
18-500 Design Report: 3/2/2020

1

Abstract—A system capable of cycle-accurate emulation of most

Game Boy games on a field programmable gate array (FPGA) for
all non-illegal behavior. This means our goal is to have games
running at the same speed as the original console, with the same
graphics, framerate, audio, etc. The main difference will be the
output and input peripherals, but our objective is to give a similar
experience to what users experienced on the original console. We
believe the level of documentation that Capstone entails will also
help us contribute documentation for future hardware developers
who want to create their own versions and iterate on our design.

Index Terms—CISC, Computer architecture, Cycle-accurate,
Emulator, FPGA, Game Boy

I. INTRODUCTION
he first Game Boy was released in 1989 and was the
first handheld console to use video game cartridges.
It popularized handheld consoles and started a

family of consoles that was manufactured until 2010. Our goal
was to learn more about the game console that shaped gaming
today by creating a cycle-accurate Game Boy emulator on an
FPGA. Currently, there are numerous software emulators that
are downloadable and playable on both your mobile device
and laptop. We wanted to challenge those emulators by
creating our emulator on an FPGA to give our users a more
realistic experience. The work on hardware emulators is sparse
and there are some areas where accuracy is lacking.

For user input, we will be using a NES controller because it
maps nicely to the input controls required. To connect the
NES controller to the FPGA our original plan was to use the
SoC. Although the controller driver through the SoC was able
to communicate with the FPGA, we did not have enough time
to integrate it so we used a Raspberry Pi to convert the signals
into digital signals for the FPGA and route them through the
general-purpose input/output (GPIO). For testing, we used a
combination of created unit tests and test suites. Our unit tests
were written in Game Boy assembly, and then we used an
open source compiler to convert it to a hex file so it can be
loaded into memory. For more extensive testing we used
Blarggs and Mooneye test suites, which are the gold standards
in the emulator community. The test suites contain unit tests
for instructions, memory, timing, and graphics that assure
accuracy and timing. Within each test, each instruction and
variation of the instruction was tested so all cases and
combinations are accounted for.

II. DESIGN REQUIREMENTS
We outlined the following design requirements based on what
has been achieved by previous software and hardware

emulators and specifications of the original Game Boy (DMG
versions), since we want to replicate or exceed its
performance.
Performance Requirements

• Games should run at 59.7 frames per second: This is
the same framerate at which the original Game Boy
ran in. A framerate lower than this would severely
impact the user experience due to lowered
responsiveness.

• The input latency should be roughly 55ms: This is
based on experiments made on the Game Boy
Advance by some of the emulator community. We
are aware that the Game Boy Advance is a newer
console and probably has better input delay, but
despite this, we think this is a reasonable goal given
the speed of the FPGA. Furthermore, we would not
mind exceeding the performance of the original since
that improves the user experience.

• We should be cycle accurate in the games that use the
constructs that we support (some games rely on
obscure tricks specific to glitches in the original
Gameboy and we do not believe those are worth
pursuing). We want to have accuracy comparable to
VerilogBoy, one of the better hardware emulators we
found.

• Be able to play Tetris and Dr. Mario with no CPU or
graphic glitches. These two games were selected
because they do not require boot rom processes or
memory bank switching making them the simplest
games to load and run.

Qualitative Requirements
• All our code should be well documented, and it

should follow a high standard of coding. We want to
contribute to the emulator community by showing
them a well-documented project which they can use
as a reference for future projects.

Verification methodology
• We want to pass at least as many tests as VerilogBoy,

a reasonably accurate hardware emulator. We will
use the Mooneyes-gb tests and Blarggs instruction
tests. They test all possible inputs to an instruction
and check that each multi-cycle instruction follows
the same sequence as the Game Boy in each of its
micro-instructions.

• We will use a high-speed camera to measure the
input delay, measuring the time it takes from a button
press to a change registering on the screen.

• For the SoC, we will have the FPGA display the
controller inputs and checksum of the SDRAM.

Gameboi: An FPGA-Based Gameboy Emulator

Author: Adolfo Victoria, Tess Chan, Pratyusha Duvvuri: Electrical and Computer Engineering,
Carnegie Mellon University

T

18-500 Design Report: 3/2/2020

2

The emulator community has spent countless man-hours
working on researching the timings for instructions and
execution of the Game Boy. Thus, we used the test ROMs that
they have come up with to test that our timings work. These
tests are Mooneyes-gb tests and Blarggs instruction tests,
which are very comprehensive. The test suites test every
instruction and every variation of the instruction. That means
it uses all combinations of sources and destinations and every
input setting, like bit location or shift value. In addition to
proving correctness, they also prove that our emulator has
reasonable cycle-accuracy and allows us to compare the
accuracy of our emulators with other emulators. Within the
test suites, there are designed situations where being one cycle
off will cause a failure.

18-500 Design Report: 3/2/2020

3

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
The overall architecture follows that of a simple computer

system where the main CPU will be reading and executing the
instructions of the current game from the on-board SDRAM.
The CPU will communicate with the Pixel Processing Unit
(PPU), memory controller and the timer. The specifics of the
communication will be covered when discussing each of these
devices. For our peripherals, the RPi will implement a
controller driver and notifies the FPGA of button presses
through its GPIO pins. Finally, we used VGA as our display
method due to its ease of use and availability. A VGA controller
takes the PPU’s video output and displays it.

We uploaded ROMs to the memory region that was assigned
to our CPU, which then executes a boot sequence and starts
running the game. The boot sequence is when the Nintendo logo
is displayed before the game begins to run and a check of the
memory cartridge is conducted. The execution of games is
mostly interrupt driven due to having to render an updated
screen every time the previous one stops drawing. Thus, the
CPU does a certain amount of setup every time a screen is
displayed to prepare for the next one. This involves an accurate
and well-timed communication between memory, CPU, and
PPU. Furthermore, there is also computation being done
whenever there are controller or timer interrupts. The following
processes are executed every cycle.

