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Abstract—A FPGA-based system that is capa-
ble of generating a modern 2-player Tetris game that
follows the Tetris Design Guideline, though it is not
necessarily Guideline-compliant. This system provides
frame-perfect responsiveness to the user(s) in addition
to displaying information about both the user’s game
state and the opponent’s game state over VGA. The
user primarily interacts with a custom-designed, re-
versible controller and receives auditory information
from an external DAC which drives a 3.5mm jack. 2-
player battles are enabled over a custom, local network
connection.

Index Terms—arcade, emulation, FPGA, frame-
perfect, game, local area network, low-latency, network-
ing, PCB, synthesizer, SystemVerilog, Tetris, Verilog

1 INTRODUCTION

Most modern Tetris implementations rely on a CPU to
express the intricacies of the fundamental game mechanics.
Mechanics like the Super Rotation System (SRS), Delayed
Auto Start (DAS), and T-Spins are easier to implement
and debug in a traditional software programming language.
However, CPU-based implementations suffer from two ma-
jor flaws: input latency and interference.

The input/output (I/O) stack in modern computers at-
tempt to strike a balance between performance and load on
the processor to avoid wasting valuable processor time. As
a result, I/O latency in modern systems tends to be rather
long as most applications have no need for near-instant I/O
latency. However, Tetris is one such application. The user
expects that their input is reflected by the game state in-
stantaneously. This is difficult for CPU-based implementa-
tions to service as their responsiveness is bottle-necked by
their I/O stack. In our implementation we enforce that user
inputs must be reflected in the next frame that is loading
onto the monitor, a latency that we term “frame-perfect”.

Despite multi-core and simultaneous multi-threading
technologies in modern CPUs, the vast majority of pro-
grams are still largely single-threaded. This means that
the various services that are running the game, the net-
work stack, the graphics subroutine, the game logic, etc.
can interfere with each other and cause unintentional stalls
for the queued processes. By nature, FPGAs are inherently
parallelized and can avoid these issues entirely. In design,
the separate components, graphics, logic, networking, etc.
can be built to operate independently such that, unless log-
ically required, no process will waits on the completion of
another independent process. The cost of this parallelism
is area on-chip, so our design must reasonably fit into an
economical FPGA.

2 DESIGN REQUIREMENTS

The most important design requirement in our system
is the frame-perfect nature. A standard display runs at
60 hz. Therefore we expect our user to see their inputs
reflected by the display within 1

60 of a second. This will
be tested using hardware counters which record from user
input to the resulting change being loaded onto the VGA
pins on the FPGA. This measurement ignores the latency
from the controller to the FPGA and from the FPGA to
the monitor intentionally. These are parameters that are
outside the scope of our design, and are consistent across
different game implementations.

In terms of game mechanics, we are following the Tetris
Design Guideline for the majority of our implementation,
as described in [5]. These game mechanics are either imple-
mented or not, and they are verified through playtesting.
While it is possible to test these inputs in simulation, at the
time-scale that these mechanics work at, it is more stream-
lined to playtest for verification. Further detail of the game
mechanics are provided in Section 4.1 .

Of course, individual small components are verified for
correctness using simulation testbenches, while more com-
plex components are verified for correctness using hardware
testbenches. As each component verifies for correctness, it
is integrated into the final “testbench” that houses the fin-
ished game implementation.

Our sound synthesizer produces “Korobeiniki”, the
classic Tetris music. The music is sampled at 50 KHz,
slightly above the industry standard of 44.1 KHz. This
sampling rate is measured by the clock rate generated over
GPIO for the external DAC. In addition to music, the syn-
thesizer can produce sound effects based on in-game events.

Our network is a custom protocol over a subset of the
GPIO pins available on our FPGAs. The requirements on
this network is that it does not interfere with the single-
player mode(s) and that it can communicate the necessary
data within the latency of a single frame since the data
it carries is to be displayed to the user. Therefore the re-
quired network latency is less than 1

60 of a second. The true
requirement is somewhat less than that though, since the
data needs to be received, processed, and then prepared
to be shown to the user in a timely manner. The network
takes advantage of the available pins to transmit data in
parallel and enable more robust encoding techniques.

As a side note, there are 7 types of tetrominoes in Tetris,
I, O, T, J, L, S, and Z. They are cyan, yellow, magenta,
blue, orange, green, and red, respectively as depicted in
[5]. They will be referred to as such for the rest of this
document.
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Figure 1: Overview of the full system per FPGA. The red box indicates the components on the FPGA itself while the
blue boxes are housed on an external PCB, interfaced with via GPIO. The PCB with the audio processing middleman
and the controller interface also houses a network interface to connect to the second FPGA for Battle mode.

