wasting valuable processor time. As
a result, I/O latency in modern systems tends to be rather
long as most applications have no need for near-instant I/O
latency. However, Tetris is one such application. The user
expects that their input is reflected by the game state in-
stantaneously. This is difficult for CPU-based implementa-
tions to service as their responsiveness is bottle-necked by
their I/O stack. In our implementation we enforce that user
inputs must be reflected in the next frame that is loading
onto the monitor, a latency that we term “frame-perfect”.

Despite multi-core and simultaneous multi-threading
technologies in modern CPUs, the vast majority of pro-
grams are still largely single-threaded. This means that
the various services that run the game: the network stack,
input handlers, game logic, etc. can interfere with each
other and cause stalls for the queued processes. By nature,
FPGAs are inherently parallelized and can avoid these is-
sues entirely. In design, the separate components, graphics,
logic, networking, etc. can be built to operate indepen-
dently such that, unless logically required, no process will
waits on the completion of another independent process.
The cost of this parallelism is area on-chip, so our design
must reasonably fit into an economical FPGA.

2 DESIGN REQUIREMENTS

The primary design requirement in our system is the
frame-perfect implementation. A typical display runs at
60 hz. Therefore, we expect our user to see their inputs
reflected by the display within 1

60 of a second. This will
be tested using hardware counters, which are explained in
depth later, in Section 4.1. In short, we measured on-chip
latency while ignoring the latency from the controller to
the FPGA and from the FPGA to the monitor. These are
parameters that are outside the scope of our design.

In terms of game mechanics, we are following the Tetris
Design Guideline for the majority of our implementation, as
described in [7]. These game mechanics are verified through
playtesting. While it is possible to test these inputs in sim-
ulation, at the human time-scale at which these mechanics
occur, it is more efficient to playtest. Further detail of the
game mechanics are provided in Section 5.1.

Of course, individual small components are verified for
correctness using simulation testbenches, while more com-
plex components are verified for correctness using hardware
testbenches. This enabled an efficient path towards inte-
gration while ensuring correctness in discrete parts.

Our sound synthesizer produces “Korobeiniki”, the
classic Tetris background music. The music is sampled at
50 KHz, slightly above the industry standard of 44.1 KHz.
This sampling rate is measured by the clock rate generated
over GPIO for the external DAC. The industry standard is
based on the Nyquist-Shannon Sampling Theorem applied
to the range of human hearing (2 - 20 KHz). Sampling at
a higher rate than the standard ensures that the audible
sound signal is recreated correctly and is not detrimental
to the result.

Our network is a custom protocol over a subset of the
GPIO pins available on our FPGAs. The requirements on
this network is that it does not interfere with the single-
player mode(s) and that it can communicate the necessary
data within the latency of a single frame since the data
it carries is to be displayed to the user. Therefore the re-
quired network latency is less than 1

60 of a second. The true
requirement is somewhat less than that though, since the
data needs to be received, processed, and then prepared
to be shown to the user in a timely manner. The network
takes advantage of the available pins to transmit data in
parallel and enable more robust encoding techniques.

As a side note, there are 7 types of tetrominoes in Tetris,
I, O, T, J, L, S, and Z. They are cyan, yellow, magenta,
blue, orange, green, and red, respectively as depicted in
[7]. They will be referred to as such for the rest of this
document.

18-500 Final Report - March 2, 2020 Page 2 of 18

Figure 1: Overview of the full system per FPGA. The red box indicates the components on the FPGA itself while the
blue boxes are housed on an external PCB, interfaced with via GPIO. The PCB with the audio processing middleman
and the controller interface also houses a network interface to connect to the second FPGA for Battle mode.

3 ARCHITECTURE OVERVIEW

Our system is architected with division of labor in mind.
Given our team of 3, we wanted each contributor to be able
to work in parallel as long as possible. This maximizes
the efficiency of our individual work, and also reduces the
number of errors than can occur due to miscommunication.
With this in mind, we split our design into 5 major sections.

1. Game Logic
This subsystem is responsible for the majority of
game mechanics. This holds both system state and
game state. These are used to provide data as needed
to other sub-systems in addition to allowing the other
subsystems to communicate to each other as needed.

2. Graphics
This subsystem is responsible for graphical output via
(S)VGA. The data pulled from the Game Logic sub-
system is re-organized into either tiles or blocks and
rendered into an understandable form for the user.
Each independent portion of the graphical output has
a dedicated pixel driver to detail that portion of the
display. This reduces complexity of each individual
pixel driver and also makes graphical errors quicker
to debug as each error can be instantly isolated to
a particular driver. This subsystem is tightly inte-
grated with the Game Logic subsystem as the major-
ity of data that needs to be displayed is directly tied
to the game state.

3. Network Protocol
This subsystem is responsible for communication be-
tween FPGAs. This is only used in the 2-player Bat-
tle mode and communicates data over the GPIO pins.

This system requires full send and receive stacks to
encode and decode data.

4. Audio Synthesis
This subsystem is responsible for producing audio for
the user experience. The data is pulled from the
Game Logic subsystem for sound effects as well as
a smaller separate module in the FPGA (not pic-
tured) to read data from a memory file to produce
music. This includes a lookup table to reference notes
to waveforms of the correct frequency. The external
DAC that drives the 3.5mm jack is housed on an ex-
ternal PCB, the middleman PCB. This middleman
PCB is wired into directly using GPIO, which is then
broken into components for the external DAC, the
network protocol, and the controller.

5. Controllers
This subsystem is responsible for the primary interac-
tion with the user. The user(s) will use the controllers
to provide inputs to the Game Logic subsystem. The
controller has a dedicated PCB which is cabled to
the middleman PCB. The buttons are arranged in a
layout that mirrors a generic pair of human hands.

Further detail of each system is discussed in section 5.
It is important to note that while the network protocol is
designed and set, the interfaces between each of the subsys-
tems is not fixed as the information that needs to be shared
between each module is not static. As new mechanics are
added, the Graphics subsystem grows larger and may re-
quire more information from the Game Logic subsystem to
drive that graphical output. It is within expectations for
the system architecture to expand the interfaces for each
system as mechanics are added.

18-500 Final Report - March 2, 2020 Page 3 of 18

4 DESIGN TRADE STUDIES

In our design, there were several decisions that each
were a trade-off of many considerations. The FPGA plat-
form we chose to use, the bandwidth of the network pro-
tocol, and the controller scheme were all chosen in pursuit
of practicality in implementation or to further enable us
to perform well in our primary metric, latency. Here we
detail some of the trade-offs we made and how our choice
performed in comparison to our theories from earlier in the
semester.

4.1 Latency: Handling User Inputs

We used (S)VGA as our interface to the user. This in-
terface was chosen because it is simple to implement on
an FPGA, flexible in terms of refresh-rate and resolution,
and the boards available to us had this interface available.
While we settled on a respectable 800x600 @ 72Hz proto-
col, on a faster board we could have further improved our
latency metrics by driving a faster pixel clock to the dis-
play. As we discuss more further below, the majority of
the latency to the end user is waiting for the screen to re-
fresh with updated data. A faster refresh rate could enable
this latency to shrink as the vertical sync pulse pulse comes
more often to update the display with new data.