The memory controller hides the complexities of accessing
memory from the CPU. It manages a majority of the memory,
excluding VRAM and OAM which are managed by the PPU.
The memory controller has the memory bank controller that
will dynamically adjust to the MBC setting of the game. In these
cases, it will manage the logic needed for accessing the different
banks so the CPU will only need to provide the address. From
the perspective of our CPU, we have combinational reads and
synchronous writes, but in our hardware, we have both
synchronous reads and writes. On the FPGA, all inputs must be
registered, which was a limitation we did not account for in our
design. To work around this issue the CPU runs at a slower
clock than the memory.

The timer runs at a different clock speed depending on what
is specified for the game. It sets these options by loading values
into designated areas. When enabled, it counts every cycle and
once it overflows, it will trigger an interrupt that causes the CPU
to load a new number to count from.

For every output cycle from the video display, the CPU will
write the desired image to a designated area in memory, which
is called VRAM. There are also special registers in the PPU
which are used to set settings related to which parts of the image
in VRAM to render. Other registers are used to enable interrupts
when certain stages of rendering are reached or when a certain
coordinate starts getting rendered, which are useful if the CPU
plans to change something mid-render (developers use this to
create graphical tricks or more intuitive interfaces). The PPU
then renders only one area of the image on the screen because
the size of the displayed image is smaller than the size of the in-
memory image. This is useful for the scrolling effects in games
such as Mario Brothers. Additionally, the PPU can initiate a
direct memory access (DMA) transfer that copies data from

various positions in memory into the OAM. During this
transfer, any CPU access to areas outside of the OAM will be
ignored. The outputs of the PPU will then write to a
framebuffer, which is used to account for the differences in
rendering timings between the PPU and the VGA controller. To
cross from the PPU’s clock domain to the VGA controller’s
clock domain we used an asynchronous FIFO.

The SoC or RPi will not be too involved in this execution
process other than generating the interrupts from the
controllers. It will convert the signals from the USB port into
digital signals for the FPGA through the GPIO pins. To
generate the interrupt, it writes to a register and once the CPU
sees the attempt to write, it triggers the interrupt flag.

Figure 1. High level system architecture

IV. DESIGN TRADE STUDIES

A. CPU
The official Game Boy manual has never been released to

the public, so all the documentation we followed was created
by the emulator community based on their observations and
tests. This meant that there was a clear set of requirements we
had to follow to support the Game Boy, but it gave us plenty
of design freedom. The first trade-off we made was using
multiple FSMs instead of one. To manage multi-cycle
instructions, we implemented 14 FSMs where each FSM was
altered to support a specific family of instructions. This made
it easier to implement instructions because we could focus on
developing and testing one FSM at a time. Once we finished
one, we were able to write our own unit test that specifically
tested the instruction family without having to debug the other
FSMs at the same time. When we moved to using the test
suites, having a single FSM made it easier to trace through and
identify the bug with ease since we only needed to trace
through 5-10 states and a subset of the control signals.

With this design, there were two flaws. The first was we
needed a manager to control the interaction between the FSMs
and datapath. It needed to route the correct control signal
packet to the datapath dependent on which instruction we had
last seen. The second issue was some immediate values were
the same value as an instruction, so a new FSM would get
triggered while we were still servicing the previous instruction

18-500 Design Report: 3/2/2020

4

in another FSM. These issues were easy to solve with
additional logic that did not impact the effectiveness of the
FSMs. If we had used a single FSM, it would have contained
at least 30 states and the code would not be modular and
concise as it currently is. Therefore, using the multiple small
FSMs was the best choice.

Another design decision we had to make was the timing for
our memory. In our design, we assumed combinational read
because in Introduction to Computer Architecture we were
given magic memory that supported combinational read. Since
the course taught us our foundation in CPU design, we
assumed that was also a feature of our memory. When
designing the system, it made timing and meeting cycle
requirements easy because it gave us more flexibility about
when we would get our data.

When we moved the system to the FPGA, we realized that
memory could only physically support synchronous read. In
Quartus’ Megafunction Wizard, all inputs had to be saved by a
register and then the access itself was combinational in the
next cycle. Unfortunately, that meant for the CPU reads would
have a cycle delay. To work around the situation, we gave
memory a faster clock making it seem like it is combinational.
Making the decision to assume memory had combinational
read was the wrong decision in this case, although we were
able to get the system to work on the board. If we had the
correct assumption, the transition from simulation to synthesis
would have been smoother and we would not have had to
adjust our CPU to account for the different clocks.

B. SoC
To manage game switching, state saving, and controller

drivers, we decided to use an SoC. For this reason, we decided
to select the DE10-Standard rather than the other boards used
in 18-240 and 18-341. We believed that with the SoC being on
the development board with the FPGA it would be easy to
integrate the two since the manual had a full description of
their protocols. Additionally, the SoC has more storage and
access to the FPGA than an external microprocessor so it
would be able to support all the memory movement that we
wanted for the game switching and state saving. The downside
is no one on the team had experience with installing and
setting up a SoC from scratch. This meant a large amount of
time in the beginning of the project was dedicated to
researching and learning through trial and error.

The alternative was to use an external microprocessor, like
a RPi, to support this functionality. Overall, the team has more
experience with a RPi and there is more documentation and
example code for it as well. The downside is that it can not
support the memory transfers we wanted for game switching
and state saving because it does not have the persistent storage
we needed. We believe our decision to use the SoC over the
external microprocessor was the better choice for our
requirements, though ambitious. Unfortunately, due to the
remote access teaching and inability to meet in person, we
were unable to get the SoC integrated fully with the FPGA.
We initially used the RPi to manage the controller driver as we
couldn’t flash the FPGA and run programs on the RPi at the
same time. Eventually, we were able to run programs on
FPGA and SoC simultaneously.

18-500 Design Report: 3/2/2020

5

V. SYSTEM DESCRIPTION
A full, more detailed, system diagram is located at the end.

A. CPU
The CPU is a combination of the Intel 8080 and the Z80

CPUs. The ISA is the union of subsets from both ISAs, plus
some extra instructions for array looping. The CPU has 8 (8-
bit) general purpose registers: A, B, C, D, E, F, H, and L. Note
that the CPU also allows programmers to merge the 8-bit
registers into 16-bit registers for 16-bit arithmetic operations.
Additionally, it also has two 16-bit registers: SP and PC. The
memory has a 16-bit address space, so the special and merged
registers are used for accessing it. The CPU has a single
address line going into memory, which is not dual ported.

