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Abstract—A system capable of cycle-accurate emulation of most 

Game Boy games on a field programmable gate array (FPGA) for 
all non-illegal behavior. This means our goal is to have games 
running at the same speed as the original console, with the same 
graphics, framerate, audio, etc. The main difference will be the 
output and input peripherals, but our objective is to give a similar 
experience to what users experienced on the original console. We 
believe the level of documentation that Capstone entails will also 
help us contribute documentation for future hardware developers 
who want to create their own versions and iterate on our design. 
 

Index Terms—CISC, Computer architecture, Cycle-accurate, 
Emulator, FPGA, Game Boy  

I. INTRODUCTION 
he first Game Boy was released in 1989 and was the 
first handheld console to use video game cartridges. 
It popularized handheld consoles and started a 

family of consoles that was manufactured until 2010. Our goal 
was to learn more about the game console that shaped gaming 
today by creating a cycle-accurate Game Boy emulator on an 
FPGA. Currently, there are numerous software emulators that 
are downloadable and playable on both your mobile device 
and laptop. We wanted to challenge those emulators by 
creating our emulator on an FPGA to give our users a more 
realistic experience. The work on hardware emulators is sparse 
and there are some areas where accuracy is lacking. 

For user input, we will be using a NES controller because it 
maps nicely to the input controls required. To connect the 
NES controller to the FPGA our original plan was to use the 
SoC. Although the controller driver through the SoC was able 
to communicate with the FPGA, we did not have enough time 
to integrate it so we used a Raspberry Pi to convert the signals 
into digital signals for the FPGA and route them through the 
general-purpose input/output (GPIO). For testing, we used a 
combination of created unit tests and test suites.  Our unit tests 
were written in Game Boy assembly, and then we used an 
open source compiler to convert it to a hex file so it can be 
loaded into memory. For more extensive testing we used 
Blarggs and Mooneye test suites, which are the gold standards 
in the emulator community. The test suites contain unit tests 
for instructions, memory, timing, and graphics that assure 
accuracy and timing. Within each test, each instruction and 
variation of the instruction was tested so all cases and 
combinations are accounted for. 

II. DESIGN REQUIREMENTS 
We outlined the following design requirements based on what 
has been achieved by previous software and hardware 

emulators and specifications of the original Game Boy (DMG 
versions), since we want to replicate or exceed its 
performance. 
Performance Requirements 

• Games should run at 59.7 frames per second: This is 
the same framerate at which the original Game Boy 
ran in. A framerate lower than this would severely 
impact the user experience due to lowered 
responsiveness. 

• The input latency should be roughly 55ms: This is 
based on experiments made on the Game Boy 
Advance by some of the emulator community. We 
are aware that the Game Boy Advance is a newer 
console and probably has better input delay, but 
despite this, we think this is a reasonable goal given 
the speed of the FPGA. Furthermore, we would not 
mind exceeding the performance of the original since 
that improves the user experience. 

• We should be cycle accurate in the games that use the 
constructs that we support (some games rely on 
obscure tricks specific to glitches in the original 
Gameboy and we do not believe those are worth 
pursuing). We want to have accuracy comparable to 
VerilogBoy, one of the better hardware emulators we 
found. 

• Be able to play Tetris and Dr. Mario with no CPU or 
graphic glitches. These two games were selected 
because they do not require boot rom processes or 
memory bank switching making them the simplest 
games to load and run. 

Qualitative Requirements 
• All our code should be well documented, and it 

should follow a high standard of coding. We want to 
contribute to the emulator community by showing 
them a well-documented project which they can use 
as a reference for future projects. 

Verification methodology 
• We want to pass at least as many tests as VerilogBoy, 

a reasonably accurate hardware emulator. We will 
use the Mooneyes-gb tests and Blarggs instruction 
tests. They test all possible inputs to an instruction 
and check that each multi-cycle instruction follows 
the same sequence as the Game Boy in each of its 
micro-instructions. 

• We will use a high-speed camera to measure the 
input delay, measuring the time it takes from a button 
press to a change registering on the screen. 

• For the SoC, we will have the FPGA display the 
controller inputs and checksum of the SDRAM. 
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The emulator community has spent countless man-hours 
working on researching the timings for instructions and 
execution of the Game Boy. Thus, we used the test ROMs that 
they have come up with to test that our timings work. These 
tests are Mooneyes-gb tests and Blarggs instruction tests, 
which are very comprehensive. The test suites test every 
instruction and every variation of the instruction. That means 
it uses all combinations of sources and destinations and every 
input setting, like bit location or shift value. In addition to 
proving correctness, they also prove that our emulator has 
reasonable cycle-accuracy and allows us to compare the 
accuracy of our emulators with other emulators. Within the 
test suites, there are designed situations where being one cycle 
off will cause a failure. 
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III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 
The overall architecture follows that of a simple computer 

system where the main CPU will be reading and executing the 
instructions of the current game from the on-board SDRAM. 
The CPU will communicate with the Pixel Processing Unit 
(PPU), memory controller and the timer. The specifics of the 
communication will be covered when discussing each of these 
devices. For our peripherals, the RPi will implement a 
controller driver and notifies the FPGA of button presses 
through its GPIO pins. Finally, we used VGA as our display 
method due to its ease of use and availability. A VGA controller 
takes the PPU’s video output and displays it. 

We uploaded ROMs to the memory region that was assigned 
to our CPU, which then executes a boot sequence and starts 
running the game. The boot sequence is when the Nintendo logo 
is displayed before the game begins to run and a check of the 
memory cartridge is conducted. The execution of games is 
mostly interrupt driven due to having to render an updated 
screen every time the previous one stops drawing. Thus, the 
CPU does a certain amount of setup every time a screen is 
displayed to prepare for the next one. This involves an accurate 
and well-timed communication between memory, CPU, and 
PPU. Furthermore, there is also computation being done 
whenever there are controller or timer interrupts. The following 
processes are executed every cycle.  