3 ARCHITECTURE OVERVIEW

Our system is architected with division of labor in mind.
Given our team of 3, we wanted each contributor to be able
to work in parallel as long as possible. This maximizes
the efficiency of our individual work, and also reduces the
number of errors than can occur due to miscommunication.
With this in mind, we split our design into 5 major sections.

1. Game Logic
This subsystem is responsible for the majority of
game mechanics. This holds both system state and
game state. These are used to provide data as needed
to other sub-systems in addition to allowing the other
subsystems to communicate to each other as needed.

2. Graphics
This subsystem is responsible for graphical output via
(S)VGA. The data pulled from the Game Logic sub-
system is re-organized into either tiles or blocks and
rendered into an understandable form for the user.
Each independent portion of the graphical output has
a dedicated pixel driver to detail that portion of the
display. This reduces complexity of each individual
pixel driver and also makes graphical errors quicker
to debug as each error can be instantly isolated to
a particular driver. This subsystem is tightly inte-
grated with the Game Logic subsystem as the major-
ity of data that needs to be displayed is directly tied
to the game state.

3. Network Protocol
This subsystem is responsible for communication be-
tween FPGAs. This is only used in the 2-player Bat-
tle mode and communicates data over the GPIO pins.

This system requires full send and receive stacks to
encode and decode data.

4. Audio Synthesis
This subsystem is responsible for producing audio for
the user experience. The data is pulled from the
Game Logic subsystem for sound effects as well as
a smaller separate module in the FPGA (not pic-
tured) to read data from a memory file to produce
music. This includes a table-lookup to reference notes
to waveforms of the correct frequency. The external
DAC that drives the 3.5mm jack is housed on an ex-
ternal PCB, the middleman PCB. This middleman
PCB is wired into directly using GPIO, which is then
broken into components for the external DAC, the
network protocol, and the controller.

5. Controllers
This subsystem is responsible for the primary interac-
tion with the user. The user(s) will use the controllers
to provide inputs to the Game Logic subsystem. The
controller has a dedicated PCB which is cabled to
the middleman PCB. The buttons are arranged in a
layout that mirrors a generic pair of human hands.

Further detail of each system is discussed in section 5.
It is important to note that while the network protocol is
designed and set, the interfaces between each of the subsys-
tems is not fixed as the information that needs to be shared
between each module is not static. As new mechanics are
added, the Graphics subsystem grows larger and may re-
quire more information from the Game Logic subsystem to
drive that graphical output. It is within expectations for
the system architecture to expand the interfaces for each
system as mechanics are added.
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Figure 2: Overview of the FSMs involved with managing game logic

4 SYSTEM DESCRIPTION

4.1 Game Logic

In a user-oriented game, it is important to manage the
user’s interactions with the system. We manage this using
a series of “screens” that are shown to the the user in se-
quence. On launch, the user is shown a “start” screen which
displays the Tetris logo and the various options available to
the user. Then the user can opt into a single-player Sprint
mode, which can begin immediately, or they can opt into a
multiplayer Battle mode. For the multiplayer option, they
are moved into the “MP READY” state which stalls until
the other player is also in the “MP READY” state.

In both the “SPRINT MODE” and “MP MODE”
states, the user is presented with a classic Tetris screen,
without and with their opponent’s UI, respectively. In
these states, the user is able to play Tetris as expected and
the game concludes as defined by the game mode. Then,
the user is presented with a winning or losing screen, de-
pending on the outcome of the game, with some statistics
about the game that concluded, and then allowed to begin
a new one.

In-game, the state is handled as a loop of spawning
a new piece, having it fall to the ”floor” of the playfield,
then ”locking” the piece into place. This FSM can be inter-
rupted, and can be forced into an “IDLE” state by the game
ending. While this FSM drives the Seven Bag (described
below), it is not the only trigger to spawn new pieces. It
is also possible for the Hold logic (also described below) to
spawn new pieces.

The mechanics of Tetris are largely implemented within
the Game Logic subsystem. As such the remaining de-
scription will be structured as a breakdown of some of the
more interesting game mechanics and the implementation
of such. All mechanics are described at a high level in [5].

• Super Rotation System (SRS) [4]
The SRS is the current Tetris Guideline for how tetro-
minoes rotate and wall-kick when in the playfield
area. All tetrominoes have 4 orientations: 0, R, 2,
L. All tetrominoes spawn horizontally, in the 0 orien-
tation.