The Game Boy’s main execution component, the ALU,
handles all operations. Its inputs consist of two 8-bit values, a
carry-in, current flags, a flags mask, and the operation to be
executed. The ALU is capable of simple operations such as
adding, subtracting, bitwise operations and logical operations,
but it also supports more complex operations such as bit
rotations and word swapping. When it performs an operation,
it sets the processor's flags based on the result or other defined
behavior (like set or reset) which are: Carry, Half-Carry, Zero,
and Overflow. This is the same ALU that is used to support
16-bit operations, and to achieve this the CPU will break the
upper and lower bytes into two distinct operations.

As mentioned, memory is 16-bit addressed and it is byte
addressable. The CPU has no memory hierarchy, which means
that there is only the main memory and registers for storage.
There are no caching layers because execution of the
instructions is driven by the memory’s clock. Unlike more
modern architectures there are also no separate instruction and
data memories. Since memory is not dual ported, we can only
either read instructions or perform memory operations on
separate cycles. In our original design, we assumed we would
have combinational read, which is why we placed memory
accesses in the fetch and decode stage. When we moved to
synthesizing the system on the hardware, we realized this was
not possible so rather than changing our entire design, we have
the CPU running at a slower clock rate than memory. Memory
is the main tool for communication between the CPU, the
PPU, and the timer. We have added a memory map at the end
of the document to illustrate all the distinct memory regions.

In our CPU datapath, we have two stages: fetch and decode
(DE), and execute and writeback (EX). In our first stage, we
will present the address we want to access and decode the
instruction. Our decode module will generate a packet of
control signals that can be broken into three categories: DE,
EX, and ALU. The DE control signals will impact the
components in the DE stage during the current cycle. The EX
control signals will be pipelined to the EX stage through a
register and will be used to control the next cycle. The ALU
control signals are specifically for controlling the ALU and
were placed in a separate category to make it easier to
organize. LIke other pipelined CPUs, there will be cases
where DE and EX will be working on different instructions.
The EX stage will execute the instruction decoded based on
the EX control signals passed from the decoder. In the EX
stage, the register file stores the 8 working registers and flags,

and there is a separate register to keep track of the stack
pointer.

The Game Boy’s is a CISC, meaning instructions have
varying lengths and cycle lengths. Some instructions do
multiple operations over many cycles. This is due to the
limited resources that the CPU has. As mentioned, it has a
single 8-bit ALU, a single ported memory that is shared for
both instructions and data, and only two pipeline stages. To
handle this, complicated instructions are broken up into
smaller instructions which are slowly processed by the
processor. To break up these instructions, we used multiple
FSMs that are based on the instruction’s family. Each FSM is
responsible for generating the new control signals for the
current DE stage and next EX cycle because the system will
have no recollection of the instruction it is in the middle of
executing. Therefore, the signals that are generated are a
combination of saved signals and signals that were updated to
execute the next step of the multiple cycle instruction.

Finally, the CPU has multiple interrupt lines that come from
the PPU, the timer, and the controllers. The CPU uses a vector
table to service these interrupts and it is in a special area in
memory for each of these interrupts to jump to. Interrupts can
be enabled or disabled through special registers which are
controlled by instructions serviced by the decoder.

B. Memory Management Unit (MMU)
Since the Game Boy has multiple different memory cards

such as ROM, Work RAM, High RAM, cartridge RAM,
VRAM and OAM which all have multiple readers or writers,
there needs to be a bus arbitration unit to prevent bus conflicts.
Having an MMU allows for accurate emulation behavior
because what some emulators do is prevent the CPU from
accessing any memory at all if, for example, the DMA
controller is running. This is not how it works in hardware
since it is possible to access memory areas that do not cause
bus conflicts with the DMA controller. Thus, the MMU gives
us higher emulation fidelity. The MMU was not involved with
I/O. For I/O register writes, we have all the different I/O
devices listen to the CPU’s address bus for reads and writes
that have their address.

As mentioned, the MMU has a Direct Memory Access
controller which supports copy operations from any of the
memory chips into OAM memory. Without the controller, this
operation would take thousands of CPU cycles. With the
controller, the operation takes a mere 160 CPU cycles to

Figure 2. CPU sub-system diagram

18-500 Design Report: 3/2/2020

6

complete. The DMA controller has some more obscure
behaviors that we decided not to pursue due to time
constraints, but they are not required by any of the games we
tested. In fact, a lot of the games act like none of the memory
other than High RAM is accessible during a DMA operation.

The Game Boy also uses memory banking to make up for
the limited address space since some games were too large to
fit into the 16-bit address space. Thus, the Game Boy can
programmatically change which part of physical memory it
accesses, allowing it to support games that are bigger than its
address space. There are 4 main types of memory setups for
Game Boy games that we support: ROM0, MBC1, MBC3,
and MBC5. ROM0 does not include memory banking since
the games were small enough to fit in the original memory
space. MBC1 and MBC3 have 128 ROM banks and 4 RAM
banks. The difference between the two setups is that MBC3
has a real time clock, which is a timer that is continuously
counting even when the Game Boy is turned off. This is used
for games like Pokemon that adjust the game to match the
time of day. MBC5 has 512 ROM banks and 16 RAM banks.
In addition to having a varying number of banks, the size of
the bank can change regardless of the MBC type.

Banks are stored in registers in the MBCs, these registers
are mapped to different areas of the ROM (since the MMU
prevents the CPU from writing to the ROM directly). Thus,
the ROM memory areas are treated like write-only I/O
registers. The logic of the MBCs is simple, some registers are
used to construct the ROM bank number or the RAM bank
number. These bank numbers are just the upper bits of the
extended address space. Thus, the effective address for CPU
reads and writes is calculated by using the address from the
CPU as the lower bits and the bank numbers as the upper bits.