The memory controller hides the complexities of accessing 
memory from the CPU. It manages a majority of the memory, 
excluding VRAM and OAM which are managed by the PPU. 
The memory controller has the memory bank controller that 
will dynamically adjust to the MBC setting of the game. In these 
cases, it will manage the logic needed for accessing the different 
banks so the CPU will only need to provide the address. From 
the perspective of our CPU, we have combinational reads and 
synchronous writes, but in our hardware, we have both 
synchronous reads and writes. On the FPGA, all inputs must be 
registered, which was a limitation we did not account for in our 
design. To work around this issue the CPU runs at a slower 
clock than the memory.  

The timer runs at a different clock speed depending on what 
is specified for the game. It sets these options by loading values 
into designated areas. When enabled, it counts every cycle and 
once it overflows, it will trigger an interrupt that causes the CPU 
to load a new number to count from.  

For every output cycle from the video display, the CPU will 
write the desired image to a designated area in memory, which 
is called VRAM. There are also special registers in the PPU 
which are used to set settings related to which parts of the image 
in VRAM to render. Other registers are used to enable interrupts 
when certain stages of rendering are reached or when a certain 
coordinate starts getting rendered, which are useful if the CPU 
plans to change something mid-render (developers use this to 
create graphical tricks or more intuitive interfaces). The PPU 
then renders only one area of the image on the screen because 
the size of the displayed image is smaller than the size of the in-
memory image. This is useful for the scrolling effects in games 
such as Mario Brothers. Additionally, the PPU can initiate a 
direct memory access (DMA) transfer that copies data from 

various positions in memory into the OAM. During this 
transfer, any CPU access to areas outside of the OAM will be 
ignored. The outputs of the PPU will then write to a 
framebuffer, which is used to account for the differences in 
rendering timings between the PPU and the VGA controller. To 
cross from the PPU’s clock domain to the VGA controller’s 
clock domain we used an asynchronous FIFO. 

The SoC or RPi will not be too involved in this execution 
process other than generating the interrupts from the 
controllers. It will convert the signals from the USB port into 
digital signals for the FPGA through the GPIO pins. To 
generate the interrupt, it writes to a register and once the CPU 
sees the attempt to write, it triggers the interrupt flag. 

 

 
Figure 1. High level system architecture 

IV. DESIGN TRADE STUDIES 

A. CPU 
The official Game Boy manual has never been released to 

the public, so all the documentation we followed was created 
by the emulator community based on their observations and 
tests. This meant that there was a clear set of requirements we 
had to follow to support the Game Boy, but it gave us plenty 
of design freedom. The first trade-off we made was using 
multiple FSMs instead of one. To manage multi-cycle 
instructions, we implemented 14 FSMs where each FSM was 
altered to support a specific family of instructions. This made 
it easier to implement instructions because we could focus on 
developing and testing one FSM at a time. Once we finished 
one, we were able to write our own unit test that specifically 
tested the instruction family without having to debug the other 
FSMs at the same time. When we moved to using the test 
suites, having a single FSM made it easier to trace through and 
identify the bug with ease since we only needed to trace 
through 5-10 states and a subset of the control signals.  

With this design, there were two flaws. The first was we 
needed a manager to control the interaction between the FSMs 
and datapath. It needed to route the correct control signal 
packet to the datapath dependent on which instruction we had 
last seen. The second issue was some immediate values were 
the same value as an instruction, so a new FSM would get 
triggered while we were still servicing the previous instruction 
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in another FSM. These issues were easy to solve with 
additional logic that did not impact the effectiveness of the 
FSMs. If we had used a single FSM, it would have contained 
at least 30 states and the code would not be modular and 
concise as it currently is. Therefore, using the multiple small 
FSMs was the best choice. 

Another design decision we had to make was the timing for 
our memory. In our design, we assumed combinational read 
because in Introduction to Computer Architecture we were 
given magic memory that supported combinational read. Since 
the course taught us our foundation in CPU design, we 
assumed that was also a feature of our memory. When 
designing the system, it made timing and meeting cycle 
requirements easy because it gave us more flexibility about 
when we would get our data.  

When we moved the system to the FPGA, we realized that 
memory could only physically support synchronous read. In 
Quartus’ Megafunction Wizard, all inputs had to be saved by a 
register and then the access itself was combinational in the 
next cycle. Unfortunately, that meant for the CPU reads would 
have a cycle delay. To work around the situation, we gave 
memory a faster clock making it seem like it is combinational. 
Making the decision to assume memory had combinational 
read was the wrong decision in this case, although we were 
able to get the system to work on the board. If we had the 
correct assumption, the transition from simulation to synthesis 
would have been smoother and we would not have had to 
adjust our CPU to account for the different clocks. 

B. SoC 
To manage game switching, state saving, and controller 

drivers, we decided to use an SoC. For this reason, we decided 
to select the DE10-Standard rather than the other boards used 
in 18-240 and 18-341. We believed that with the SoC being on 
the development board with the FPGA it would be easy to 
integrate the two since the manual had a full description of 
their protocols. Additionally, the SoC has more storage and 
access to the FPGA than an external microprocessor so it 
would be able to support all the memory movement that we 
wanted for the game switching and state saving. The downside 
is no one on the team had experience with installing and 
setting up a SoC from scratch. This meant a large amount of 
time in the beginning of the project was dedicated to 
researching and learning through trial and error.  

The alternative was to use an external microprocessor, like 
a RPi, to support this functionality. Overall, the team has more 
experience with a RPi and there is more documentation and 
example code for it as well. The downside is that it can not 
support the memory transfers we wanted for game switching 
and state saving because it does not have the persistent storage 
we needed. We believe our decision to use the SoC over the 
external microprocessor was the better choice for our 
requirements, though ambitious. Unfortunately, due to the 
remote access teaching and inability to meet in person, we 
were unable to get the SoC integrated fully with the FPGA. 
We initially used the RPi to manage the controller driver as we 
couldn’t flash the FPGA and run programs on the RPi at the 
same time. Eventually, we were able to run programs on 
FPGA and SoC simultaneously.  
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V. SYSTEM DESCRIPTION 
A full, more detailed, system diagram is located at the end. 