Our project goal was to build a system that could reflect
a user input as quickly as possible. Monitors have a refresh
rate at which new data is displayed on the screen. By en-
suring that our data was available as quickly as possible, we
guarantee that the data is displayed in the next available
screen refresh. The critical path in handling user inputs
is essentially managing state, which the graphics subsys-
tem then reflects onto the screen. When the user enters an
input, upon determining that the input is valid, the state
change is loaded into the relevant registers immediately,
with the possible next-states pre-computed.
This pre-computation is possible because of 2 factors:

1. User inputs must have a cool-down period. Without
a cool-down, an input by the user is typically held for
thousands, if not millions, of cycles. This is by nature
of human time-scales vs the on-chip clock speed. So
then, an appropriate input rate is something on the
scale of millions of cycles to allow the user to react
to the state change that they input and then let go
of the key.

2. Tetris is a simple game in comparison to something
like a 2-D platformer or an arcade fighter. The re-
ality is that, there are only so many inputs available
to the user. Then, with these very finite possibilities,
we can compute all the possible next states and ef-
fectively let the user choose the next state they wish
to use. This next state evaluation can be very expen-
sive. The bulk of our optimization work was spent on
this part of our project.

Figure 2: Latency measured by on-chip hardware counters.
Latency is measured from valid user input detection until
the vertical sync pulse pulse of the relevant frame on the
VGA interface

As a result of these two factors, we can enable a very
short turnaround on any user input, something on the or-
der of a few dozen cycles. This includes loading in the new
state as a result of the user input as well as handling the
aftereffects of that action, like detecting a t-spin, line clear-
ing, and sending lines to the opponent, if in the multiplayer
mode.

Here in Fig. 2 we present the latency of our system,
as measured by the on-chip hardware counters. Note that
this is a fairly pessimistic measurement of on-chip latency
since the value is always ready within a few dozen cycles.
However, these values are displayed to the user at a fixed
rate, 1 frame per display refresh. Therefore, it is more fair
to measure to the relevant vertical sync pulse pulse, which
if missed, means the pulse after the one that was missed.
This waiting period is a majority of the latency experienced
by the user, but is also unavoidable by nature of the display
interface.

Exploring this metric a bit, this latency is intending to
measure information to the user. Thus, whether the verti-
cal sync pulse is missed is not just a function of compute
time but also when the input is received. If the input is re-
ceived in the lower quarter of the screen, the input cannot
possible be shown to the user since the playfield has already
been rendered. As such, it would be too generous to use
the first vertical sync pulse seen (very quickly seen) even
though the computed value is ready. Therefore, it is more
accurate to measure to the next vertical sync pulse. This is
why we see a greater than 1 frame latency even though our
system is capable of producing up-to-date information well
within a frame as this value is intended to portray (almost)
end-to-end latency to the user.

4.2 FPGA Platform and Logic Element
Usage

We intended, from the beginning of this project, to use
either the DE2-115 Cyclone IV FPGA or the DE0-CV Cy-
clone V FPGA. This is because both of these boards are
”pure” FPGAs in the sense that there is no SoC on-board
that handles I/O. This is important because I/O intercon-
nects tend to be throughput-optimized rather than latency-
optimized. The SoC also introduces additional complexity
to the project overall, since we have to interact with it even
if we would prefer direct access to various pins like VGA
or seven-segment displays.

18-500 Final Report - March 2, 2020 Page 4 of 18

This design decision was effectively an area vs I/O
trade-off. We had to either design our off-board interface
to be compact enough to fit into a single GPIO port on the
DE2-115 or optimize our design to be able to fit onto the
DE0-CV. As it turns out, we were unable to optimize our
design enough to fit onto the DE0-CV, seeing as we needed
roughly 45K to 50K logic elements in our final design, even
after optimizing our more expensive modules. This would
have been nearly 90% of the available logic elements on the
board. As a result, we determined place and route on the
DE0-CV would have been (nearly) impossible to place and
route. Additionally, the DE2-115 boards enabled us to syn-
thesize, place, and route on the ECE machines owned and
operated by the University rather than doing so on our lap-
tops. One of the results of the COVID-19 pandemic is that
one of the authors lost access to a reasonably powerful com-
puter and was unable to efficiently synthesize on their local
machine. Laptops tend to perform poorly in the relatively
complex synthesize, place, route workflow, so working on
the school servers enabled a shorter iteration cycle. Unfor-
tunately, this also came with the effect that the single GPIO
header on the DE2-115 was densely packed with live data
wires. This caused significant crosstalk across all wires in
the ribbon cable, and effect which had to be mitigated on-
chip. This was unavoidable given the rather area-expensive
precomputations described in Section 4.1.

4.3 Network Protocol

The network subsystem interfaces with many parts in
our design. The network was responsible for handling
crosstalk and its clock signal to ensure that data was passed
to its destination in an understandable manner. Here we
present some of the design points that we considered in
the process of developing the networking stack in our demo
implementation.

4.3.1 Stop and Wait Design

We designed the network protocol as a stop-and-wait
protocol since we knew we had finite time to transmit the
data and this enabled us to finely control the number of re-
attempts that each packet had before it had to be dropped
in favor of new available data. In our design we knew, very
early on, that we only had a little over 100 bytes of data
that needed to be sent across the network. At 100 Khz, a
comfortable clock rate over GPIO, and 4 parallel data wires
per way, we could send the full packet in 0.00225 seconds,
or 7 retries per frame. With appropriate error correction,
this seemed more than sufficient.

We considered, in design phases, using a protocol that
enabled more feedback from the receiver. For example, we
could have implemented NAKs to cut off time-outs and en-
able faster send repeats. This turned out to be unnecessary
in our early prototyping. While we did not record num-
bers, it was clear from testing that the data would arrive
stably within a few retries, let alone the 7 we had avail-
able. What we had not considered, during protoyping, was

that crosstalk in the wires, when sending real data, could
destroy the clock signal, resulting in clock glitching in the
slave board. This is discussed more in Section 4.3.3.

4.3.2 Error Correction and Detection

In the original design of the network protocol, we had
planned to use a Hamming code to implement SECDED de-
coding on chunks of data being sent across the GPIO pins.
This would have enabled the receiver on either end to de-
tect errors in the payload and wait for the re-transmission,
rather than accepting known bad data. While this code
would not have been impervious to every error we could
see on the ribbon cables, it would have done some work to
reduce the visual glitches that occurred in our final imple-
mentation. The final network stack did not have any error
correction built into the data transfer. This was left out
due to a combination of factors, primarily lack of time and
additional complexity incurred. Having this functionality
would have reduced visual glitches in the opponent’s play-
field that gets transmitted over the network. Given more
time, this we would have built this functionality into the
network. Additionally, with the error rates we were seeing,
a stronger code than planned may have been necessary.

4.3.3 Clocking and Crosstalk

Though data transmission through on-board pins and
ribbon cables is naturally somewhat lossy, it was surpris-
ing how degraded the signals seemed to be in the master
to slave direction in comparison to the same signals in the
slave to master direction. A lot of our debugging time was
spent on getting the slave board to be able to decode the
information being sent from the master board. We con-
firmed in our testing that it was mostly due to the clock
signal being interfered with by other signals via crosstalk.
We discuss this more in section 8.1, but hardware revisions
on both the PCBs and the protocol to minimize crosstalk,
especially on the clock, would go a long way in enabling our
network stack to be more effective. As is, the data trans-
mission is visibly lossy, but correct enough to avoid im-
pacting the gameplay significantly. In our testing, routing
ground wires between every data wire significantly reduced
the effects of crosstalk. With more available I/O and/or
shielded wires, this issue could have been significantly less
problematic.