C. Timer
The timer is continuously counting regardless of what is

happening in the CPU. There are four memory addresses that
are used in this process and they have all been given names to
make the explanation clearer. The divider register, DIV, is
incremented at a set rate of 16384 Hz and cannot be disabled.
If anyone attempts to write a value to it, it will automatically
be set to 0. The timer modulo, TMA, holds the next value that
we will begin to count from when our counter overflows. The
timer control, TAC, determines the frequency we will
increment our counter by and if we are counting. The timer
counter, TIMA, is our counter. It will increment at the rate
specified by TAC, and when it overflows it will load in the
value from TMA and assert an interrupt. A value can be
written to TIMA without TMA overflowing. The most
challenging part of the timer was accounting for the different
edge case scenarios. We needed to establish the correct
priority order of changes to TIMA in the cases that multiple
people were attempting to alter the value.

Originally, we used a clock divider to support this feature.
Unfortunately, there were many edge cases we were missing
so we instead opted for a high-fidelity reproduction of the
timer in the Game Boy. This timer used a 4Mhz clock that was
hooked up to a 16-bit counter. The DIV register is just the
upper 8 bits of this counter. To obtain the different frequencies

for the exported TIMA counter, the timer has an edge detector
in different parts of the internal counter. When the selected
edge detector triggers, the counter is incremented. There are
some peculiarities with this design that lead to strange
behaviors when writing the timer registers. Which is what
prevented our initial approach from correctly emulating the
Game Boy’s timer.

D. PPU
The PPU (Pixel Processing Unit), handles the rendering of

the game’s frames. Frames are rendered in the same order as a
VGA screen; pixels are drawn from left to right and from top
to bottom where each row is called a scanline. Just like VGA,
the rendering process is divided into stages based on this
pattern. The PPU cycles through 4 stages: OAM search, Pixel
Fetching and Drawing, H-Blank and VBlank. OAM search
and pixel drawing happen in between every H-Blank stage.

We will discuss the different objects that are involved in a
frame being displayed to create a background in the discussion
that will follow. The basic building block for images is a pixel.
The original Game Boy only supported 4 colors, or 5 if you
count transparent as a color. As a result, pixels are encoded as
two-bit values which are then translated using a look-up table
or “palette”. The next building block is tiles, tiles are 8x8
arrays of pixels. Tiles are identified by a unique number (their
offset in memory) and make up the main display elements,
background, windows, and sprites. When rendering,
background is the default element to be displayed. There are
special registers and memory regions that determine when a
different kind of element must be rendered. There are window
coordinate registers, which will make the PPU start rendering
from the window memory instead of the background memory.
A similar system is used for sprites, but the only difference is
that sprites have their coordinates encoded in each one of them
because we can have up to 10. Thus, the PPU has an array of
comparators to check for this.

Sprites are treated differently from other elements. On top
of the basic pixel encoding they have a variety of different
attributes that are encoded in four bytes. The first two bytes
are used for the X and Y coordinates. The third byte contains
the tile number. Finally, the fourth byte contains extra
attributes:

• Priority with respect to the background: this
dictates whether the sprite will be rendered on top of

Figure 3. Timer Diagram, from [8]

18-500 Design Report: 3/2/2020

7

the background (i.e. it will overwrite the
background)

• X and Y flip bits: these bits mirror the sprite with
respect to the X or Y axis so that developers don’t
have to take up extra space for the sprite facing
different ways

• Palette number: there are 2 different palettes that
sprites can have in the Game Boy DMG, this bit
chooses between them.

The rest of the bits in the attribute byte are unused by the
original Game Boy.

As mentioned, sprites are drawn on top of the background,
unlike windows which are drawn instead of the background.
There are also special considerations for what happens when
multiple sprites overlap. The PPU uses a FIFO queue for
pixels because it is not able to commit pixels to the screen
until it has at least 8 pixels to commit. This is for mixing
purposes because when a sprite is about to be rendered its
pixels are “mixed” with the background pixels. This is done
based on the sprite’s priority over the background. If the sprite
has a transparent pixel then the background pixel will be
displayed no matter what. For sprites being drawn over other
sprites, the sprites at the earlier x-coordinate get picked
instead.

The image that is being displayed is 160x144, but the actual
image in memory is 256x256. Games with scrolling effects are
a good application of this fact. To select the area of the
256x256 image the scrolling registers are used (SCX and
SCY). These registers say which region of this image should
be drawn. When rendering, pixels at coordinates outside of the
range established by these registers are discarded. To achieve
a scrolling effect, the CPU can adjust these registers based on
the user’s position. To be able to change these things users can
make use of the interrupts and special registers that the PPU
offers.

The PPU communicates with the CPU through memory and
the special “registers”. These registers are what control the
palettes, the window region, whether background, windows or
sprites are being drawn, and interrupts. There are multiple
kinds of interrupt lines coming from the PPU that the CPU can
enable, which are all set in the PPU’s STAT register. An
interrupt can be set for the beginning of each of the PPU’s
stages (except for the fetching and rendering). There is also
the LYC interrupt where users can set the LY register with a
value and then the LYC interrupt will trigger an interrupt
when the LYth scanline is reached. These interrupts are used
for a variety of reasons. They help developers modify the
PPU’s state at certain points of execution to achieve various
visual effects. For example, to make sprites not draw over
windows, they can set LY = WY so that they can turn off
sprites when we are rendering a window, and then turn them
back on when we are done. They can also use this to
dynamically scroll an image as it is being rendered to achieve
a “warping” effect.

VRAM is divided into three blocks of 128 tiles each, the
three blocks are block 0 ($8000-$87FF), block 1 ($8800-
$8FFF) and block 2 ($9000-$97FF). Sprites can only go in
block 0 from $8000 to $8FFF. There is a special area in
memory called the Sprite Attribute Table (or OAM - Object

Attribute Memory) which spans $FF00 - $FE9F. This table
can only hold up to 40 sprites, which means that only up to 40
sprites can be displayed on the screen at once (without tricks)
and only 10 sprites can be rendered in each scanline. This
memory is special because the PPU can access 2 bytes at a
time rather than one.