A. CPU 
The CPU is a combination of the Intel 8080 and the Z80 

CPUs. The ISA is the union of subsets from both ISAs, plus 
some extra instructions for array looping. The CPU has 8 (8- 
bit) general purpose registers: A, B, C, D, E, F, H, and L. Note 
that the CPU also allows programmers to merge the 8-bit 
registers into 16-bit registers for 16-bit arithmetic operations. 
Additionally, it also has two 16-bit registers: SP and PC. The 
memory has a 16-bit address space, so the special and merged 
registers are used for accessing it. The CPU has a single 
address line going into memory, which is not dual ported.  

The Game Boy’s main execution component, the ALU, 
handles all operations. Its inputs consist of two 8-bit values, a 
carry-in, current flags, a flags mask, and the operation to be 
executed. The ALU is capable of simple operations such as 
adding, subtracting, bitwise operations and logical operations, 
but it also supports more complex operations such as bit 
rotations and word swapping. When it performs an operation, 
it sets the processor's flags based on the result or other defined 
behavior (like set or reset) which are: Carry, Half-Carry, Zero, 
and Overflow. This is the same ALU that is used to support 
16-bit operations, and to achieve this the CPU will break the 
upper and lower bytes into two distinct operations.  

As mentioned, memory is 16-bit addressed and it is byte 
addressable. The CPU has no memory hierarchy, which means 
that there is only the main memory and registers for storage. 
There are no caching layers because execution of the 
instructions is driven by the memory’s clock. Unlike more 
modern architectures there are also no separate instruction and 
data memories. Since memory is not dual ported, we can only 
either read instructions or perform memory operations on 
separate cycles. In our original design, we assumed we would 
have combinational read, which is why we placed memory 
accesses in the fetch and decode stage. When we moved to 
synthesizing the system on the hardware, we realized this was 
not possible so rather than changing our entire design, we have 
the CPU running at a slower clock rate than memory. Memory 
is the main tool for communication between the CPU, the 
PPU, and the timer. We have added a memory map at the end 
of the document to illustrate all the distinct memory regions. 

In our CPU datapath, we have two stages: fetch and decode 
(DE), and execute and writeback (EX). In our first stage, we 
will present the address we want to access and decode the 
instruction. Our decode module will generate a packet of 
control signals that can be broken into three categories: DE, 
EX, and ALU. The DE control signals will impact the 
components in the DE stage during the current cycle. The EX 
control signals will be pipelined to the EX stage through a 
register and will be used to control the next cycle. The ALU 
control signals are specifically for controlling the ALU and 
were placed in a separate category to make it easier to 
organize. LIke other pipelined CPUs, there will be cases 
where DE and EX will be working on different instructions. 
The EX stage will execute the instruction decoded based on 
the EX control signals passed from the decoder. In the EX 
stage, the register file stores the 8 working registers and flags, 

and there is a separate register to keep track of the stack 
pointer.  

The Game Boy’s is a CISC, meaning instructions have 
varying lengths and cycle lengths. Some instructions do 
multiple operations over many cycles. This is due to the 
limited resources that the CPU has. As mentioned, it has a 
single 8-bit ALU, a single ported memory that is shared for 
both instructions and data, and only two pipeline stages. To 
handle this, complicated instructions are broken up into 
smaller instructions which are slowly processed by the 
processor. To break up these instructions, we used multiple 
FSMs that are based on the instruction’s family. Each FSM is 
responsible for generating the new control signals for the 
current DE stage and next EX cycle because the system will 
have no recollection of the instruction it is in the middle of 
executing. Therefore, the signals that are generated are a 
combination of saved signals and signals that were updated to 
execute the next step of the multiple cycle instruction.  

Finally, the CPU has multiple interrupt lines that come from 
the PPU, the timer, and the controllers. The CPU uses a vector 
table to service these interrupts and it is in a special area in 
memory for each of these interrupts to jump to. Interrupts can 
be enabled or disabled through special registers which are 
controlled by instructions serviced by the decoder. 

B. Memory Management Unit (MMU) 
Since the Game Boy has multiple different memory cards 

such as ROM, Work RAM, High RAM, cartridge RAM, 
VRAM and OAM which all have multiple readers or writers, 
there needs to be a bus arbitration unit to prevent bus conflicts. 
Having an MMU allows for accurate emulation behavior 
because what some emulators do is prevent the CPU from 
accessing any memory at all if, for example, the DMA 
controller is running. This is not how it works in hardware 
since it is possible to access memory areas that do not cause 
bus conflicts with the DMA controller. Thus, the MMU gives 
us higher emulation fidelity. The MMU was not involved with 
I/O. For I/O register writes, we have all the different I/O 
devices listen to the CPU’s address bus for reads and writes 
that have their address.  

As mentioned, the MMU has a Direct Memory Access 
controller which supports copy operations from any of the 
memory chips into OAM memory. Without the controller, this 
operation would take thousands of CPU cycles. With the 
controller, the operation takes a mere 160 CPU cycles to 

Figure 2. CPU sub-system diagram 
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complete. The DMA controller has some more obscure 
behaviors that we decided not to pursue due to time 
constraints, but they are not required by any of the games we 
tested. In fact, a lot of the games act like none of the memory 
other than High RAM is accessible during a DMA operation. 

The Game Boy also uses memory banking to make up for 
the limited address space since some games were too large to 
fit into the 16-bit address space. Thus, the Game Boy can 
programmatically change which part of physical memory it 
accesses, allowing it to support games that are bigger than its 
address space. There are 4 main types of memory setups for 
Game Boy games that we support: ROM0, MBC1, MBC3, 
and MBC5. ROM0 does not include memory banking since 
the games were small enough to fit in the original memory 
space. MBC1 and MBC3 have 128 ROM banks and 4 RAM 
banks. The difference between the two setups is that MBC3 
has a real time clock, which is a timer that is continuously 
counting even when the Game Boy is turned off. This is used 
for games like Pokemon that adjust the game to match the 
time of day. MBC5 has 512 ROM banks and 16 RAM banks. 
In addition to having a varying number of banks, the size of 
the bank can change regardless of the MBC type.  