Our current solution uses the clock sent over the net-
work as an alignment signal for the slave board’s locally
generated network clock. While having a dedicated clock
line in unnecessary in modern network protocols, usually
via bit-stuffing and various encoding schemes, we use the
dedicated clock pin in the network protocol to guarantee
that we can align the on-board clocks consistently. By
aligning falling edges between the two clocks, we prevent
the rising edge of the network clock from glitching.

18-500 Final Report - March 2, 2020 Page 5 of 18

Figure 3: Overview of the FSMs involved with managing game logic

5 SYSTEM DESCRIPTION

5.1 Game Logic

In a user-oriented game, it is important to manage the
user’s interactions with the system. We manage this using
a series of “screens” that are shown to the the user in se-
quence. On launch, the user is shown a “start” screen which
displays the Tetris logo and the various options available to
the user. Then the user can opt into a single-player Sprint
mode, which can begin immediately, or they can opt into a
multiplayer Battle mode. For the multiplayer option, they
are moved into the “MP READY” state which stalls until
the other player is also in the “MP READY” state.

In both the “SPRINT MODE” and “MP MODE”
states, the user is presented with a classic Tetris screen,
without and with their opponent’s UI, respectively. In
these states, the user is able to play Tetris as expected and
the game concludes as defined by the game mode. Then,
the user is presented with a winning or losing screen, de-
pending on the outcome of the game, with some statistics
about the game that concluded, and then allowed to begin
a new one.

In-game, the state is handled as a loop of spawning
a new piece, having it fall to the ”floor” of the playfield,
then ”locking” the piece into place. This FSM can be inter-
rupted, and can be forced into an “IDLE” state by the game
ending. While this FSM drives the Seven Bag (described
below), it is not the only trigger to spawn new pieces. It
is also possible for the Hold logic (also described below) to
spawn new pieces.

The mechanics of Tetris are largely implemented within
the Game Logic subsystem. As such the remaining de-
scription will be structured as a breakdown of some of the
more interesting game mechanics and the implementation
of such. All mechanics are described at a high level in [7].

• Super Rotation System (SRS) [6]
The SRS is the current Tetris Guideline for how tetro-
minoes rotate and wall-kick when in the playfield
area. All tetrominoes have 4 orientations: 0, R, 2,
L. All tetrominoes spawn horizontally, in the 0 orien-
tation.

Basic rotations are defined such that each tetromino
appears to be rotating about a single point. This sin-
gle point is a individual mino for the J, L, S, Z, and T
tetrominos. The I and O tetrominos appear to rotate
about an intersection of gridlines.

Wall kicks are an important aspect of rotations be-
cause it enables rotations that are otherwise impos-
sible. Importantly, when a piece is pressed against a
wall of floor, wall-kicks define how a piece is shifted to
enable the rotation to occur. SRS has a defined set of
5 rotations (basic rotations plus 4 different kicks) per
rotation. The I tetromino has its own set of wall-kicks
while the other tetrominos share a set of wall-kicks.
The actual tables themselves and more information
can be found in [6].

Wall-kicks are checked in order of priority. As
such, the first valid wall-kick (in-bounds and non-
overlapping) is the one that is used, and a rotation
only fails if all 5 wall-kicks are invalid. In our im-
plementation we check the wall-kicks sequentially, in
parallel with all other movement options, which are
together also checked sequentially. This is a trade-
off between area and latency. Since validity must
be determined by comparing the new position of the
piece against the current playfield state, each validity
check requires an area cost roughly proportional to
the number of validity checks being done.

In a purely parallel implementation, we have 5 right

18-500 Final Report - March 2, 2020 Page 6 of 18

rotations, 5 left rotations, 1 move left, 1 move right,
1 soft drop, and 1 hard drop to be checked. This is
14 checks per cycle, which translates to roughly 30K
logic elements (LEs). We deemed this unfeasible due
to area cost. By continuously checking the wall-kicks
in sequence, in parallel with the other movement op-
tions in sequence, we reduce the number of checks to
3 per cycle. This lowers the LE usage to roughly 12K.
This we deemed acceptable, though we could reason-
ably do more the checks in sequence which could re-
duce the number of checks to as few as 1. This latency
is of minimal concern to the user. This game designed
for human players. In practice, the fastest a human
can spam a button is somewhere in the range of 200
presses per second. Therefore, using a dozen or so
cycles to evaluate input validity is acceptable.

• Delayed Auto Shift (DAS) [2]
Also known as autorepeat, this mechanic defines the
behavior of a held button in game. A standard cool
down is necessary to have the user be able to play the
game, since a piece shifting or rotating at the board’s
clock rate is useless to a human player. With DAS, a
held move causes the piece to shift initially at a high
cool down period, than repeatedly shift at a lower
cool down period. This enables the user to efficiently
move and rotate pieces.

We implement DAS into our input handler for the
controllers. This module integrates a synchronizer
chain with a cool down counter and a validity check.
This integration allows the module to vary the cool
down based on an FSM, and also refine the input to
a single-cycle pulse, which is easier to manage in the
remainder of the system.

• Spawning Position
Pieces spawn at the 21st and 22nd rows of the play-
field, which are hidden from the user and move down
instantaneously on spawn. We deviate in an un-
noticeable manner from the Guideline by spawning
pieces in the 20th and 21st rows of the playfield and
not instantly moving the piece down on spawn. Ef-
fectively, these are identical, so long as the top-out
logic handles overlaps in addition to locking above
the visible playfield.

• Move Reset Lock Down
The Guideline defines 3 different lock down mechan-
ics, the most common of which is move reset lock
down. In classic Tetris, the pieces will lock onto the
floor or another piece it is stacked on top of after 0.5
seconds. Move reset lock down resets the timer if the
piece is moved or rotated. Naturally, this could allow
users to infinitely spin a piece to delay the game, but
most games implement a limit of 15 resets before the
piece locks with no delay. We follow this limit.

• Hold
Hold is a mechanism that allows that player to store

an active piece to swap with another piece later in
the game. At the beginning of the game, the hold
is empty. As such, the first time a piece is held, the
Seven Bag needs to spawn a new piece, but thereafter
the piece held is swapped with the active piece. Upon
swap, the active piece (that was just beign held) is
spawned at the top of the playfield. This hold can
only be done once per piece, so a swapped piece can-
not be held.

• The Seven Bag
The Seven Bag is the mechanic by which pieces spawn
as defined by the Guideline. This is intentionally
setup to avoid strings of the same piece being given
to the player, which is possible using a naive random
number generator (RNG). As the name suggests, tiles
are provided to the user as though drawn from a bag
containing the 7 different tetrominoes. When empty,
the bag is refilled. While this mechanism does pro-
vide some unfavorable strings of tetrominoes, like S,
Z, S, Z, it does avoid most of the issues with simpler
mechanisms.