For writing to VRAM and OAM, there is a contract that the
CPU must follow to avoid crashing the system. For VRAM,
the CPU is only able to access it during H-Blank, V-Blank or
OAM search, and the status of the rendering can be polled
through the PPU’s STAT register or by enabling interrupts in
that same register. The OAM table has two ways of accessing
it. It is often recommended that it is accessed using the built in
DMA functionality, which lets the user read it at any time. To
use DMA, the CPU must write a target address, must be
divisible by 0x100, from ROM or RAM to write or read from,
respectively, to the DMA transfer register. Afterwards a DMA
transfer will start; note that during this timeframe, the CPU
can only access a special region in memory called HRAM.
Thus, the function that is used for DMA should be located in
this memory region. Other than using DMA, the CPU can
directly access OAM during H-Blank and V-Blank.

Figure 4. PPU Sub-System Diagram

E. APU
The APU is a read-only subsystem. There are four voices

that make up the sound: Pulse 1, Pulse 2, Wave, and Noise.
Pulse 1 and Pulse 2 are the tones, Wave dictates the shape, and
Noise is white noise. Each is allocated five 8-bit registers in
memory where the CPU will change the values depending on
the sound that is needed. This was done because when the
Game Boy was designed, having pre-built sound files took up
too much space in the cartridge. To compensate for this,
engineers developed this four-voice system to have a real-time
synthesizer.

Although the voices have the same number of registers that
correspond to similar parts of the sound, the bits are in
different parts and bits in the same location have a different
meaning. For our APU, we will have four decoders, one for

18-500 Design Report: 3/2/2020

8

each voice, that will translate the information in memory to
standard values that can be combined to make one sound.
Once translated, a mixer will combine the four voices using
the information set by the three sound controller registers (also
in memory). The sound controller registers are the masters that
control if the sound is outputted, which speaker it is outputted
to, and which channels are used.

Once a final audio signal is created, it will be sent to the
DAC through the GPIO. We need a DAC to convert our
digital audio signal into an analog audio signal so it can be
outputted by a speaker. Our DAC is 16-bit wide with parallel
load, which means we do not need to establish a serial
protocol to send over our data. Rather, we need control signals
that will control which rank we are writing to. The DAC has a
two-stage rank system to create a double buffer organization
in order to prevent spurious analog output values. Therefore,
in addition to the digital audio signal, we will also need to
send signals to control the DAC. CS_n and L1_n will control
the first rank, and then LDAC will control the second rank.
We will be sampling at a rate of 50 kHz, which is better than
the Game Boy sampling rate of 44.1 kHz.

Figure 6. AD6699 DACPORT chip pinout

From the DAC, we will attach an audio jack breakout board
to the Vout line. The breakout board will allow us to plug in a
3.5mm audio cable to connect the speaker.

Due to moving to remote access for the remainder of the
semester, we had to remove the APU subsystem because we
did not have access to the needed tools.

F. SoC
The SoC has two main functions. Players will use the NES

controller to input joypad instructions, which go through the
SoC to the FPGA. To save game state and switch between
different games, the SoC will keep track of the regions of
persistent memory that contain game information, save it
when the game should be saved, and load the relevant game
memory into the SDRAM if the user is switching between
games. The loaded game resumes as usual.

The ARM-based hard processor system (HPS) provides two
instances of the USB On-The-Go (OTG) Controller. It
supports high speed, full speed, and low speed transfers in
both the device and host modules and will be programmed to
support data movement over the USB protocol between device
and host. The two OTG controllers are independent of each
other, and we will be using one of them to receive signals
from the connected NES controller.

The four directions on the “direction-pad” (dpad), two
buttons for “Select and “Start”, and the ”A” and “B” buttons
make up for a total of 8 signals to be sent to the FPGA. To be
able to read signals from the NES controller, we installed the
relevant linux driver of the type USB Human Interface Device
(HID) Configuration. Once we recognize and receive the
signals through the OTG controller on the SoC, we choose 8
of the 32 GPIO signals provided to the FPGA, which are
controlled through registers in the FPGA Manager on the SoC.

When the player wants to switch between games, the SoC
would have let the current screen finish rendering and then
stop the CPU’s execution. Once the execution is stopped, all
the CPU’s state and the memory will be saved for later re-
execution in persistent storage (flash memory). Afterwards, all
the state would be cleared, and the new game state will be
loaded in from persistent memory to SDRAM.

We planned on using external flash storage for persistent
memory. NAND flash would be fast enough for game
switching since we plan on doing bulk reads of data that has
high locality. We considered using NOR flash, whose random-
access time is 0.075 micro-seconds per read. However, for
NAND Flash while the first byte is read at 25 microseconds,
the remaining bytes would be shifted out at 0.025
microseconds (resulting in a bandwidth of 26 MB/s for 8 bit
I/O and 41 MB/s for 16 bit I/O). We will use the NAND flash
memory controller, which directly corresponds to NAND flash
persistent storage. However, since the SoC boots from flash,
we decided it would be best to use USB storage to aid with
game switching, to avoid potential booting issues with
memory sharing.

To load a game after boot, the SoC will obtain the data from
the drive and transfer it to the SDRAM on the FPGA via the
HPS-FPGA bridge. The SDRAM Controller on the FPGA
provides an interface to the 64 MB SDRAM on the board,
which is organized as 32M x 16 bits. It is accessible by the
HPS on the SoC using word (32-bit), halfword, or byte
operations, and is mapped to the address space 0xC0000000 to
0xC3FFFFFF by default7. Once we transfer the data to the
SDRAM, we will use interrupts or GPIO pins to signal the
FPGA to start the new game.

Figure 5. APU Sub-System Diagram

18-500 Design Report: 3/2/2020

9

An alternative would be to use the HPS’s DDR3 memory

and have the FPGA read it, since at the time we hadn’t figured
out the HPS-FPGA bridge. We found the above described
approach to be better since the SDRAM is directly connected
to the FPGA. It was more intuitive to use SDRAM directly
connected to the FPGA to perform memory operations since it
uses a simpler interface for both the FPGA and the HPS.