Banks are stored in registers in the MBCs, these registers 
are mapped to different areas of the ROM (since the MMU 
prevents the CPU from writing to the ROM directly). Thus, 
the ROM memory areas are treated like write-only I/O 
registers. The logic of the MBCs is simple, some registers are 
used to construct the ROM bank number or the RAM bank 
number. These bank numbers are just the upper bits of the 
extended address space. Thus, the effective address for CPU 
reads and writes is calculated by using the address from the 
CPU as the lower bits and the bank numbers as the upper bits. 

C. Timer 
The timer is continuously counting regardless of what is 

happening in the CPU. There are four memory addresses that 
are used in this process and they have all been given names to 
make the explanation clearer. The divider register, DIV, is 
incremented at a set rate of 16384 Hz and cannot be disabled. 
If anyone attempts to write a value to it, it will automatically 
be set to 0. The timer modulo, TMA, holds the next value that 
we will begin to count from when our counter overflows. The 
timer control, TAC, determines the frequency we will 
increment our counter by and if we are counting. The timer 
counter, TIMA, is our counter. It will increment at the rate 
specified by TAC, and when it overflows it will load in the 
value from TMA and assert an interrupt. A value can be 
written to TIMA without TMA overflowing. The most 
challenging part of the timer was accounting for the different 
edge case scenarios. We needed to establish the correct 
priority order of changes to TIMA in the cases that multiple 
people were attempting to alter the value.  

Originally, we used a clock divider to support this feature. 
Unfortunately, there were many edge cases we were missing 
so we instead opted for a high-fidelity reproduction of the 
timer in the Game Boy. This timer used a 4Mhz clock that was 
hooked up to a 16-bit counter.  The DIV register is just the 
upper 8 bits of this counter. To obtain the different frequencies 

for the exported TIMA counter, the timer has an edge detector 
in different parts of the internal counter. When the selected  
edge detector triggers, the counter is incremented. There are 
some peculiarities with this design that lead to strange 
behaviors when writing the timer registers. Which is what 
prevented our initial approach from correctly emulating the 
Game Boy’s timer. 

D. PPU 
The PPU (Pixel Processing Unit), handles the rendering of 

the game’s frames. Frames are rendered in the same order as a 
VGA screen; pixels are drawn from left to right and from top 
to bottom where each row is called a scanline. Just like VGA, 
the rendering process is divided into stages based on this 
pattern. The PPU cycles through 4 stages: OAM search, Pixel 
Fetching and Drawing, H-Blank and VBlank. OAM search 
and pixel drawing happen in between every H-Blank stage.  

We will discuss the different objects that are involved in a 
frame being displayed to create a background in the discussion 
that will follow. The basic building block for images is a pixel. 
The original Game Boy only supported 4 colors, or 5 if you 
count transparent as a color. As a result, pixels are encoded as 
two-bit values which are then translated using a look-up table 
or “palette”. The next building block is tiles, tiles are 8x8 
arrays of pixels. Tiles are identified by a unique number (their 
offset in memory) and make up the main display elements, 
background, windows, and sprites. When rendering, 
background is the default element to be displayed. There are 
special registers and memory regions that determine when a 
different kind of element must be rendered. There are window 
coordinate registers, which will make the PPU start rendering 
from the window memory instead of the background memory. 
A similar system is used for sprites, but the only difference is 
that sprites have their coordinates encoded in each one of them 
because we can have up to 10. Thus, the PPU has an array of 
comparators to check for this.  

Sprites are treated differently from other elements. On top 
of the basic pixel encoding they have a variety of different 
attributes that are encoded in four bytes. The first two bytes 
are used for the X and Y coordinates. The third byte contains 
the tile number. Finally, the fourth byte contains extra 
attributes:  

• Priority with respect to the background: this 
dictates whether the sprite will be rendered on top of 

Figure 3. Timer Diagram, from [8] 
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the background (i.e. it will overwrite the 
background)   

• X and Y flip bits: these bits mirror the sprite with 
respect to the X or Y axis so that developers don’t 
have to take up extra space for the sprite facing 
different ways  

• Palette number: there are 2 different palettes that 
sprites can have in the Game Boy DMG, this bit 
chooses between them.  

The rest of the bits in the attribute byte are unused by the 
original Game Boy.  

As mentioned, sprites are drawn on top of the background, 
unlike windows which are drawn instead of the background. 
There are also special considerations for what happens when 
multiple sprites overlap. The PPU uses a FIFO queue for 
pixels because it is not able to commit pixels to the screen 
until it has at least 8 pixels to commit. This is for mixing 
purposes because when a sprite is about to be rendered its 
pixels are “mixed” with the background pixels. This is done 
based on the sprite’s priority over the background. If the sprite 
has a transparent pixel then the background pixel will be 
displayed no matter what. For sprites being drawn over other 
sprites, the sprites at the earlier x-coordinate get picked 
instead.  

The image that is being displayed is 160x144, but the actual 
image in memory is 256x256. Games with scrolling effects are 
a good application of this fact. To select the area of the 
256x256 image the scrolling registers are used (SCX and 
SCY). These registers say which region of this image should 
be drawn. When rendering, pixels at coordinates outside of the 
range established by these registers are discarded. To achieve 
a scrolling effect, the CPU can adjust these registers based on 
the user’s position. To be able to change these things users can 
make use of the interrupts and special registers that the PPU 
offers.  

The PPU communicates with the CPU through memory and 
the special “registers”. These registers are what control the 
palettes, the window region, whether background, windows or 
sprites are being drawn, and interrupts. There are multiple 
kinds of interrupt lines coming from the PPU that the CPU can 
enable, which are all set in the PPU’s STAT register. An 
interrupt can be set for the beginning of each of the PPU’s 
stages (except for the fetching and rendering). There is also 
the LYC interrupt where users can set the LY register with a 
value and then the LYC interrupt will trigger an interrupt 
when the LYth scanline is reached. These interrupts are used 
for a variety of reasons. They help developers modify the 
PPU’s state at certain points of execution to achieve various 
visual effects. For example, to make sprites not draw over 
windows, they can set LY = WY so that they can turn off 
sprites when we are rendering a window, and then turn them 
back on when we are done. They can also use this to 
dynamically scroll an image as it is being rendered to achieve 
a “warping” effect.  