Our pseudo-RNG is a set of 31-bit Galois Linear Feed-
back Shift Register (LFSR) as described in [9]. Each
LFSR generates a bit that is concatenated to pro-
duce a tetromino. This generation logic runs con-
tinuously in the background, which means the Seven
Bag is generated based upon how the user plays the
game. While this is an awful randomness source for
any cryptography application, it is sufficient and ef-
ficient for our use.

• Piece Preview
The next 6 pieces that are provided to the user are
shown ahead of the user actually dropping and plac-
ing the tetrominoes. This is implemented as a mod-
ified queue that is continuously filled by the Seven
Bag. The modified queue has its contents output
to be able to communicate with the NextPixelDriver
(described below) to show the values to the user.

• T-Spins
T-Spins are a special kind of line clear, where the
last movement of a T tetromino is a rotation and it
moves the piece into a ”hard to fit” location. The ex-
act detection method is unclear since the Guideline
has changed the definition of a T-Spin multiple times
over the course of the past 2 decades. As such we
will be using the 3-corner method, which was used in
past SRS-based games, in addition to other heuris-
tics to restrict the definition. This will avoid some
of the issues that plagued Tetris DS, which purely
implemented the 3-corner T-spin.

• Notable Omissions
Since the Tetris Guideline is not publicly available,
and online resources can only provide most of the
user-facing details of the game, it is impossible for
our implementation to be fully Guideline-compliant.

18-500 Final Report - March 2, 2020 Page 7 of 18

With that in mind, we have attempted to build a
version of the game that is sufficiently Guideline-
compliant such that any user familiar with official
versions of the game will be able to instantly play our
version as well. That being said, there are definitely
some deviations from the Guideline in our implemen-
tation.

– Lack of Marathon or Ultra Modes
Marathon is an endless mode where the player is
able to continue playing Tetris until they top out
and lose the game. Ultra is a timed game mode
where the player attempts to clear or send as
many lines as possible within a fixed time limit.
Both of these modes are less popular today than
either Sprint or Battle modes. We have chosen
to exclude these modes because of this, but will
be including them in the event we have time to
do so after integration steps.

Past versions of the game have omitted different
modes, usually because of hardware limitations.

– Controller Mappings
The Guideline defines standard mappings for
consoles and handheld gamepads. Since we are
building custom controllers for our implementa-
tion, without joysticks, our controllers are not
going to be Guideline-compliant. Nonetheless,
they will be intuitive to use.

5.2 Graphics

The Graphics subsystem is entirely based on the VGA
controller that is provided in 18240 Lab 5 for implement-
ing Mastermind [4]. There are minor modifications to the
protocol to make it work at a higher resolution and refresh
rate (SVGA). These specifications are defined in [8].

The pixel drivers that compose the Graphics subsystem
are independent drivers of VGA R, VGA G, and VGA B
pins which drive the 8-bit color values to the display. These
independent drivers are multiplexed based on context. Here
context can be the part of the screen that is being ren-
dered (the row and column) or the current screen being
displayed to the user, as defined by the System FSM in
Fig. 3. The data that each driver needs are generated in
the Game Logic subsystem. This data is then wired across
into the Graphics subsystem and then passed down to the
individual drivers as needed. As a result, the Graphics
subsystem is deeply interconnected with the Game Logic
subsystem.

This organization lends itself to being modular and ex-
pandable which is important in our project as we imple-
ment features section by section. It is also important in
enabling us to identify issues since an error on-screen can
immediately be isolated to a particular driver and/or the
logic associated with providing values to that driver.

The multiplexers between drivers is based on an active
signal that each pixel driver produces. The active signal is

one-hot, which is efficient for the logic that dictates which
driver is providing valid color values for the controller.

The following list is a short description of each pixel
driver operating in our graphics subsystem. Text and im-
age rendering are discussed after this in section 5.2.1 and
5.2.2, respectively.

• Menu Screen Pixel Driver
This driver produces the welcome screen which is
shown to the user on reset and the ready screen, a
waiting state for the network to ready-up. The main
prompts to the user are provided via text. This screen
also contains images and a QR code to provide addi-
tional resources for the user.

• Game End Pixel Driver
This driver generates either the game won or game
lost screen to the user depending on whether the user
won or lost the prior game. It also shows some statis-
tics via text from the game that is tracked during
gameplay. This game end screen also contains dif-
ferent photos for winning or losing which is further
described in the next section.

• Playfield Pixel Driver
This driver is responsible for displaying the playfield
in-game. This is effectively a translation from a 10x20
array array of enumerated tile types to a color value,
based on the row and column from the VGA con-
troller.

• Next Pixel Driver
This is similarly structured to the Playfield Pixel
Driver, albeit on a smaller scale. This region is only 6
x 19 as it only needs to display 6 tiles in a set of fixed
positions. This region needs to be 6 tiles wide as the
widest tetromino, the I tetromino is 4 blocks wide,
which means that the region needs to be 6 tiles wide
to enable buffer space on either side of the tetromino.
To save scren-space, each individual tile here is also
halved in size.

• Hold Pixel Driver
Again, this is similarly structured to the Playfield
Pixel Driver, albeit on a smaller scale. This region is
only 6 x 4 as it only needs to display a single tile in
a fixed position. Like the Next Pixel Driver, tiles in
this region are half-sized to save screen space.

• Timer Pixel Driver
Time is a set of values ranging from hours down to
milliseconds generated in the Game Logic subsystem.
The driver has the system time as an input and uses
this to compute the individual digits to be displayed
to the user based on the time inputs. Time is dis-
played to the user in-game down to the millisecond.

• Lines Pixel Driver This is very similar to the Timer
Pixel Driver, but showing a count of lines cleared and
lines sent to the opponent (if applicable) using text.

18-500 Final Report - March 2, 2020 Page 8 of 18

• Frames Pixel Driver
We optionally (via switches) overlay a frame counter
in the corner of the display. This enables us to track,
when filming in slow-motion, the current frame to see
when pieces move relative to the frame in which the
input is received.

5.2.1 Text Rendering

Text rendering is important for communicating infor-
mation to the user. We implement text rendering by ref-
erencing a 6x6 pixel font, found in [1]. We imported this
font by hand into an ASCII lookup table that returns a
6x6 binary array. Each character is an individual module
instantiation. This module uses parameterized coordinates
and scaling to determine where the character is displayed
on-screen, and how large the character should be.

Scaling text in this way uses division to determine which
”pixel” of the 6x6 array is currently being rendered. There-
fore, scaling should be a power of 2 since this reduces the
logic complexity of this pixel driver. However, this is not
crucial since modern FPGAs have hardened division/mod-
ulo blocks which can be inferred to reduce LE usage.

5.2.2 Image Rendering

To display images on-screen, we programmed on-board
embedded RAM as ROMs with RGB values. A handler
for the ROMs output the appropriate color corresponding
to each individual pixel. We used opencv-python [5] to
ingest images in the RGB colorspace and do basic color-
correction to strip out background colors. The remainder of
the python script simply generated a Memory Initialization
File (.mif) which Quartus could interpret for programming
the on-chip embedded RAM. This setup was constrained
by the amount of embedded ram on the boards. We con-
sumed the majority of the FPGA’s embedded ram with
only 3 images. We could likely have reduced this usage by
compressing the colorspace.