Basic rotations are defined such that each tetromino
appears to be rotating about a single point. This sin-
gle point is a individual mino for the J, L, S, Z, and T
tetrominos. The I and O tetrominos appear to rotate
about an intersection of gridlines.

Wall kicks are an important aspect of rotations be-
cause it enables rotations that are otherwise impos-
sible. Importantly, when a piece is pressed against a
wall of floor, wall-kicks define how a piece is shifted to
enable the rotation to occur. SRS has a defined set of
5 rotations (basic rotations plus 4 different kicks) per
rotation. The I tetromino has its own set of wall-kicks
while the other tetrominos share a set of wall-kicks.
The actual tables themselves and more information
can be found in [4].

Wall-kicks are arranged in order of priority. As
such, the first valid wall-kick (in-bounds and non-
overlapping) is the one that is used, and a rotation
only fails if all 5 wall-kicks are invalid. In our imple-
mentation we check the wall-kicks sequentially, but
in parallel with all other movement options. This is
a trade-off between area and latency. Since validity
must be determined by comparing the new position
of the piece against the current playfield state, each
validity check requires an area cost roughly propor-
tional to the number of validity checks being done.

In a purely parallel implementation, we have 5 right
rotations, 5 left rotations, 1 move left, 1 move right,
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1 soft drop, and 1 hard drop to be checked. This is
14 checks per cycle, which translates to roughly 30K
logic elements (LEs). We deemed this unfeasible due
to area cost. By continuously checking the wall-kicks
in sequence, we reduce the number of checks to 6 per
cycle. This lowers the LE usage to roughly 14K. This
we deemed acceptable, though we could reasonably
do more the checks in sequence which could reduce
the number of checks to as few as 1. This latency
is of minimal concern to the user. This game de-
signed for human players. In practice, the fastest a
human can spam a button is somewhere in the range
of 200 presses per second. Therefore, using several to
a dozen cycles to evaluate input validity is acceptable.

• Delayed Auto Shift (DAS) [2]
Also known as autorepeat, this mechanic defines the
behavior of a held button in game. A standard cool
down is necessary to have the user be able to play the
game, since a piece shifting or rotating at the board’s
clock rate is useless to a human player. With DAS, a
held move causes the piece to shift initially at a high
cool down period, than repeatedly shift at a lower
cool down period. This enables the user to efficiently
move and rotate pieces.

We implement DAS into our input handler for the
controllers. This module integrates a synchronizer
chain with a cool down counter and a validity check.
This integration allows the module to vary the cool
down based on an FSM, and also refine the input to
a single-cycle pulse, which is easier to manage in the
remainder of the system.

• Spawning Position
Pieces spawn at the 21st and 22nd rows of the play-
field, which are hidden from the user and move down
instantaneously on spawn. We deviate in an un-
noticeable manner from the Guideline by spawning
pieces in the 20th and 21st rows of the playfield and
not instantly moving the piece down on spawn. Ef-
fectively, these are identical, so long as the top-out
logic handles overlaps in addition to locking above
the visible playfield.

• Move Reset Lock Down
The Guideline defines 3 different lock down mechan-
ics, the most common of which is move reset lock
down. In classic Tetris, the pieces will lock onto the
floor or another piece it is stacked on top of after 0.5
seconds. Move reset lock down resets the timer if the
piece is moved or rotated. Naturally, this could allow
users to infinitely spin a piece to delay the game, but
most games implement a limit of 15 resets before the
piece locks with no delay. We follow this limit.

• Hold
Hold is a mechanism that allows that player to store
an active piece to swap with another piece later in
the game. At the beginning of the game, the hold

is empty. As such, the first time a piece is held, the
Seven Bag needs to spawn a new piece, but thereafter
the piece held is swapped with the active piece. Upon
swap, the active piece (that was just beign held) is
spawned at the top of the playfield. This hold can
only be done once per piece, so a swapped piece can-
not be held.

• The Seven Bag
The Seven Bag is the mechanic by which pieces spawn
as defined by the Guideline. This is intentionally
setup to avoid strings of the same piece being given
to the player, which is possible using a naive random
number generator (RNG). As the name suggests, tiles
are provided to the user as though drawn from a bag
containing the 7 different tetrominoes. When empty,
the bag is refilled. While this mechanism does pro-
vide some unfavorable strings of tetrominoes, like S,
Z, S, Z, it does avoid most of the issues with simpler
mechanisms.

Our pseudo-RNG is a set of 31-bit Galois Linear Feed-
back Shift Register (LFSR) as described in [7]. Each
LFSR generates a bit that is concatenated to pro-
duce a tetromino. This generation logic runs con-
tinuously in the background, which means the Seven
Bag is generated based upon how the user plays the
game. While this is an awful randomness source for
any cryptography application, it is sufficient and ef-
ficient for our use.