VRAM is divided into three blocks of 128 tiles each, the 
three blocks are block 0 ($8000-$87FF), block 1 ($8800- 
$8FFF) and block 2 ($9000-$97FF). Sprites can only go in 
block 0 from $8000 to $8FFF. There is a special area in 
memory called the Sprite Attribute Table (or OAM - Object 

Attribute Memory) which spans $FF00 - $FE9F. This table 
can only hold up to 40 sprites, which means that only up to 40 
sprites can be displayed on the screen at once (without tricks) 
and only 10 sprites can be rendered in each scanline. This 
memory is special because the PPU can access 2 bytes at a 
time rather than one. 

For writing to VRAM and OAM, there is a contract that the 
CPU must follow to avoid crashing the system. For VRAM, 
the CPU is only able to access it during H-Blank, V-Blank or 
OAM search, and the status of the rendering can be polled 
through the PPU’s STAT register or by enabling interrupts in 
that same register. The OAM table has two ways of accessing 
it. It is often recommended that it is accessed using the built in 
DMA functionality, which lets the user read it at any time. To 
use DMA, the CPU must write a target address, must be 
divisible by 0x100, from ROM or RAM to write or read from, 
respectively, to the DMA transfer register. Afterwards a DMA 
transfer will start; note that during this timeframe, the CPU 
can only access a special region in memory called HRAM. 
Thus, the function that is used for DMA should be located in 
this memory region. Other than using DMA, the CPU can 
directly access OAM during H-Blank and V-Blank. 
 

 
Figure 4. PPU Sub-System Diagram 

E. APU 
The APU is a read-only subsystem. There are four voices 

that make up the sound: Pulse 1, Pulse 2, Wave, and Noise. 
Pulse 1 and Pulse 2 are the tones, Wave dictates the shape, and 
Noise is white noise. Each is allocated five 8-bit registers in 
memory where the CPU will change the values depending on 
the sound that is needed. This was done because when the 
Game Boy was designed, having pre-built sound files took up 
too much space in the cartridge. To compensate for this, 
engineers developed this four-voice system to have a real-time 
synthesizer.  

Although the voices have the same number of registers that 
correspond to similar parts of the sound, the bits are in 
different parts and bits in the same location have a different 
meaning. For our APU, we will have four decoders, one for 
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each voice, that will translate the information in memory to 
standard values that can be combined to make one sound. 
Once translated, a mixer will combine the four voices using 
the information set by the three sound controller registers (also 
in memory). The sound controller registers are the masters that 
control if the sound is outputted, which speaker it is outputted 
to, and which channels are used. 

Once a final audio signal is created, it will be sent to the 
DAC through the GPIO. We need a DAC to convert our 
digital audio signal into an analog audio signal so it can be 
outputted by a speaker. Our DAC is 16-bit wide with parallel 
load, which means we do not need to establish a serial 
protocol to send over our data. Rather, we need control signals 
that will control which rank we are writing to. The DAC has a 
two-stage rank system to create a double buffer organization 
in order to prevent spurious analog output values. Therefore, 
in addition to the digital audio signal, we will also need to 
send signals to control the DAC. CS_n and L1_n will control 
the first rank, and then LDAC will control the second rank. 
We will be sampling at a rate of 50 kHz, which is better than 
the Game Boy sampling rate of 44.1 kHz. 

 

 
Figure 6. AD6699 DACPORT chip pinout 

From the DAC, we will attach an audio jack breakout board 
to the Vout line. The breakout board will allow us to plug in a 
3.5mm audio cable to connect the speaker. 

Due to moving to remote access for the remainder of the 
semester, we had to remove the APU subsystem because we 
did not have access to the needed tools. 

F. SoC 
The SoC has two main functions. Players will use the NES 

controller to input joypad instructions, which go through the 
SoC to the FPGA. To save game state and switch between 
different games, the SoC will keep track of the regions of 
persistent memory that contain game information, save it 
when the game should be saved, and load the relevant game 
memory into the SDRAM if the user is switching between 
games. The loaded game resumes as usual.  

The ARM-based hard processor system (HPS) provides two 
instances of the USB On-The-Go (OTG) Controller. It 
supports high speed, full speed, and low speed transfers in 
both the device and host modules and will be programmed to 
support data movement over the USB protocol between device 
and host. The two OTG controllers are independent of each 
other, and we will be using one of them to receive signals 
from the connected NES controller.  

The four directions on the “direction-pad” (dpad), two 
buttons for “Select and “Start”, and the ”A” and “B” buttons 
make up for a total of 8 signals to be sent to the FPGA. To be 
able to read signals from the NES controller, we installed the 
relevant linux driver of the type USB Human Interface Device 
(HID) Configuration. Once we recognize and receive the 
signals through the OTG controller on the SoC, we choose 8 
of the 32 GPIO signals provided to the FPGA, which are 
controlled through registers in the FPGA Manager on the SoC.  

When the player wants to switch between games, the SoC 
would have let the current screen finish rendering and then 
stop the CPU’s execution. Once the execution is stopped, all 
the CPU’s state and the memory will be saved for later re-
execution in persistent storage (flash memory). Afterwards, all 
the state would be cleared, and the new game state will be 
loaded in from persistent memory to SDRAM.  

We planned on using external flash storage for persistent 
memory. NAND flash would be fast enough for game 
switching since we plan on doing bulk reads of data that has 
high locality. We considered using NOR flash, whose random-
access time is 0.075 micro-seconds per read. However, for 
NAND Flash while the first byte is read at 25 microseconds, 
the remaining bytes would be shifted out at 0.025 
microseconds (resulting in a bandwidth of 26 MB/s for 8 bit 
I/O and 41 MB/s for 16 bit I/O). We will use the NAND flash 
memory controller, which directly corresponds to NAND flash 
persistent storage.  However, since the SoC boots from flash, 
we decided it would be best to use USB storage to aid with 
game switching, to avoid potential booting issues with 
memory sharing. 

To load a game after boot, the SoC will obtain the data from 
the drive and transfer it to the SDRAM on the FPGA via the 
HPS-FPGA bridge. The SDRAM Controller on the FPGA 
provides an interface to the 64 MB SDRAM on the board, 
which is organized as 32M x 16 bits. It is accessible by the 
HPS on the SoC using word (32-bit), halfword, or byte 
operations, and is mapped to the address space 0xC0000000 to 
0xC3FFFFFF by default7. Once we transfer the data to the 
SDRAM, we will use interrupts or GPIO pins to signal the 
FPGA to start the new game.  