We also include a QR code pointing at our blog on the
first menu screen. This block was handled in a similar fash-
ion as the image ingest. However, rather than RGB, the
base file was written was done by hand in a custom 1-bit
colorspace then converted into a .mif format for Quartus
to use.

5.3 Network Protocol

Two-player Tetris Battle mode differs from Sprint mode
in a few ways. When the player clears lines, a correspond-
ing number of ”garbage” lines are sent to the opponent.
This value is calculated in Sprint Mode for the user, but
nothing is done with those values. Garbage lines are extra
lines with a single random gap, appearing at the bottom of
the opponent’s playfield. Sent lines are stored in a pending
queue of up to 12 lines, which appear on the playfield after
a set delay. The goal of the multiplayer game mode is to
make the opponent top out by sending them garbage lines.

Figure 4: Garbage Table based on Tetris 99 mechanics

To track garbage lines being sent and update the oppo-
nent’s board state on the screen, the following information
must be communicated by each player. For best results,
it is ideal to have this information communicated on every
frame.

• Garbage
Number of garbage lines being sent.

• Hold Register
Content of the hold piece register, as described in
Section 4.1.

• Piece Preview
Contents of the next piece queue/piece preview, as
described in Section 4.1.

• Playfield
Current state of player’s playfield, as described in Sec-
tion 4.1.

To enable multiplayer communication between game in-
stances on separate boards, we describe the Tetris Syn-
chronous Parallel INterface (TSPIN) communication pro-
tocol. TSPIN is a 4-bit parallel, stop and wait protocol with
dedicated handshaking lines. The pinout is shown above,
utilizing 11 GPIO pins with one board being designated the
master and the other the slave. These designations are de-
termined when the games are synthesized onto the boards.
The master sends the clock used for synchronization, and
the designation is used for naming purposes. Master and
slave are otherwise functionally identical.

18-500 Final Report - March 2, 2020 Page 9 of 18

Figure 5: TSPIN Pinout

In designing this protocol, a number of factors were
taken into account. For an optimal game experience, the
opponent’s playfield must update on the player’s screen ev-
ery frame, or 1/60th of a second. Transmission must suc-
ceed within this timeframe. From past projects we know
that the worst case clock rate we can send over GPIO is
50kHz, giving us at worst 833 cycles per frame to work
with. Transmitted data in total is 832 bits, not including
overhead such as syncwords or sequence numbers. Due to
the high number of GPIO pins available, we are not band-
width limited. As such, we use the available bandwidth
to send data in parallel, allowing us to attempt to send
packets multiple times per frame. Stop and wait is chosen
for flow control due to simplicity, and the fact that data
only needs to be successfully received once per frame. This
dictates that, after sending a packet, the sender must wait
for an acknowledgement from the receiver before sending
the next packet, or time out before re-sending the same
packet. Sequence numbers are used to distinguish fresh
packets and avoid sending garbage twice. The sender in-
cludes its sequence number with every packet, which is in-
cremented upon receiving a non-duplicate ACK. The re-
ceiver increments its sequence number upon receiving a
non-duplicate data packet. The sequence number for sent
ACKs is provided by the receiver, and is equal to the re-
ceiver’s sequence number (expected sequence number of the
next data packet). Handshaking is given its own dedicated
lines for simplicity.

In testing prior to full integration, we originally saw low
error rates, and so omitted error correction for sake of time.
Handshake packets and sequence numbers incorporate ad-
ditional redundancy for safety.

Synchronization for multiplayer game start/end is han-

dled using the handshaking lines. When a player enters
the MP READY (Fig. 3) / GAME READY (Fig. 9)
state, the sender will continuously send ACK packets on
the handshaking line, and the receiver will begin listen-
ing for ACK packets in return. When acknowledgement
is received from the other board while in this state, the
game will begin. When a player tops out, the player will
enter the GAME LOST state, where the sender will con-
tinuously send game end packets until an ACK is received.
To account for in-flight ACKs, upon receiving an ACK the
control FSM will transition to a timeout state where it
continues to send packets for a set number of cycles before
returning to idle. When the receiver detects a game end
packet, that player enters the GAME WON state, where
the sender will send ACKs for a set number of cycles be-
fore returning to idle.

Figure 6: Data packets post division and encoding

Data for sending is loaded into the sender from the
game logic, via an update data signal that is asserted for
one cycle when fresh data can be loaded in. This is set
to occur once per frame so that to avoid losing garbage
lines. Upon loading in data, the sender constructs an over-
all data packet, before dividing it into four chunks for each
data line and encoding them individually. These encoded
data chunks are combined with the syncword to form the
data packets, which are sent serially on each of the 4 data
lines. Once sending is complete, a send done signal is as-
serted and the timeout counter begins to increment. The

18-500 Final Report - March 2, 2020 Page 10 of 18

sender then waits until an acknowledgement is received or
timeout is asserted. Data packets with their bit mappings
are shown in Fig. 6 and Fig. 7.

Figure 7: Data prior to division and encoding

Handshaking operates similarly, but does not require
data from the game logic. Handshaking packets essentially
consist of a sequence number and packet identifier, the lat-
ter of which can either be an acknowledgement (ACK), or
game end signal. Fig. 8 details these packets.

Figure 8: Handshaking packet specification

The receiver for each wire works by listening for the
syncword, an 8-bit sequence of 1s. This pattern is selected
because it cannot otherwise appear in the encoded data.
Upon detecting the syncword, each receiver shifts in bits
equal to the length of the packet, which is specified for each
line by the protocol. Once the full packet is assembled, it is
decoded and reconstructed, and sent back to the game logic
via the update opponent data signal, which is asserted for
one cycle when there is fresh data available. Handshaking
works similarly, with separate signals for ack received and
game won based on the decoded data.

These modules are implemented as a set of individ-
ual serial data senders/receivers for each data/handshaking
line, with overall sender/receiver modules handling packet
construction and interfacing with game logic. Several FSMs

are used to track game state and control the individual
sender/receiver modules for each line. These FSMs are de-
picted in Fig. 9 and Fig. 10.

18-500 Final Report - March 2, 2020 Page 11 of 18

Figure 9: Send stack control FSMs

Figure 10: Receive stack control FSMs

18-500 Final Report - March 2, 2020 Page 12 of 18

Figure 11: Controller (left) and middleman board (right)

5.4 Audio Synthesis

We chose to synthesize audio using the FPGA GPIO
pins. The DE2-115 boards have an onboard audio codec
and 3.5mm jack which we considered, but we chose the
GPIO pins as a more generic and portable output option in
case we decided to switch boards. In addition, we were not
I/O limited by number of pins (or so we thought), so using
8 pins for audio was not a problem. At the time we made
this decision we weren’t factoring in network crosstalk as
a major factor in pin layout. To convert the digital signal
to an analog audio signal, we chose the TLC7528C [3], a
cheap R-2R DAC with a 100ns settling time. We operate
the 7528 in voltage-mode, meaning the output ranges from
0-5V. 8 GPIO pins directly interface with the digital input
pins of the 7528.