• Piece Preview
The next 6 pieces that are provided to the user are
shown ahead of the user actually dropping and plac-
ing the tetrominoes. This is implemented as a mod-
ified queue that is continuously filled by the Seven
Bag. The modified queue has its contents output
to be able to communicate with the NextPixelDriver
(described below) to show the values to the user.

• T-Spins
T-Spins are a special kind of line clear, where the
last movement of a T tetromino is a rotation and it
moves the piece into a ”hard to fit” location. The ex-
act detection method is unclear since the Guideline
has changed the definition of a T-Spin multiple times
over the course of the past 2 decades. As such we
will be using the 3-corner method, which was used in
past SRS-based games, in addition to other heuris-
tics to restrict the definition. This will avoid some
of the issues that plagued Tetris DS, which purely
implemented the 3-corner T-spin.

• Notable Omissions
Since the Tetris Guideline is not publicly available,
and online resources can only provide most of the
user-facing details of the game, it is impossible for
our implementation to be fully Guideline-compliant.
With that in mind, we have attempted to build a
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version of the game that is sufficiently Guideline-
complaint such that any user familiar with official
versions of the game will be able to instantly play
our version as well, with minimal changes. That be-
ing said, there are definitely some deviations from the
Guideline in our implementation.

– Lack of Marathon or Ultra Modes
Marathon is an endless mode where the player is
able to continue playing Tetris until they top out
and lose the game. Ultra is a timed game mode
where the player attempts to clear or send as
many lines as possible within a fixed time limit.
Both of these modes are less popular today than
either Sprint or Battle modes. We have chosen
to exclude these modes because of this, but will
be including them in the event we have time to
do so after integration steps.

Past versions of the game have omitted different
modes, usually because of hardware limitations.

– Controller Mappings
The Guideline defines standard mappings for
consoles and handheld gamepads. Since we’re
building custom controllers for our implementa-
tion, without joysticks, our controllers are not
going to be Guideline-compliant. Nonetheless,
they will be intuitive to use.

4.2 Graphics

The Graphics subsystem is entirely based on the VGA
controller that is provided in 18240 Lab 5 for implementing
Mastermind. There are minor modifications to the proto-
col to make it work at a higher resolution and refresh rate
(SVGA). These specifications are defined in [6].

The pixel drivers that compose the Graphics subsystem
are independent drivers of VGA R, VGA G, and VGA B
pins which drive the 8-bit color values to the display. These
independent drivers are multiplexed based on context. Here
context can be the part of the screen that is being rendered
(the row and column) or the current screen being displayed
to the user, as defined by the System FSM in Figure 1.
The data that each driver needs are generated in the Game
Logic subsystem. This data is then wired across into the
Graphics subsystem and then passed down to the individ-
ual drivers as needed. As a result, the Graphics subsystem
is deeply interconnected with the Game Logic subsystem.

This organization lends itself to being modular and ex-
pandable which is important in our project as we imple-
ment features section by section. It is also important in
enabling us to identify issues since an error on-screen can
immediately be isolated to a particular driver and/or the
logic associated with providing values to that driver.

The multiplexers between drivers is based on an active
signal that each pixel driver produces. The active signal is
one-hot, which is efficient for the logic that dictates which
driver is providing valid color values for the controller.

At the moment we have several graphics drivers. The
following list is a short description of each.

• Playfield Pixel Driver
This driver is responsible for displaying the playfield
in-game. This is effectively a translation from a 10x20
array array of enumerated tile types to a color value,
based on the row and column from the VGA con-
troller.

• Next Pixel Driver
This is similarly structured to the Playfield Pixel
Driver, albeit on a smaller scale. This region is only 6
x 19 as it only needs to display 6 tiles in a set of fixed
positions. This region needs to be 6 tiles wide as the
widest tetromino, the I tetromino is 4 blocks wide,
which means that the region needs to be 6 tiles wide
to enable buffer space on either side of the tetromino.

• Hold Pixel Driver
Again, this is similarly structured to the Playfield
Pixel Driver, albeit on a smaller scale. This region is
only 6 x 4 as it only needs to display a single tile in
a fixed position.

• Timer Pixel Driver
Time is a set of values ranging from hours down to
milliseconds generated in the Game Logic subsystem.
The driver has the system time as an input and uses
this to compute the individual digits to be displayed
to the user based on the time inputs. These digits
are translated to scaled 6x6 pixel arrays. From there
the driver produces color when the row and column
match an “on” area of the scaled pixel arrays and
blank otherwise. See below for a more detailed de-
scription about text rendering.