If another game were in progress, we would first save the
game state by copying it into USB storage. We will have a
Lookup Table stored in a reserved part of the USB Storage
which would give us the addresses to find the required data to
load and store.

During integration, we faced many issues, one of which was
being unable to run programs on the SoC and the FPGA
simultaneously. Running one would cause the other to stop.
We did not anticipate this until near our final presentation.
Due to moving to remote access for the remainder of the
semester, which made integration harder, we considered
transferring responsibility of SoC onto RPi, or using a
USB/PS2 adapter and have the FPGA directly communicate
with the NES-controllers connected through the USB port,
since there is a PS/2 input for the FPGA. We chose to use the
RPi, as elaborated below. However, we managed to
simultaneously flash the FPGA while running the SoC with
the help of a platform integration tool - Qsys and can run
programs on the FPGA and SoC simultaneously.

Unfortunately, due to the current extenuating
circumstances, we were unable to implement game switching
and state-saving on the SoC and using GPIO to transfer data
from the RPi to the FPGA proved to be too troublesome to
implement near the deadline.

G. Joypad
The RPi uses the joypad Linux library, which supports the

joypad we choose. With this, we wrote a Python script which
listens for events from the joypad using the inputs API. Each
of these events toggle the GPIO pins which are connected to
the FPGA. The FPGA then grabs those inputs directly, maps
them to buttons and feeds them into the joypad module. The
joypad module has a sampling clock to sample from the button
inputs to the module. The module then shows the sampled
values in the I/O register that is exported for the CPU to read.
There is only one 8-bit register for 8 possible buttons.
Unfortunately, this register seems to have some reserved bits
in it, which makes it not possible to fit all button presses, so it
has 2 writeable bits which control which buttons from
directional keys or button keys must be sampled. Furthermore,
for the non-polling case, there is an edge detector that triggers
the interrupt lines whenever there is a change in any of the
inputs. This module is very flexible, since any source of inputs
could be used, which made testing easy.

VI. PROJECT MANAGEMENT

A. Schedule
See the last page for our complete Gantt chart.
Our schedule is very detailed because it lists each necessary

step for each part. We have added a lot of slack at the end
because of the integration issues and small fixes that we will
need to make once we are able to load games. Our schedule
has remained very similar to our proposal except we have
updated the deadline for different tasks to account for having
to refocus the project. Debugging was a challenge because we
were unable to meet in person, but we were able to debug at
the same time since each member had a board shipped to
them.

Week 8 is intentionally blank to account for spring break.
The additional changes that have been made were to account
for additional collaboration when working on the CPU and the
tasks required for DMA, MBC, and joypad that we did not
originally account for.

B. Team Member Responsibilities
Adolfo - Adolfo was primarily in charge of the designing

the CPU datapath and overall system layout. He worked with
Tess to implement and debug the CPU. Once the CPU was
complete, he worked with Tess to implement and integrate the
timer and memory controller. Adolfo was also responsible for
researching, designing, and implementing all the graphics.
Additionally, he was responsible for researching and
implementing the joypad through the RPi.

Pratyusha - Pratyusha was primarily in charge of learning
and designing how the SoC would work. She was also in
charge of setting up the SoC communication, software
support, program toolchain and having it interact with FPGA
peripherals. Additionally, she oversaw researching, designing,
and implementing the controller driver and game-switching
using SoC.

Tess - Tess was primarily in charge of designing and
implementing the FSMs for the CPU. She worked with Adolfo
to design the initial FSM layout, and then finished the design
for most of them. Additionally, she worked with Adolfo to

Figure 7. SoC Sub-System Diagram

18-500 Design Report: 3/2/2020

10

implement the datapath for the CPU and debug it. Once the
CPU was complete, she worked with Adolfo to implement and
integrate the timer and memory controller. Additionally, Tess
was responsible for researching and designing sound circuitry
and APU before it was removed from the project for
refocusing reasons.

All - As a team, we worked together on designing and
reverse engineering the datapath for the CPU, integrating
components and completed all required assignments for the
course.

C. Budget
We selected the DE10-Standard Development Board

because it has an FPGA and SoC, so integration between the
two would be easier, and it has a micro SD card reader. We
needed this reader because we planned to boot the board
through a linux console image on a micro SD card.

For our controller, we used a controller with a similar layout
to the Game Boy and the closest we could find was the NES
controller. We specifically chose one with a USB connector so
the signals could be handled by the SoC.

Due to remote access, we ordered additional parts as
backups in case we could not get our first-choice method to
work.

Part Anticipated Cost Used

DE10-Standard Board $355* Yes

NES Controllers $15 Yes

Micro SD Card $20 Yes

AD669 DACPORT $50 No

Audio Jack $20 (for 3) No

Speaker $40 No

3.5 mm Audio Cable $7 No

Raspberry Pi N/A Yes

PS/2 Port Keyboard $60 No

USB to PS/2 Converter $15 No

* Is not subtracted from team budget

D. Risk Management
For the project, the biggest risk is lack of official

documentation for the Game Boy. Since we are building the
emulator from scratch, we had to learn the Game Boy
architecture through-and-through. Thankfully, the emulator
community developed documents which were very accurate.
Therefore, all of the manuals and articles that we have read
were written by developers who have created their own

emulators in their spare time. Although they have found many
of the nuances, they may not have found all, and each
developer has their own solution for the various parts within
the Game Boy. This meant that we had to reverse engineer the
layout of the datapath of each of the components to the best of
our ability based on what we have learned. Additionally, not
all of the sources are complete or included every detail. To
mitigate this risk, we have reviewed numerous GitHub
repositories, watched tech-talks of prominent people in the
emulator community breaking down how the Game Boy
works, and assuring our logic supports the necessary cycle
count for instructions. When we had a bug and assured the
logic, we implemented was doing what it was supposed to, we
would use multiple sources to assure that we accounted for all
required behavior.