The responsibilities of the music module can be divided
up into four parts, which happen in roughly this order:

• Reading the note number from memory

• Converting note number to note frequency

• Generating a waveform at note frequency

• Mixing multiple waveforms together to create the fi-
nal output signal

The top Music module is responsible for loading the
note number and mixing the waveforms. It sends the note
numbers to two Wave Generator modules, which generate
the actual waveforms. Each of these contains a Note Fre-
quency Lookup module, which reads frequency information
from a lookup table stored in memory. All of the logic
in these modules is clocked at 50MHz. We encoded each
note frequency by storing the note wavelength divided by
50MHz, or in other words, how many clock cycles long each
period of the wave is. This make it easy to output a square
wave at this frequency: all we have to do is cyclically count

clock pulses up to half this period, then invert the output
signal. Mixing is done by simply performing a weighted
sum of two Wave Generator output signals (melody and
bass). The Music module also includes counters for deter-
mining position in the song and 50kHz clock timing. On
each 50kHz edge, the 8 GPIO pins sample the current value
of the mixed signal, which is then held until the next 50kHz
edge.

The primary motivation behind the Music module’s de-
sign was for it to be lightweight in terms of board area,
as we need to save space for game logic. This meant pre-
computing note frequencies and storing them in BRAM
rather than using expensive logic to calculate frequencies
using floating-point math and exponentiation, allowing the
Music logic to be composed of simple counters and adders.

5.5 Controllers

Our controllers needed to be responsive and precise to
align with our goal of frame-perfect inputs. There is little
point to having hardware that can process inputs within
1
60 of a second if the user cannot consistently perform the
inputs they want.

We considered several options for controllers before set-
tling on an 8 arcade button layout that somewhat mim-
ics Tetris controls on a computer keyboard. The user has
translation and hard drop in one hand, and rotation and
hold in the other hand.

The layout is ergonomically similar to the universal
computer game standard of WASD/spacebar. We consid-
ered just using keyboard switches in that exact layout, but
ended up choosing arcade buttons instead for their superior
durability and user satisfaction (you can’t slam a key the
same way you can slam an arcade button).

18-500 Final Report - March 2, 2020 Page 13 of 18

Figure 12: Controller button layout

We chose to make the controls hand-agnostic, so users
who prefer to translate with their left hand could do so.
We did this by using a 2x8 connector and designing the
pinout to be reversible. Power and ground are rotationally
symmetric, and the other pins rotate to their left-handed
counterparts.

Each button is wired with a 220Ω pullup resistor and
directly connected to its corresponding pin on the 2x8 con-
nector. Ideally we would’ve used bigger resistors, but we
had these on hand and the controller is still well below the
max current rating of the GPIO header. The FPGA will
see a digital high or low value indicating the state of the
button.

The controller is housed in a sturdy laser-cut MDF box,
with cutouts for the buttons and the connector port.

While integrating the controllers, we discovered that
cross-talk was occurring across the wiring into the FPGA.
As a result, on the release of any button on the controller,
any other pin(s) could spuriously assert. To mitigate this,
we would have preferred to do a hardware revision to run
ground wires, but given the circumstances we had to de-
velop an on-chip mitigation strategy instead. First, we
forced a global cooldown on all inputs, so after any input,
no inputs can occur for 15 cycles. This value is empiri-
cally tested to filter out cross-talk across different inputs.
Additionally, inputs must be asserted continuously for 63
cycles to register as a valid input. Again, this value was
empirically tested with an additional safety margin on top.
In our testing we never saw a crosstalk input exceed a few
dozen cycles. 63 cycles at 50 MHz is too quick for anyone to
reasonably detect while playing the game so while these do
impact our metrics, it is not in a manner that is noticeable
to the user.

6 PROJECT MANAGEMENT

6.1 Schedule

See Appendix A at the end of the report for our schedule
in the form of a color-coded Gantt chart.

Our first major milestone was to have a working pro-
totype by spring break. This included a working 40-line
sprint mode, ability to generate audible music, and a hard-
ware testbench with data being transferred across FPGAs.

Post spring break, the plan was to spend time on the
multiplayer mode and integration. Any leftover time was
allocated to work on details, like graphical assets or area
optimizations. Significant amounts of slack were left at the
end to handle integration issues as well as debugging any
major incidents that occurred along the way, that could
potentially side-track significant portions of the project.

6.2 Team Member Responsibilities

Here is a list of responsibilities per team member. Each
of us were tasked with implementing a subset of the main
subsystems in the full system.

• Deanyone Su
Primary Responsibilities

– Game Logic

– Graphics

• Eric Chen
Primary Responsibilities

– Network Protocol

• Alton Olson
Primary Responsibilities

– Audio Synthesizer

– Game Controllers

6.3 Budget

See Appendix B for our budget spreadsheet. This ta-
ble includes all purchases made for this project, and there-
fore includes redundancies in the event that parts arrived
nonfunctional. We came in quite far under the ceiling of
the budget provided. The remainder of the budget was in-
tended to be used for revisions on our PCBs or replacement
parts. It turned out, though we did want to make revisions
on our designs, we were unable to do so due to the COVID-
19 impacts on the project and the course as a whole. We
ended up addressing the majority of our issues on-chip to
compensate for the noise and crosstalk issues we saw across
the network cables.

6.4 Risk Management

This project was planned to be built in parallel to re-
duce risk of miscommunication. By building our compo-
nents as nearly stand-alone, we could have inflexible inter-
faces between subsystems, that were defined, while leaving
“internal” interfaces to be flexible and more amenable to
modification. This is only possible with a limited number of
interfaces between each of subsystem so our responsibilities
were allocated to reduce these intentionally.

For parts, we ordered 50% to 100% more than needed
for our implementation. This reduced the risk and delays
associated with re-ordering parts. This was feasible due to

18-500 Final Report - March 2, 2020 Page 14 of 18

the cheap cost of our parts, a lot of the components were
either provided by the school or low-cost.

Additionally, we sourced and ordered parts early. We
originally planned to do so to be able to begin prototyping
as early as possible and reduce the impact of discovering
that we needed more parts. It turns out this was a wise
choice as many of our parts have some portion of their sup-
ply chain in mainland China and the ongoing pandemic is
negatively impacting production in that part of the world.

With the impacts of COVID-19 on the course and our
project, there have been additional risks that need to be
managed accordingly. With the closure of TechSpark and
campus as a whole, manufacturing and assembly became
more difficult, especially since not all of us were located in
the same place. Akin to PCB printing, there exist laser-
cutting services that can accept provided design files to
produce and ship out custom parts. We leveraged one of
these to produce the laser-cut parts for the controller. This
introduces some additional cost to our project since we had
originally only accounted for material costs, but since we
were operating well under budget to begin with, this was a
minor concern.

We had ordered PCBs prior to spring break, so we were
able to get them shipped from campus before campus was
entirely closed. With some assistance, we were also able
to procure a soldering kit and some solder from campus as
well as the rest of our parts from the labs to be able to
assemble the boards in Pittsburgh.

For remote development, we were able to have FPGAs
shipped to us individually from campus. We have settled
on using the DE2-115 for its LE resources, seeing as the
area constraint imposed by the DE0-CV was difficult to
overcome. We had already been using a Github repository
for version control and to share code, so working remotely
has had minimal impact on our ongoing RTL development.
Minor delays incurred due to the situation are reflected in
the updated schedule.