• Lines Cleared Pixel Driver This is very similar to
the Timer Pixel Driver, but showing a count of lines
cleared with some text.

Text rendering is important for communicating information
to the user. We implement text rendering by referencing
a 6x6 pixel font, found in [1]. We imported this font by
hand into an ASCII lookup table that returns a 6x6 binary
array. Each character is an individual module instantiation
that uses an input to determine the character for which to
generate the binary array. This module uses parameterized
coordinates and scaling to determine where the character
is displayed on the screen, and how large the character
should be. Scaling text in this way uses division to de-
termine which ”pixel” of the 6x6 array is currently being
rendered. Therefore, it is ideal if the scaling is by a power
of 2 since this reduces the logic complexity of this pixel
driver. However, this is not crucial since modern FPGAs
have hardened division blocks which can be inferred such
that the scaling logic is not terribly expensive, even if the
scaling is not a power of 2.
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4.3 Network Protocol

Two-player Tetris Battle differs from Sprint in a few
ways. When the player clears lines, a corresponding num-
ber of ”garbage” lines are sent to the opponent. Garbage
lines are extra lines with a single random gap, appearing
at the bottom of the opponent’s playfield. Sent lines are
stored in a pending queue of up to 12 lines, which appear on
the playfield after a set delay. The goal of the multiplayer
game mode is to make the opponent top out by sending
them garbage lines.

Figure 3: Garbage Table based on Tetris 99 mechanics

To track garbage lines being sent and update the oppo-
nent’s board state on the screen, the following information
must be communicated by each player on every frame.

• Garbage
Number of garbage lines being sent.

• Hold Register
Content of the hold piece register, as described in
Section 4.1.

• Piece Preview
Contents of the next piece queue/piece preview, as
described in Section 4.1.

• Playfield
Current state of player’s playfield, as described in Sec-
tion 4.1.

To enable multiplayer communication between game in-
stances on separate boards, we describe the Tetris Syn-
chronous Parallel INterface, or TSPIN communication pro-
tocol.

Figure 4: TSPIN Pinout

TSPIN is a 4-bit parallel, stop and wait protocol with
dedicated handshaking lines. The pinout is shown above,
utilizing 11 GPIO pins with one board being designated the
master and the other the slave. These designations are de-
termined when the games are synthesized onto the boards.
The master sends the clock used for synchronization, and
the designation is used for naming purposes. Master and
slave are otherwise functionally identical.

In designing this protocol, a number of factors were
taken into account. For an optimal game experience, the
opponent’s playfield must update on the player’s screen ev-
ery frame, or 1/60th of a second. Transmission must suc-
ceed within this timeframe. From past projects we know
that the worst case clock rate we can send over GPIO is
50kHz, giving us at worst 833 cycles per frame to work
with. Transmitted data in total is 832 bits, not including
overhead such as syncwords or sequence numbers. Due to
the high number of GPIO pins available, we are not band-
width limited. As such, we use the available bandwidth to
send data in parallel, allowing us to attempt to send pack-
ets multiple times per frame. Stop and wait is chosen for
flow control due to simplicity, and the fact that data only
needs to be successfully received once per frame. This dic-
tates that, after sending a packet, the sender must wait for
an acknowledgement from the receiver before sending the
next packet, or time out before re-sending the same packet.
Sequence numbers are used to distinguish fresh packets and
avoid sending garbage twice. Handshaking is given its own
dedicated lines for simplicity.

Error correction is handled via Hamming Codes on each
line. Due to the short range of communication we expect
error rates to be low, so hamming encoding is selected to
perform single error correction and double error detection.
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Handshake packets incorporate additional redundancy for
safety.

Synchronization for multiplayer game start/end is han-
dled using the handshaking lines. When a player enters the
MP READY state (Figure 2), the sender will continuously
send ACK packets on the handshaking line, and the receiver
will begin listening for ACK packets in return. When ac-
knowledgement is received from the other board while in
this state, the game will begin.

Data for sending is loaded into the sender from the game
logic, via an update data signal that is asserted for one cy-
cle when fresh data can be loaded in. This is set to occur
once per frame so that the sender does not attempt to re-
send updated data with the same sequence number, which
could cause sent garbage lines to be lost. Upon loading in
data, the sender constructs an overall data packet, before
dividing it into four chunks for each data line and encoding
them individually. These encoded data chunks are com-
bined with the syncword to form the data packets, which
are sent serially on each of the 4 data lines. Once sending
is complete, a send done signal is asserted and the timeout
counter begins to increment. The sender then waits un-
til an acknowledgement is received or timeout is asserted.
Data packets with their bit mappings are shown in Figures
5 and 6.