The other big risk is the size of the system. The entire Game
Boy system can be divided into the CPU, sound, video,
memory accessing/assignment, and button input. On top of
that, we have added an SoC component that will require
memory mapping, memory transfers, and a controller driver to
connect input signals from the USB of the controller to signals
for the FPGA. We divided the components to play to each
team member’s strengths, but we each must learn how it is
implemented in the Game Boy. Additionally, integration will
be a significant portion of our debugging process because of
all the interactions each unit will have with another and the
different clocks throughout the system. To mitigate this risk,
we plan on spending a significant time together in the
beginning of the project to outline interactions to prevent these
integration issues in the future. Additionally, we will all work
together on the CPU to learn how the Game Boy system works
overall, and in parallel we will conduct our individual research
and implement our assigned section.

A new risk that was introduced was debugging. Since we
were never able to meet, we all had to work remotely in
parallel. Although this is time efficient and allows each
member to focus in one test or bug, there are various issues
that arise. One is version issues where members are working
with different versions of the same code. This could lead to
merge conflicts and overwritten code when updating the
master code. Another issue is multiple members may be
solving the same bug. Since we will be working remotely and
not always communicating to each other in the moment, we
may waste time debugging a bug another member has already
encountered and/or solved. This can also lead to merge issues
if each member has a different solution. To mitigate these
risks, we decided to all stay on a call and work together. This
would allow us to talk with each other at any moment as if we
were together but was not distracting since each member could
mute their microphone if they were just working.
Additionally, we all followed good Git practices by constantly
pulling and checking with others when resolving merge
conflicts.

Another risk was working with the SoC. As mentioned
previously, none of us had experience working with a SoC,
and did not anticipate the software, equipment, and tools
required to set it up. We also did not predict the need for a tool
outside of Quartus and toolchain for cross compilation of code
to integrate FPGA and SoC flow, as one cannot flash the

18-500 Design Report: 3/2/2020

11

FPGA and run code on SoC without the help of another tool
such as Qsys.

VII. SUMMARY
A detailed breakdown of all the tests that we ran can be

found at the end of the document.
Our FPGA system was able to meet and surpass all the

requirements that we outlined in our refocused statement of
work. In the statement of work, we removed the audio
requirement and made the ability to play Tetris and Dr. Mario
as our minimum goal. After implementing ROM0 for basic
games, we had enough time to design, implement and test the
MBC so we can support more games. Our CPU was able to
pass all the emulator community’s accuracy and timing tests,
more than our original goal, VerilogBoy. Our PPU was able to
run the dmg-acid2 test which tests a lot of the PPU behaviors
that are needed to correctly display images. Additionally, it
was also able to pass ⅓ of Mooneye’s PPU acceptance tests,
which tests the timings for all the PPU’s different state
changes. While playing the games, there are no graphical or
logical glitches. The controller inputs have an estimated lag of
8.3 - 12 ms, which is significantly better than the original
Game Boy’s input lag of 55 ms. Integration of all FPGA based
systems was effortless due to the good approach we took to
modularity; it was also able to communicate with external
systems such as the joypad and the different memories.

The SoC system passed the controller unit tests outlined in
the refocused statement of work. While we could initially not
run programs on the SoC and FPGA at the same time, for
which we used RPi to process controller inputs, we were able
to flash FPGA and run the controller driver on the SoC
simultaneously towards the end. However, due to the COVID-
19 situation and the inability to meet in person, we were not
able to implement game switching and saving game state on
the SoC.

There are three main limitation s with our emulator. The
first is we cannot save the game state, so if the user turns off
the board, they must restart the entire game. This is
problematic for story-oriented games, like Pokemon. The
second limitation is to switch games, the user will need to
reflash the FPGA. The FPGA does not have enough memory
to store more than one game, so to load a new game the user
will need to resynthesize the project with a different hex file.
The third limitation is we do not support audio, but this was
purposely removed from the project. The last two limitations
are not terrible, but they are not ideal.

VIII. FUTURE WORK
If we were to continue working on the project, the first

feature we would implement/work on would be audio. Due to
the lack of access to the correct tools, we were not able to
work on audio in the given time limit. With more time, we
could have implemented the design we planned out with the
external DAC. Alternatively, if we still did not have access to
the lab tools needed, we could attempt to use the on-board
DAC that required the P2C protocol. We did not attempt this
route because we did not do the proper research for it so it
would have been unrealistic to attempt to research and
implement this subsystem within the remaining time.

Next, we would implement and integrate game switching
and saving state on SoC with FPGA. Now that we have the

SoC running memory management on its own, we would
focus on creating the protocol between the FPGA and the SoC.

The final item we would work on is redesigning the CPU to
account for synchronous read. This would require a complete
overhaul of the CPU, but it would eliminate any potential
timing issues when doing memory to memory transfer.
Although we believe we have resolved these issues for the
original Game Boy, if we decide to build on to support the
Game Boy Color or any other version, we may run into new
issues since they have different clocks.

IX. LESSONS LEARNED
Throughout the project, we learned many lessons and new

topics. For design, we learned that you should do your
research for future stages, and not just the first stage. This
became an apparent lesson when we realized combinational
read is generally not supported by memories, so never assume
that you will have it. Additionally, since synthesis is slow and
hard to trace through, do as much testing in simulation as you
can and have the simulation model match the settings on the
hardware.

For debugging, having a correct model to trace through
side-by-side with your faulty model is super-efficient and
effective. Specifically, for emulators, BGB is a software
emulator that has a debug mode so you can step through each
instruction to check which instruction causes the failure and
which registers or memory areas are affected.

From the SoC component, we learned that we must do more
research initially into designing how to communicate between
the SoC and FPGA. We did not anticipate the needed external
tools that are required so there was a surge of workload at the
end of the timeline that we could not handle.