 

Figure 5. APU Sub-System Diagram 
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An alternative would be to use the HPS’s DDR3 memory 

and have the FPGA read it, since at the time we hadn’t figured 
out the HPS-FPGA bridge. We found the above described 
approach to be better since the SDRAM is directly connected 
to the FPGA. It was more intuitive to use SDRAM directly 
connected to the FPGA to perform memory operations since it 
uses a simpler interface for both the FPGA and the HPS.  

If another game were in progress, we would first save the 
game state by copying it into USB storage. We will have a 
Lookup Table stored in a reserved part of the USB Storage 
which would give us the addresses to find the required data to 
load and store.  

During integration, we faced many issues, one of which was 
being unable to run programs on the SoC and the FPGA 
simultaneously. Running one would cause the other to stop. 
We did not anticipate this until near our final presentation. 
Due to moving to remote access for the remainder of the 
semester, which made integration harder, we considered 
transferring responsibility of SoC onto RPi, or using a 
USB/PS2 adapter and have the FPGA directly communicate 
with the NES-controllers connected through the USB port, 
since there is a PS/2 input for the FPGA. We chose to use the 
RPi, as elaborated below. However, we managed to 
simultaneously flash the FPGA while running the SoC with 
the help of a platform integration tool - Qsys and can run 
programs on the FPGA and SoC simultaneously.  

Unfortunately, due to the current extenuating 
circumstances, we were unable to implement game switching 
and state-saving on the SoC and using GPIO to transfer data 
from the RPi to the FPGA proved to be too troublesome to 
implement near the deadline. 

G. Joypad 
The RPi uses the joypad Linux library, which supports the 

joypad we choose. With this, we wrote a Python script which 
listens for events from the joypad using the inputs API. Each 
of these events toggle the GPIO pins which are connected to 
the FPGA. The FPGA then grabs those inputs directly, maps 
them to buttons and feeds them into the joypad module. The 
joypad module has a sampling clock to sample from the button 
inputs to the module. The module then shows the sampled 
values in the I/O register that is exported for the CPU to read. 
There is only one 8-bit register for 8 possible buttons. 
Unfortunately, this register seems to have some reserved bits 
in it, which makes it not possible to fit all button presses, so it 
has 2 writeable bits which control which buttons from 
directional keys or button keys must be sampled. Furthermore, 
for the non-polling case, there is an edge detector that triggers 
the interrupt lines whenever there is a change in any of the 
inputs. This module is very flexible, since any source of inputs 
could be used, which made testing easy. 

VI. PROJECT MANAGEMENT 

A. Schedule 
See the last page for our complete Gantt chart. 
Our schedule is very detailed because it lists each necessary 

step for each part. We have added a lot of slack at the end 
because of the integration issues and small fixes that we will 
need to make once we are able to load games. Our schedule 
has remained very similar to our proposal except we have 
updated the deadline for different tasks to account for having 
to refocus the project. Debugging was a challenge because we 
were unable to meet in person, but we were able to debug at 
the same time since each member had a board shipped to 
them.  

Week 8 is intentionally blank to account for spring break. 
The additional changes that have been made were to account 
for additional collaboration when working on the CPU and the 
tasks required for DMA, MBC, and joypad that we did not 
originally account for. 

B. Team Member Responsibilities 
Adolfo - Adolfo was primarily in charge of the designing 

the CPU datapath and overall system layout. He worked with 
Tess to implement and debug the CPU. Once the CPU was 
complete, he worked with Tess to implement and integrate the 
timer and memory controller. Adolfo was also responsible for 
researching, designing, and implementing all the graphics. 
Additionally, he was responsible for researching and 
implementing the joypad through the RPi. 

Pratyusha - Pratyusha was primarily in charge of learning 
and designing how the SoC would work. She was also in 
charge of setting up the SoC communication, software 
support, program toolchain and having it interact with FPGA 
peripherals. Additionally, she oversaw researching, designing, 
and implementing the controller driver and game-switching 
using SoC. 

Tess - Tess was primarily in charge of designing and 
implementing the FSMs for the CPU. She worked with Adolfo 
to design the initial FSM layout, and then finished the design 
for most of them. Additionally, she worked with Adolfo to 

Figure 7. SoC Sub-System Diagram 
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implement the datapath for the CPU and debug it. Once the 
CPU was complete, she worked with Adolfo to implement and 
integrate the timer and memory controller. Additionally, Tess 
was responsible for researching and designing sound circuitry 
and APU before it was removed from the project for 
refocusing reasons.  

All - As a team, we worked together on designing and 
reverse engineering the datapath for the CPU, integrating 
components and completed all required assignments for the 
course. 

C. Budget 
We selected the DE10-Standard Development Board 

because it has an FPGA and SoC, so integration between the 
two would be easier, and it has a micro SD card reader. We 
needed this reader because we planned to boot the board 
through a linux console image on a micro SD card.  

For our controller, we used a controller with a similar layout 
to the Game Boy and the closest we could find was the NES 
controller. We specifically chose one with a USB connector so 
the signals could be handled by the SoC.  

Due to remote access, we ordered additional parts as 
backups in case we could not get our first-choice method to 
work. 