Figure 5: Data prior to division and encoding

Handshaking operates similarly, but does not require
data from the game logic. Handshaking packets essentially
consist of a sequence number and packet identifier, the lat-
ter of which can either be an acknowledgement (ACK), or
game end signal. Figure 7 details these packets.

The receiver for each wire works by listening for the
syncword, an 8-bit sequence of 1s. This pattern is selected
because it cannot otherwise appear in the encoded data.
Upon detecting the syncword, each receiver shifts in bits
equal to the length of the packet, which is specified for each
line by the protocol. Once the full packet is assembled, it is
decoded and reconstructed, and sent back to the game logic
via the update opponent data signal, which is asserted for
one cycle when there is fresh data available. Handshaking
works similarly, with separate signals for ack received and
game won based on the decoded data.

These modules are implemented as a set of individ-
ual serial data senders/receivers for each data/handshaking

line, with overall sender/receiver modules handling packet
construction and interfacing with game logic. Several FSMs
are used to track game state and control the individual
sender/receiver modules for each line. These FSMs are de-
picted in figures 8 and 9.

Figure 6: Data packets post division and encoding

Figure 7: Handshaking packet specification
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Figure 8: Send stack control FSMs

Figure 9: Receive stack control FSMs

4.4 Audio Synthesis

We chose to synthesize audio using the FPGA GPIO
pins. The DE2-115 boards have an onboard audio codec
and 3.5mm jack which we considered, but we chose the
GPIO pins as a more generic and portable output option
in case we decided to switch boards. In addition, we were
not I/O limited by number of pins, so using 8 pins for au-
dio was not a problem. To convert the digital signal to an
analog audio signal, we chose the TLC7528C [3], a cheap
R-2R DAC with a 100ns settling time. We operate the 7528
in voltage-mode, meaning the output ranges from 0-5V. 8
GPIO pins directly interface with the digital input pins of
the 7528.

The responsibilities of the music module can be divided
up into four parts, which happen in roughly this order:

• Reading the note number from memory

• Converting note number to note frequency

• Generating a waveform at note frequency

• Mixing multiple waveforms together to create the fi-
nal output signal

The top Music module is responsible for loading the
note number and mixing the waveforms. It sends the note
numbers to two Wave Generator modules, which generate
the actual waveforms. Each of these contains a Note Fre-
quency Lookup module, which reads frequency information
from a lookup table stored in memory. All of the logic
in these modules is clocked at 50Mhz. We encoded each
note frequency by storing the note wavelength divided by
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50MHz, or in other words, how many clock cycles long each
period of the wave is. This make it easy to output a square
wave at this frequency: all we have to do is repeatedly count
clock cycles up to half the period, then invert the output
signal. Mixing is done by simply performing a weighted
sum of two Wave Generator output signals (melody and
bass). The Music module also includes counters for deter-
mining position in the song and 50kHz clock timing. On
each 50kHz edge, the 8 GPIO pins sample the current value
of the mixed signal, which is then held until the next 50kHz
edge.

The primary motivation behind the Music module’s de-
sign was for it to be lightweight in terms of board area, as
we need to save space for game logic. This meant precom-
puting note frequencies and storing them in BRAM rather
than using expensive logic to calculate frequencies using
floating-point math and exponentiation, allowing the Mu-
sic logic to be composed of simple counters and adders.

4.5 Controllers

Our controllers need to be responsive and precise to
align with our goal of frame-perfect inputs. There is little
point to having hardware that can process inputs within
1
60 of a second if the user cannot consistently perform the
inputs they want.

We considered several options for controllers before set-
tling on an 8 arcade button layout that mimics Tetris con-
trols on a computer keyboard. The user has translation
in one hand, rotation in the other hand, hard drop on
one thumb, and hold on other thumb. The layout is er-
gonomically similar to the universal computer game stan-
dard of WASD/spacebar. We considered just using key-
board switches in that exact layout, but ended up choos-
ing arcade buttons instead for their superior durability and
user satisfaction (you can’t slam a key the same way you
can slam an arcade button).

We chose to make the controls hand-agnostic, so users
who prefer to translate with their left hand could do so.
We did this by using a 2x8 connector and designing the
pinout to be reversible. Power and ground are rotationally
symmetric, and the other pins rotate to their left-handed
counterparts.

Each button is wired with a 1KΩ pullup resistor and
directly connected to its corresponding pin on the 2x8 con-
nector. The FPGA will see a digital high or low value
indicating the state of the button.