We also learned some lessons that are specifically relevant
for people who intend on creating a Game Boy emulator, or
any emulator, in the future. The first is the graphics subsystem
is much harder and tedious than it may seem, so dedicate more
time than you initially thought. The second is make sure you
have a solid CPU before trying anything else because if you
cannot depend on your CPU being correct, then you will waste
hours debugging after implementing the various processes the
Game Boy needs, like DMA and timer interrupts. The third is
there are various unique behaviors that you may not account
for because one source does not list it. If there is a bug and
you know the code is doing what it is intended to, double
check that you are not missing one of these behaviors. Finally,
we recommend joining the Game Boy emulator discord. It is a
community of people who have extensively studied the Game
Boy and know all of the unique behavior and how the tests
run. We are proud of what we have accomplished given the
time and the circumstances, we were worried we might have
to import modules from other existing projects. In the end, we
were able to do everything from scratch.

X. RELATED WORK
There are multiple related works that we investigated and

would also like to thank due to their comprehensiveness and
insight. The Game Boy Pandocs, which were made to contain
nitty gritty details about the timings of instructions, PPU, and
APU. The Pandocs are the basis for many of the popular
wikis. Another useful document that has a similar spirit is
“Game Boy: Complete Technical Reference” by gekkio, it is a

18-500 Design Report: 3/2/2020

12

work in progress trying to give an approachable document that
contains all the timings for the Game Boy instructions.

Other emulators that make accuracy their top priority is
Gambatte and Mooneye-gb. These are software-based
emulators, and based on the research we did, they seem to be
the closest to matching the timings of the Game Boy. Note
that they have added support for the Game Boy Color as well
so there may be some slight differences in their
documentation. For hardware emulators, we found Verilog
Boy, which we are using as the point of reference for our
performance. There are other hardware emulators that we
found, but don’t seem as polished.

REFERENCES
[1] Game boy Architecture: A Practical Analysis,

https://copetti.org/projects/consoles/game-boy
[2] Game Boy CPU Manual,

http://marc.rawer.de/Gameboy/Docs/GBCPUman.pdf
[3] VerilogBoy - GameBoy on FPGA, https://hackaday.io/project/57660-

verilogboy-gameboy-on-fpga
[4] gbdev/awesome-gbdev, https://github.com/gbdev/awesome-gbdev
[5] Gekkio/mooneye-gb, https://github.com/Gekkio/mooneye-gb
[6] DE10-Standard User Manual, https://www.terasic.com.tw/cgi-

bin/page/archive_download.pl
[7] Cyclone V HPS Manual:

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/liter
ature/hb/cyclone-v/cv_54001.pdf

[8] The Cycle-Accurate Game Boy Docs https://github.com/geaz/emu-
gameboy/blob/master/docs/The%20Cycle-
Accurate%20Game%20Boy%20Docs.pdf

18-500 Design Report: 3/2/2020

13

18-500 Design Report: 3/2/2020

14

Gameboy Memory Layout

$FFFF Interrupt Enable Flag

$FF80 - $FFFE Zero Page (127 bytes)

$FF00 - $FF7F Hardware I/O Registers

$FEA0 - $FEFF UNUSABLE

$FE00 - $FE9F OAM – Object Attribute Memory

$E000 - $FDFF Echo RAM

$D000 - $DFFF Internal RAM (Memory banks 1 – 7)

$C000 - $CFFF Internal RAM (Memory bank 0, fixed)

$A000 - $BFFF Cartridge RAM

$9C00 - $9FFF BG Map Data 1

$9800 - $9BFF BG Map Data 2

$8000 - $97FF Sprite RAM

$4000 - $7FFF Cartridge ROM – Switchable Banks

$0150 - $3FFF Cartridge ROM – Bank 0

$0100 - $014F Cartridge Header Area

$0000 - $00FF Restart and Interrupt Vectors

18-500 Design Report: 3/2/2020

15

18-500 Design Report: 3/2/2020

16

Mooneye GB Test for instruction accuracy
Excludes tests that target or include features we do support.

Test Status

add sp e timing Pass

call timing Pass

call timing2 Pass

call cc_timing Pass

call cc_timing2 Pass

di timing GS Pass

div timing Pass

ei sequence Pass

ei timing Pass

halt ime0 ei Pass

halt ime0 nointer_timing Pass

halt ime1 timing Pass

halt ime1 timing2 GS Pass

if ie registers Pass

inter timing Pass

jp timing Pass

jp cc timing Pass

ld hl sp e timing Pass

oam dma_restart Pass

oam dma start Pass

oam dma timing Pass

pop timing Pass

push timing Pass

rapid di ei Pass

ret timing Pass

18-500 Design Report: 3/2/2020

17

ret cc timing Pass

reti timing Pass

reti intr timing Pass

rst timing Pass

jp timing Pass

pop timing Pass

push timing Pass

daa Pass

ei sequence Pass

ei timing Pass

jp cc timing Pass

ld hl timing Pass

ret cc timing Pass

ret timing Pass

reti timing Pass

rst timing Pass

oam_dma/basic Pass

oam_dma/reg_read Pass

oam_dma/sources-GS Fail (Not a supported feature)

Mooneye GB Timer tests
Test Status

div write Pass

rapid toggle Pass

tim00 div trigger Pass

tim00 Pass

tim01 div trigger Pass

tim01 Pass

18-500 Design Report: 3/2/2020

18

tim10 div trigger Pass

tim10 Pass

tim11 div trigger Pass

tim11 Pass

tima reload Pass

tima write reloading Pass

tma write reloading Pass

Mooneye GB PPU tests

Test Status

Hblank ly scx timing GS Fail

intr 1 2 timing GS Pass

intr 2 0 timing Pass

intr 2 mode 0 timing Pass

intr 2 mode 3 timing Fail

intr 2 oam ok timing Fail

intr 2 mode0 timing sprites Fail

lcdon timing dmgABCmgbS Fail

lcdon write timing GS Fail

stat irq blocking Fail

stat lyc onoff Fail

vblank stat intr GS Pass

Blargg cpu_instrs test
Test Status

01-special Pass

02-interrupts Pass

03-op sp,hl Pass

04-op r,imm Pass

18-500 Design Report: 3/2/2020

19

05-op rp Pass

06-ld r,r Pass

07-jr,jp,call,ret,rst Pass

08-misc instrs Pass

09-op r,r Pass

10-bit ops Pass

11-op a,(hl) Pass