7 RELATED WORK

This project shares many aspects with emulation
projects. FPGAs are well suited for emulating retro game
systems or late 20th-century hardware since clock speeds
and data rates of the era tend to be well below the ca-
pabilities of modern FPGAs. Therefore, our work shares
facets with other works that attempt to emulate systems
such as the NES or Gameboy. Full emulators do exist, em-
ulating the NES, SNES, and Gameboy (Original, Color,
and Advance). Our implementation is game-specific and
is addressed at improving the experience in comparison to
modern systems, by addressing specific short-comings of
those modern implementations.

It would be remiss to not mention the other emulation
project in our own capstone group, Team C0’s GameBoi.
They built a Gameboy Original cycle-accurate emulator
onto a DE10-Standard FPGA. We also credit inspiration
for this project to the many 18240 Lab 5 implementations

of retro games, implementing Pong, Breakout, and Mas-
termind on FPGAs. Our original idea was largely based
around taking a retro game, building it onto an FPGA,
and then taking it to the next level.

The Analogue Pocket is a consumer emulation product
that is FPGA-based. Many open-source implementations
can be found of Github/Gitlab and other nooks on the in-
ternet.

8 SUMMARY

Our primary metric was response time relative to user
input. This is achieved in our design since user inputs are
reflected on either the same or next frame sent to the VGA
display. The current implementation is primarily limited
by the frame rate of the screen it is connected to and by
the clock speed of the FPGA. Being “frame-perfect” is a
nice phrase to use but it needs a refresh rate to provide
quantitative meaning. We define refresh rate using a stan-
dard monitor with 60hz refresh rate. However, today there
exist many monitors that can go to 75hz, 120hz, 144hz,
165hz, or even 240hz. Then, the term “frame-perfect” takes
on even stricter meaning. Therefore, our system’s metrics
could be further improved by driving a higher refresh rate,
which provides information to the user at an even higher
rate. Unfortunately, we are somewhat capped for the frame
rate we could reasonably drive from our FPGA since higher
resolutions and refresh rates require faster clock speeds to
send across VGA. The fastest we could reasonably do at 50
MHz is 72hz, 800x600 VGA output. To push faster than
this would require instantiating a faster pixel clock than
our native on-board crystal. This means locking a PLL to
a desired frequency and passing data across clock domain
crossings. This is a reasonable course of action to take for
a future, long-term project.

For this implementation, and the Tetris game, 72hz
frame rate is reasonable and our design stops here as a
demonstration of the improvement possible over a tradi-
tional platform by using an FPGA implementation.

8.1 Future Work

Looking to the future, there are a few things we would
have liked to do but were unable to do so due to various
circumstances (primarily COVID-19) and time constraints.

• PCB revisions. We designed the PCBs to route ex-
actly the number of wires we needed, plus a couple
more. This caused multiple data wires and the clock
signal to be adjacent, which meant we had to build
several mechanisms into our on-chip designs to mit-
igate the crosstalk generated. This is not ideal. We
also built the controller circuitry on perfboard since
it was a more flexible solution that could fit what-
ever dimensions the controller ended up being. In a
future revision, we would interleave ground wires be-
tween all the sensitive signals in the ribbon cable and

18-500 Final Report - March 2, 2020 Page 15 of 18

also we would have a proper PCB fabricated for the
controller.

• Larger network. We originally had a plan for a design
that could handle up to 4 players in a single multi-
player session. Due to time constraints, we scaled this
down to two players only, which designing a network
for turned out to be challenging enough, especially
when we down-scaled to the DE2-115 board with only
one GPIO header. However, given more time in the
future, it would be interesting to add more opponents
to the multiplayer mode. This introduces additional
complexity as new mechanisms, such as target selec-
tion, come into play.

8.2 Lessons Learned

Some lessons learned in the course of building this
project:

• Start work early. Many aspects of what was being
built were not clear until we actually attempted to
implement the module and realized there was a sig-
nificant challenge in the implementation details.

• Think about what is being implemented before imple-
menting it. Several rushed decisions ended up causing
us significant efforts in re-writing modules, for exam-
ple:

1. We originally decided to use 640x480 @ 60hz
over VGA for our display but it turned our, upon
closer inspection of the VGA standard, we could
do 800x600 @ 72hz over VGA. This afforded us
more space for our game on-screen and also en-
abled us to achieve a lower I/O latency to the
user, which we identified as our primary met-
ric. However, it also meant we had to redefine
all the coordinates of major artifacts we had al-
ready mapped out on-screen.

2. Using SRS, both I and O pieces do not have
a center “tile”. Thinking that the center coor-
dinate was then arbitrary, we chose to use the
bottom right tile of the O piece as the origin for
that tile. It turns out, to spawn tiles correctly,
it was a lot more elegant to have the bottom left
tile be the center, which meant rewriting parts
of our rotation logic and rendering logic.

• Write useful testbenches. A testbench should do more
than just check the correctness of a particular mod-
ule (though it should do at least that). A testbench
should expect that a module will break and should
also attempt to show the verifier what went wrong to
cause the fault. At the minimum, just display some
relevant information.

• This should have been obvious from the classes we
all had taken in the past, but it is a bad idea to
use a clock signal directly from an I/O pin. There

needs to be some guarantee that the signal is glitch-
less. In an early iteration of the network stack, the
sender and receiver modules on the slave board were
driven by a GPIO pin that received the clock signal
via the master board. This performed fine in intial
testing, but ended up causing some very interesting
errors as crosstalk across the ribbon cable generated
near-random bitflips that were difficult to understand
and harder still to debug.

• Noise (and crosstalk) in wiring should be taken very
seriously. We did not anticipate seeing these issues
and did not start to see the effects until we were well
into integration stages. Debugging an issue that only
occurred in our large design was very painful as the
iteration cycles was very long. While debugging the
network, we saw flawless performance in our network-
only testbench, but the interference between wires
caused significant issues once we had real data flying
across the ribbon cables. Hardware revisions and bet-
ter protocol design decisions would have been a huge
help in mitigating the effects we were seeing. Trying
to fix bad off-chip hardware with on-chip hardware
or protocols is very hard.

• In a similar vein, prioritize the testing of commu-
nication components outside of simulation, and the
tools/environment necessary for doing so. This is
where we saw the most painful bugs that had to be
debugged in the equivalent manner of throwing darts
at a board. Initial network-only testing lacked the
ability to display the full extent of data being commu-
nicated without graphics being integrated. The lack
of a logic analyzer made it difficult to locate the exact
source and behavior of issues that arose when actu-
ally running on the boards. Hex displays and LEDs
on the FPGA are a poor substitute for proper debug-
ging tools. In hindsight, cross-board communication
should have been tested more robustly significantly
earlier, even if only with a prototype.

References

[1] Alexander Atkishkin. 8-bit Monospace 6x6 Pixels Font.
Mar. 2020. url: https : / / previews . 123rf . com /
images/iunewind/iunewind1607/iunewind160700049/
60848823-8-bit-monospace-font-6x6-pixels-on-glyph-
vector-set-of-alphabet-numbers-and-symbols.jpg.

[2] Delayed Auto Shift. Sept. 2019. url: https://tetris.
wiki/DAS.

[3] Texas Instruments. Dual 8-bit Multiplying Digital-to-
Analog Converters. Mar. 2020. url: http://www.ti.
com/lit/ds/symlink/tlc7528.pdf.