The controller is housed in a sturdy laser-cut plywood
box, with cutouts for the buttons and the connector port.

5 PROJECT MANAGEMENT

5.1 Schedule

See Appendix A at the end of the report for our schedule
in the form of a color-coded Gantt chart.

Our first major milestone was to have a working pro-
totype by spring break. This included a working 40-line
sprint mode, ability to generate audible music, and a hard-
ware testbench with data being transferred across FPGAs.

Post spring break, the plan was to spend time on the
multiplayer mode and integration. Any leftover time was
allocated to work on details, like graphical assets or area
optimizations. Significant amounts of slack were left at the
end to handle integration issues as well as debugging any
major incidents that occurred along the way, that could
potentially side-track significant portions of the project.

5.2 Team Member Responsibilities

Here is a list of responsibilities per team member. Each
of us were tasked with implementing a subset of the main
subsystems in the full system.

• Deanyone Su
Primary Responsibilities

– Game Logic

– Graphics

• Eric Chen
Primary Responsibilities

– Network Protocol

• Alton Olson
Primary Responsibilities

– Audio Synthesizer

– Game Controllers

5.3 Budget

See Appendix B for our budget spreadsheet. This table
includes all purchases made for this project, and therefore
includes redundancies in the event that parts arrived non-
functional. There will be a bill of materials included in the
final report that includes only the necessary parts, without
redundancy, for the final implementation.

5.4 Risk Management

This project was initially planned to be built in paral-
lel to reduce risk of miscommunication. By building our
components as nearly stand-alone, we could have inflexi-
ble interfaces, that were clearly defined, between the three
of us, while leaving “internal” interfaces to be flexible and
more amenable to modification. This is only possible with
a limited number of interfaces between each of our compo-
nents so our responsibilities were allocated to reduce these
intentionally. As an example, having different people work
on the Game Logic subsystem and the Graphics subsystem
would be unwise as both subsystems are closely linked and
need a very high amount of inter-connectivity.

For parts, we ordered 50% to 100% more than needed
for our implementation. This reduced the risk and delays
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associated with re-ordering parts due to the parts being
faulty and/or us damaging the parts as we were building
the projects. This was feasible due to the relative cost of
our parts, a lot of the components we were using are rela-
tively cheap.

Additionally, we sourced and ordered parts as early as
possible. We originally planned to do so to be able to begin
prototyping as early as possible and reduce the impact of
discovering that we needed more parts. It turns out this
was a wise choice as many of our parts have some portion
of their supply chain in mainland China and the ongoing
pandemic is negatively impacting production in that part
of the world.

6 RELATED WORK

This project shares many aspects with emulation
projects. FPGAs are well suited for emulating retro game
systems or late 20th-century hardware since clock speeds
and data rates of the era tend to be well below the ca-
pabilities of modern FPGAs. Therefore, our work shares
facets with other works that attempt to emulate systems
such as the NES or Gameboy. Full emulators do exist, em-
ulating the NES, SNES, and Gameboy (Original, Color,
and Advance). Our implementation is game-specific and
is addressed at improving the experience in comparison to
modern systems, by addressing specific short-comings of
those modern implementations.

It would be remiss to not mention the other emulation
project in our own capstone group, Team C0’s GameBoi.
They built a Gameboy Original cycle-accurate emulator
onto a DE10-Standard FPGA. We also credit inspiration
for this project to the many 18240 Lab 5 implementations
of retro games, implementing Pong, Breakout, and Mas-
termind on FPGAs. Our original idea was largely based
around taking a retro game, building it onto an FPGA,
and then taking it to the next level.

The Analogue Pocket is a consumer emulation product
that is FPGA-based. Many open-source implementations
can be found of Github/Gitlab and other nooks on the in-
ternet.

7 SUMMARY

Our primary metric was response time relative to user
input. This is achieved in our design since user inputs
are reflected on either the same or next frame sent to the
VGA display. The current implementation is limited by the
frame rate of the screen it is connected to and indirectly
by the clock speed of the FPGA. Being “frame-perfect”
is a nice phrase to use but it needs a refresh rate to pro-
vide quantitative meaning. We define refresh rate using
a standard monitor with 60hz refresh rate. However, to-
day there exist many monitors that can go to 75hz, 120hz,
144hz, or even 240hz. Then, the term “frame-perfect” takes
on even stricter meaning. Therefore, our system metrics

could be further improved by driving a higher refresh rate,
which provides information to the user at an even higher
rate. Unfortunately, we are somewhat capped for the frame
rate we could reasonably drive from our FPGA since higher
resolutions and refresh rates require faster clock speeds to
send across VGA. The fastest we could reasonably do at 50
MHz is 72hz, 800x600 VGA output. To push this further
would require pushing a faster pixel clock than our native
on-board crystal. This means locking a PLL to a desired
frequency and passing data across clock domain crossings.
This is a reasonable course of action to take for a future,
long-term project.