Part Anticipated Cost Used 

DE10-Standard Board $355* Yes 

NES Controllers $15 Yes 

Micro SD Card $20 Yes 

AD669 DACPORT $50 No 

Audio Jack $20 (for 3) No 

Speaker $40 No 

3.5 mm Audio Cable $7 No 

Raspberry Pi N/A Yes 

PS/2 Port Keyboard $60 No 

USB to PS/2 Converter $15 No 

* Is not subtracted from team budget 

D. Risk Management 
For the project, the biggest risk is lack of official 

documentation for the Game Boy. Since we are building the 
emulator from scratch, we had to learn the Game Boy 
architecture through-and-through. Thankfully, the emulator 
community developed documents which were very accurate. 
Therefore, all of the manuals and articles that we have read 
were written by developers who have created their own 

emulators in their spare time. Although they have found many 
of the nuances, they may not have found all, and each 
developer has their own solution for the various parts within 
the Game Boy. This meant that we had to reverse engineer the 
layout of the datapath of each of the components to the best of 
our ability based on what we have learned. Additionally, not 
all of the sources are complete or included every detail. To 
mitigate this risk, we have reviewed numerous GitHub 
repositories, watched tech-talks of prominent people in the 
emulator community breaking down how the Game Boy 
works, and assuring our logic supports the necessary cycle 
count for instructions. When we had a bug and assured the 
logic, we implemented was doing what it was supposed to, we 
would use multiple sources to assure that we accounted for all 
required behavior.  

The other big risk is the size of the system. The entire Game 
Boy system can be divided into the CPU, sound, video, 
memory accessing/assignment, and button input. On top of 
that, we have added an SoC component that will require 
memory mapping, memory transfers, and a controller driver to 
connect input signals from the USB of the controller to signals 
for the FPGA. We divided the components to play to each 
team member’s strengths, but we each must learn how it is 
implemented in the Game Boy. Additionally, integration will 
be a significant portion of our debugging process because of 
all the interactions each unit will have with another and the 
different clocks throughout the system. To mitigate this risk, 
we plan on spending a significant time together in the 
beginning of the project to outline interactions to prevent these 
integration issues in the future. Additionally, we will all work 
together on the CPU to learn how the Game Boy system works 
overall, and in parallel we will conduct our individual research 
and implement our assigned section. 

A new risk that was introduced was debugging. Since we 
were never able to meet, we all had to work remotely in 
parallel. Although this is time efficient and allows each 
member to focus in one test or bug, there are various issues 
that arise. One is version issues where members are working 
with different versions of the same code. This could lead to 
merge conflicts and overwritten code when updating the 
master code. Another issue is multiple members may be 
solving the same bug. Since we will be working remotely and 
not always communicating to each other in the moment, we 
may waste time debugging a bug another member has already 
encountered and/or solved. This can also lead to merge issues 
if each member has a different solution. To mitigate these 
risks, we decided to all stay on a call and work together. This 
would allow us to talk with each other at any moment as if we 
were together but was not distracting since each member could 
mute their microphone if they were just working. 
Additionally, we all followed good Git practices by constantly 
pulling and checking with others when resolving merge 
conflicts.  

Another risk was working with the SoC. As mentioned 
previously, none of us had experience working with a SoC, 
and did not anticipate the software, equipment, and tools 
required to set it up. We also did not predict the need for a tool 
outside of Quartus and toolchain for cross compilation of code 
to integrate FPGA and SoC flow, as one cannot flash the 
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FPGA and run code on SoC without the help of another tool 
such as Qsys. 

VII. SUMMARY 
A detailed breakdown of all the tests that we ran can be 

found at the end of the document. 
Our FPGA system was able to meet and surpass all the 

requirements that we outlined in our refocused statement of 
work. In the statement of work, we removed the audio 
requirement and made the ability to play Tetris and Dr. Mario 
as our minimum goal. After implementing ROM0 for basic 
games, we had enough time to design, implement and test the 
MBC so we can support more games. Our CPU was able to 
pass all the emulator community’s accuracy and timing tests, 
more than our original goal, VerilogBoy. Our PPU was able to 
run the dmg-acid2 test which tests a lot of the PPU behaviors 
that are needed to correctly display images. Additionally, it 
was also able to pass ⅓ of Mooneye’s PPU acceptance tests, 
which tests the timings for all the PPU’s different state 
changes. While playing the games, there are no graphical or 
logical glitches. The controller inputs have an estimated lag of 
8.3 - 12 ms, which is significantly better than the original 
Game Boy’s input lag of 55 ms. Integration of all FPGA based 
systems was effortless due to the good approach we took to 
modularity; it was also able to communicate with external 
systems such as the joypad and the different memories. 

The SoC system passed the controller unit tests outlined in 
the refocused statement of work. While we could initially not 
run programs on the SoC and FPGA at the same time, for 
which we used RPi to process controller inputs, we were able 
to flash FPGA and run the controller driver on the SoC 
simultaneously towards the end. However, due to the COVID-
19 situation and the inability to meet in person, we were not 
able to implement game switching and saving game state on 
the SoC. 

There are three main limitation s with our emulator. The 
first is we cannot save the game state, so if the user turns off 
the board, they must restart the entire game. This is 
problematic for story-oriented games, like Pokemon. The 
second limitation is to switch games, the user will need to 
reflash the FPGA. The FPGA does not have enough memory 
to store more than one game, so to load a new game the user 
will need to resynthesize the project with a different hex file. 
The third limitation is we do not support audio, but this was 
purposely removed from the project. The last two limitations 
are not terrible, but they are not ideal. 

VIII. FUTURE WORK 
If we were to continue working on the project, the first 

feature we would implement/work on would be audio. Due to 
the lack of access to the correct tools, we were not able to 
work on audio in the given time limit. With more time, we 
could have implemented the design we planned out with the 
external DAC. Alternatively, if we still did not have access to 
the lab tools needed, we could attempt to use the on-board 
DAC that required the P2C protocol. We did not attempt this 
route because we did not do the proper research for it so it 
would have been unrealistic to attempt to research and 
implement this subsystem within the remaining time.  

Next, we would implement and integrate game switching 
and saving state on SoC with FPGA. Now that we have the 

SoC running memory management on its own, we would 
focus on creating the protocol between the FPGA and the SoC.  

The final item we would work on is redesigning the CPU to 
account for synchronous read. This would require a complete 
overhaul of the CPU, but it would eliminate any potential 
timing issues when doing memory to memory transfer. 
Although we believe we have resolved these issues for the 
original Game Boy, if we decide to build on to support the 
Game Boy Color or any other version, we may run into new 
issues since they have different clocks. 

IX. LESSONS LEARNED 
Throughout the project, we learned many lessons and new 

topics. For design, we learned that you should do your 
research for future stages, and not just the first stage. This 
became an apparent lesson when we realized combinational 
read is generally not supported by memories, so never assume 
that you will have it. Additionally, since synthesis is slow and 
hard to trace through, do as much testing in simulation as you 
can and have the simulation model match the settings on the 
hardware.  