[4] William Nace. VGA: Mastermind. Apr. 2018. url: N/
A.

https://previews.123rf.com/images/iunewind/iunewind1607/iunewind160700049/60848823-8-bit-monospace-font-6x6-pixels-on-glyph-vector-set-of-alphabet-numbers-and-symbols.jpg
https://previews.123rf.com/images/iunewind/iunewind1607/iunewind160700049/60848823-8-bit-monospace-font-6x6-pixels-on-glyph-vector-set-of-alphabet-numbers-and-symbols.jpg
https://previews.123rf.com/images/iunewind/iunewind1607/iunewind160700049/60848823-8-bit-monospace-font-6x6-pixels-on-glyph-vector-set-of-alphabet-numbers-and-symbols.jpg
https://previews.123rf.com/images/iunewind/iunewind1607/iunewind160700049/60848823-8-bit-monospace-font-6x6-pixels-on-glyph-vector-set-of-alphabet-numbers-and-symbols.jpg
https://tetris.wiki/DAS
https://tetris.wiki/DAS
http://www.ti.com/lit/ds/symlink/tlc7528.pdf
http://www.ti.com/lit/ds/symlink/tlc7528.pdf
N/A
N/A

18-500 Final Report - March 2, 2020 Page 16 of 18

[5] Olli-Pekka Heinisuo (skvark). opencv-python 4.2.0.34.
Mar. 2020. url: https://pypi .org/project/opencv-
python/.

[6] Super Rotation System. Jan. 2020. url: https://tetris.
wiki/Super Rotation System.

[7] Tetris Guideline. Feb. 2020. url: https://tetris.wiki/
Tetris Guideline.

[8] VGA Controller (VHDL). May 2020. url: https :
/ / www . digikey . com / eewiki / pages / viewpage .
action ? pageId = 15925278 # VGAController(VHDL) -
SignalTiming.

[9] R.W. Ward, T.C.A. Molteno, and University of Otago.
Electronics Group. Table of Linear Feedback Shift Reg-
isters. Electronics technical report. Electronics Group,
University of Otago, 2012. url: http://courses.cse.
tamu.edu/walker/csce680/lfsr table.pdf.

https://pypi.org/project/opencv-python/
https://pypi.org/project/opencv-python/
https://tetris.wiki/Super_Rotation_System
https://tetris.wiki/Super_Rotation_System
https://tetris.wiki/Tetris_Guideline
https://tetris.wiki/Tetris_Guideline
https://www.digikey.com/eewiki/pages/viewpage.action?pageId=15925278#VGAController(VHDL)-SignalTiming
https://www.digikey.com/eewiki/pages/viewpage.action?pageId=15925278#VGAController(VHDL)-SignalTiming
https://www.digikey.com/eewiki/pages/viewpage.action?pageId=15925278#VGAController(VHDL)-SignalTiming
https://www.digikey.com/eewiki/pages/viewpage.action?pageId=15925278#VGAController(VHDL)-SignalTiming
http://courses.cse.tamu.edu/walker/csce680/lfsr_table.pdf
http://courses.cse.tamu.edu/walker/csce680/lfsr_table.pdf

18-500 Final Report - March 2, 2020 Page 17 of 18

Week of Jan 20 to May 4 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
Game Logic
Lateral movement
Rotation
Soft drop
Hard drop
Ghost Piece
Wall collision
Floor collision
Rotation kick tables
Piece sequence generator
Piece Preview
Local game start/stop
Move reset piece lockdown
Gravity/Auto drop
Delayed auto shift
Line clearing
Hold piece
T-Spins
Combos
Optimize area usage
Networked game start/stop
Graphics
Empty playfield
Falling tile
Locked board state
Ghost piece
Next tiles area
Rendering text over VGA
Lines sent area
Upgrade from VGA to SVGA
Opponent’s board state
Start screen
Waiting/Ready screen
Graphical assets
Graphical assets
Network Protocol
Determine viable clock rate
Protocol design/specification
Receive stack
Send stack
Prototype data across boards
Garbage queue and generation
Synchronize game start/end
Multiplayer game integration

18-500 Final Report - March 2, 2020 Page 18 of 18

Audio Synthesizer
Buying parts
Verilog waveform generator
Verilog translation for music
Parallel DAC
3.5mm jack
Verilog interface for DAC
Integration w/ FPGA
Game Controllers
Button/key sourcing
Controller specification
PCB design
PCB layout
PCB fabrication
PCB assembly
CAD, Laser-cut controllers
Assemble controllers
Verilog interface
Bugfixing, working w/ game

Appendix A: Gantt Chart
Red: Deanyone Su, Green: Eric Chen, Blue: Alton Olson, Grey: integration work (all)

Part Name Qty Cost/Item Total Cost Provided by Course
Sanwa Arcade Buttons w/ Microswitches (White) 12 $2.45 $29.40 No
Sanwa Arcade Buttons w/ Microswitches (Blue) 12 $2.45 $29.40 No
Sanwa Arcade Buttons w/ Microswitches (Black) 3 $2.45 $7.35 No
TLC7528CN Digital to Audio Converter 4 $4.76 $19.04 No
SJ1-3513 3.5mm Barrel Jack 4 $1.42 $5.68 No
PRT-12794 0.1mm 6” 20pc Ribbon Jumper Cables 8 $1.95 $15.60 No
M3BBA-1618J 16pin 2x8 Female Ribbon Cable 6 $3.67 $22.02 No
302-S161 16pin 2x8 Male Header 16 $0.40 $6.40 No
H3CCS-4036G 40pin 2x20 Female Ribbon Cable 4 $4.03 $16.12 No
SBH11-PBPC-D20-ST-BK 40pin 2x20 Male Header 8 $0.73 $5.84 No
Middleman PCB 3 N/A $43.60 No
Laser-cut Controller Pieces 1 N/A $56.37 No
Controller Fasteners 1 N/A $17.00 No
VGA Cables 2 $10.99 $21.98 No
DE0-CV Altera Cyclone V FPGA 4 $99.00 $396.00 Yes
DE2-115 Altera Cycle IV FPGA 6 $309.00 $1854.00 Yes
VGA Monitor 2 $69.99 $139.98 Yes
Quartus Prime Standard* 3 $2995.00 $8985.00 Yes

Total Budget Cost (w/o course equipment) $295.80 Yes

Appendix B: Budget

* Quartus Prime Lite is free and also compatible with the DE0-CV. This tool can be used as an alternative to Quartus
Prime Standard, for our purposes it only lacks support for multi-threaded compilation.

	INTRODUCTION
	DESIGN REQUIREMENTS
	ARCHITECTURE OVERVIEW
	DESIGN TRADE STUDIES
	Latency: Handling User Inputs
	FPGA Platform and Logic Element Usage
	Network Protocol
	Stop and Wait Design
	Error Correction and Detection
	Clocking and Crosstalk

	SYSTEM DESCRIPTION
	Game Logic
	Graphics
	Text Rendering
	Image Rendering

	Network Protocol
	Audio Synthesis
	Controllers

	PROJECT MANAGEMENT
	Schedule
	Team Member Responsibilities
	Budget
	Risk Management

	RELATED WORK
	SUMMARY
	Future Work
	Lessons Learned