For this implementation, and the Tetris game, 60hz
frame rate is reasonable and our design stops here as a
demonstration of the improvement possible over a tradi-
tional platform by using an FPGA implementation.

Some lessons learned in the course of building this
project:

• Start work early. Many aspects of what was being
built were not clear until we actually attempted to
implement the module and realized there was a sig-
nificant challenge in the implementation details.

• Think about what is being implemented before imple-
menting it. Several rushed decisions ended up causing
us significant efforts to re-write, for example:

1. We originally decided to use 640x480 @ 60hz
over VGA for our display but it turned our, upon
closer inspection of the VGA standard, we could
do 800x600 @ 72hz over VGA. This afforded us
more space for our game and also enabled us to
achieve a lower I/O latency to the user, which
we identified as our primary metric.

2. Using SRS, both I and O pieces do not have
a center “tile”. Thinking that the center coor-
dinate was then arbitrary, we chose to use the
bottom right tile of the O piece as the origin for
that tile. It turns out, to spawn tiles correctly,
it was a lot more elegant to have the bottom left
tile be the center, which meant rewriting parts
of our rotation logic and rendering logic.
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Week of Jan 20 to May 4 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
Game Logic
Lateral movement
Rotation
Soft drop
Hard drop
Ghost Piece
Wall collision
Floor collision
Rotation kick tables
Piece sequence generator
Piece Preview
Local game start/stop
Move reset piece lockdown
Gravity/Auto drop
Delayed auto shift
Line clearing
Hold piece
T-Spins
Combos
Networked game start/stop
Graphics
Empty playfield
Falling tile
Locked board state
Ghost piece
Next tiles area
Rendering text over VGA
Lines sent area
Upgrade from VGA to SVGA
Start screen
Waiting/Ready screen
Opponent’s board state
Graphical assets
Graphical assets
Network Protocol
Determine viable clock rate
Protocol design/specification
Receive stack
Send stack
Prototype data across boards
Garbage queue and generation
Synchronize game start/end
Multiplayer game integration
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Audio Synthesizer
Buying parts
Verilog waveform generator
Verilog translation for music
Parallel DAC
3.5mm jack
Verilog interface for DAC
Integration w/ FPGA
Game Controllers
Button/key sourcing
Controller specification
PCB design
PCB layout
PCB fabrication
CAD, Laser-cut controllers
Assemble controllers
Verilog interface
Bugfixing, working w/ game

Appendix A: Gantt Chart
Red: Deanyone Su, Green: Eric Chen, Blue: Alton Olson, Grey: slack

Part Name Qty Cost/Item Total Cost Provided by Course
Sanwa Arcade Buttons w/ Microswitches (White) 12 $2.45 $29.40 No
Sanwa Arcade Buttons w/ Microswitches (Blue) 12 $2.45 $29.40 No
Sanwa Arcade Buttons w/ Microswitches (Black) 3 $2.45 $7.35 No
TLC7528CN Digital to Audio Converter 4 $4.76 $19.04 No
SJ1-3513 3.5mm Barrel Jack 4 $1.42 $5.68 No
PRT-12794 0.1mm 6” 20pc Ribbon Jumper Cables 8 $1.95 $15.60 No
M3BBA-1618J 16pin 2x8 Female Ribbon Cable 6 $3.67 $22.02 No
302-S161 16pin 2x8 Male Header 16 $0.40 $6.40 No
H3CCS-4036G 40pin 2x20 Female Ribbon Cable 4 $4.03 $16.12 No
SBH11-PBPC-D20-ST-BK 40pin 2x20 Male Header 8 $0.73 $5.84 No
Middleman PCB 5 N/A $45.00 No
Controller PCB x N/A $xx.xx No
DE0-CV Altera Cyclone V FPGA 4 $99.00 $396.00 Yes
VGA Monitor 2 $69.99 $139.98 Yes
Quartus Prime Standard* 3 $2995.00 $8985.00 Yes

Total Budget Cost (w/o course equipment) $201.85 Yes

Appendix B: Budget

* Quartus Prime Lite is free and also compatible with the DE0-CV. This tool can be used as an alternative to Quartus
Prime Standard, for our purposes it only lacks support for multi-threaded compilation.
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