For debugging, having a correct model to trace through 
side-by-side with your faulty model is super-efficient and 
effective. Specifically, for emulators, BGB is a software 
emulator that has a debug mode so you can step through each 
instruction to check which instruction causes the failure and 
which registers or memory areas are affected.  

From the SoC component, we learned that we must do more 
research initially into designing how to communicate between 
the SoC and FPGA. We did not anticipate the needed external 
tools that are required so there was a surge of workload at the 
end of the timeline that we could not handle. 

We also learned some lessons that are specifically relevant 
for people who intend on creating a Game Boy emulator, or 
any emulator, in the future. The first is the graphics subsystem 
is much harder and tedious than it may seem, so dedicate more 
time than you initially thought. The second is make sure you 
have a solid CPU before trying anything else because if you 
cannot depend on your CPU being correct, then you will waste 
hours debugging after implementing the various processes the 
Game Boy needs, like DMA and timer interrupts. The third is 
there are various unique behaviors that you may not account 
for because one source does not list it. If there is a bug and 
you know the code is doing what it is intended to, double 
check that you are not missing one of these behaviors. Finally, 
we recommend joining the Game Boy emulator discord. It is a 
community of people who have extensively studied the Game 
Boy and know all of the unique behavior and how the tests 
run. We are proud of what we have accomplished given the 
time and the circumstances, we were worried we might have 
to import modules from other existing projects. In the end, we 
were able to do everything from scratch. 

X. RELATED WORK 
There are multiple related works that we investigated and 

would also like to thank due to their comprehensiveness and 
insight. The Game Boy Pandocs, which were made to contain 
nitty gritty details about the timings of instructions, PPU, and 
APU. The Pandocs are the basis for many of the popular 
wikis. Another useful document that has a similar spirit is 
“Game Boy: Complete Technical Reference” by gekkio, it is a 
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work in progress trying to give an approachable document that 
contains all the timings for the Game Boy instructions.  

Other emulators that make accuracy their top priority is 
Gambatte and Mooneye-gb. These are software-based 
emulators, and based on the research we did, they seem to be 
the closest to matching the timings of the Game Boy. Note 
that they have added support for the Game Boy Color as well 
so there may be some slight differences in their 
documentation. For hardware emulators, we found Verilog 
Boy, which we are using as the point of reference for our 
performance. There are other hardware emulators that we 
found, but don’t seem as polished. 
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Gameboy Memory Layout 

$FFFF Interrupt Enable Flag 

$FF80 - $FFFE Zero Page (127 bytes) 

$FF00 - $FF7F Hardware I/O Registers 

$FEA0 - $FEFF UNUSABLE 

$FE00 - $FE9F OAM – Object Attribute Memory 

$E000 - $FDFF Echo RAM 

$D000 - $DFFF Internal RAM (Memory banks 1 – 7) 

$C000 - $CFFF Internal RAM (Memory bank 0, fixed) 

$A000 - $BFFF Cartridge RAM 

$9C00 - $9FFF BG Map Data 1 

$9800 - $9BFF BG Map Data 2 

$8000 - $97FF Sprite RAM 

$4000 - $7FFF Cartridge ROM – Switchable Banks 

$0150 - $3FFF Cartridge ROM – Bank 0 

$0100 - $014F Cartridge Header Area 

$0000 - $00FF Restart and Interrupt Vectors 
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Mooneye GB Test for instruction accuracy 
Excludes tests that target or include features we do support. 
 

Test Status 

add sp e timing Pass 

call timing Pass 

call timing2 Pass 

call cc_timing Pass 

call cc_timing2 Pass 

di timing GS Pass 

div timing Pass 

ei sequence Pass 

ei timing Pass 

halt ime0 ei Pass 

halt ime0 nointer_timing Pass 

halt ime1 timing Pass 

halt ime1 timing2 GS Pass 

if ie registers Pass 

inter timing Pass 

jp timing Pass 

jp cc timing Pass 

ld hl sp e timing Pass 

oam dma_restart Pass 

oam dma start Pass 

oam dma timing Pass 

pop timing Pass 

push timing Pass 

rapid di ei Pass 

ret timing Pass 
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ret cc timing Pass 

reti timing Pass 

reti intr timing Pass 

rst timing Pass 

jp timing Pass 

pop timing Pass 

push timing Pass 

daa  Pass 

ei sequence Pass 

ei timing Pass 

jp cc timing Pass 

ld hl timing Pass 

ret cc timing Pass 

ret timing Pass 

reti timing Pass 

rst timing Pass 

oam_dma/basic Pass 

oam_dma/reg_read Pass 

oam_dma/sources-GS Fail (Not a supported feature) 
 

Mooneye GB Timer tests 
Test Status 

div write Pass 

rapid toggle Pass 

tim00 div trigger Pass 

tim00 Pass 

tim01 div trigger Pass 

tim01 Pass 
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tim10 div trigger Pass 

tim10 Pass 

tim11 div trigger Pass 

tim11 Pass 

tima reload Pass 

tima write reloading Pass 

tma write reloading Pass 
 
Mooneye GB PPU tests 

Test Status 

Hblank ly scx timing GS Fail 

intr 1 2 timing GS Pass 

intr 2 0 timing Pass 

intr 2 mode 0 timing Pass 

intr 2 mode 3 timing Fail 

intr 2 oam ok timing Fail 

intr  2 mode0 timing sprites Fail 

lcdon timing dmgABCmgbS Fail 

lcdon write timing GS Fail 

stat irq blocking Fail 

stat lyc onoff Fail 

vblank stat intr GS Pass 

 

Blargg cpu_instrs test 
Test Status 

01-special Pass 

02-interrupts Pass 

03-op sp,hl Pass 

04-op r,imm Pass 
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05-op rp Pass 

06-ld r,r Pass 

07-jr,jp,call,ret,rst Pass 

08-misc instrs Pass 

09-op r,r Pass 

10-bit ops Pass 

11-op a,(hl) Pass 
 


