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Abstract—A system capable of cycle-accurate emulation of most 

Game Boy games on a field programmable gate array (FPGA) for 
all non-illegal behavior. This means our goal is to have games 
running at the same speed as the original console, with the same 
graphics, framerate, audio, etc. The main difference will be the 
output and input peripherals, but our objective is to give a similar 
experience to what users experienced on the original console. We 
believe the level of documentation that Capstone entails will also 
help us contribute documentation for future hardware developers 
who want to create their own versions and iterate on our design. 
 

Index Terms—CISC, Computer architecture, Cycle-accurate, 
Emulator, FPGA, Game Boy  

I. INTRODUCTION 

he first Game Boy was released in 1989 and was the 
first handheld console to use video game cartridges. 
It popularized handheld consoles and started a 

family of consoles that was manufactured until 2010. Our goal 
is to learn more about the game console that shaped gaming 
today by creating a cycle-accurate Game Boy emulator on an 
FPGA. Currently, there are numerous software emulators that 
are downloadable and playable on both your mobile device 
and laptop. We want to challenge those emulators by creating 
our emulator on an FPGA to give our users a more realistic 
experience. Although there are some hardware emulators, they 
are incomplete and did not aim to perform as well as or better 
than the Game Boy. In addition to our emulator functionality, 
we want to be able to switch between games smoothly, which 
involves loading from and saving game state to persistent 
memory. To manage this, our System-on-Chip (SoC) will 
contain game switching logic that will allow the user to select 
the game they want to play and feed the FPGA the information 
it should load into its working memory. For user input, we will 
be using a NES controller because it maps nicely to the input 
controls required. To assure that we are cycle accurate, we 
will compare trace logs of our emulator to verified hardware 
and software emulators. For unit testing, to save us from 
having to write tests in Game Boy assembly, we will use 
Blarggs and Mooneye test suites, which are the gold standards 
in the emulator community. The test suites contain unit tests 
for memory and timing that assure accuracy and timing. 

II. DESIGN REQUIREMENTS 

We outlined the following design requirements based on what 
has been achieved by previous software and hardware 
emulators and specifications of the original Game Boy (DMG 
versions), since we want to replicate or exceed its 
performance. 

Performance Requirements 
 Games should run at 59.73 frames per second: This is 

the same framerate at which the original ran in. A 
framerate lower than this would severely impact the 
user experience due to lowered responsiveness. 

 Audio is sampled at a rate of at least 44.1 kHz, the 
same frequency at which the Game Boy sampled its 
audio: Sampling at anything lower would lead to 
lowered audio resolution, affecting the user 
experience. 

 The input latency should be lower than 55 ms: this is 
based on experiments done with the Game Boy 
Advance by some of the emulator community. High 
input latency makes games feel unresponsive, so this 
is very important. 

 We want to have accuracy comparable to Verilog 
Boy, one of the better hardware emulators we found. 

Qualitative Requirements 
 Our emulator should be able to save game state and 

switch between games without having to reflash the 
FPGA.  

 Audio and video should be in sync. 
 All our code should be well documented, and it 

should follow a high standard of coding. We want to 
contribute to the emulator community by showing 
them a well-documented project which they can use 
as a reference for future projects. 

Verification methodology 
 The emulator community has spent countless man-

hours working on getting the timings for instructions 
and execution of the Game Boy. Thus, we’ll be using 
the test ROMs that they have come up with to test 
that the different timings work. These tests are 
Mooneyes-gb tests and Blarggs instruction tests, 
which are very comprehensive. These will prove that 
our emulator has reasonable cycle-accuracy and will 
allow us to compare the accuracy of our emulators 
with other emulators. We want to pass at least as 
many tests as Verilog Boy did, a reasonably accurate 
hardware emulator. 

 We will use a high-speed camera to measure the 
input delay, measuring the time it takes from a button 
press to a change registering on the screen. 

 We will instrument the video code to count the 
number of frames per second. 
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III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 

The overall architecture follows that of a simple computer 
system where the main CPU will be reading and executing the 
instructions of the current game from the on-board SDRAM. 
The CPU will communicate with the Pixel Processing Unit 
(PPU), the Audio Processing Unit (APU) and the timer. The 
specifics of the communication will be covered when 
discussing each of these devices. We will have a software 
component being controlled by the on-board SoC, which also 
manages game-switching and game-state saving. For our 
peripherals, the SoC will implement a controller driver and 
notify the FPGA of button presses through its GPIO pins. We 
will be using VGA as our display method due to its ease of use 
and availability. A VGA controller will take the PPU’s video 
output and display it. Finally, we will use a digital-to-analog 
converter (DAC) to convert the digital audio from the APU and 
output it from a speaker. 

We will upload ROMs to the memory region that is assigned 
to our CPU, which will then execute a boot sequence and start 
running the game. The execution of games is mostly interrupt 
driven due to having to render an updated screen every time the 
previous one stops drawing. Thus, the CPU will do a certain 
amount of setup every time a screen is displayed to prepare for 
the next one. This involves a combination of memory, APU, 
and PPU. Furthermore, there is also computation being done 
whenever there are controller or timer interrupts. The following 
processes are executed every audio and video output cycle. 

The CPU will generate the audio that it wants to output for 
the current time frame by writing to the APU’s registers (which 
are just a specific regions of memory). This audio will be in an 
encoded format which the APU will then decode it into a 
frequency/amplitude pair. There are multiple audio streams that 
will be generated, thus after being decoded the APU will mix 
them together to create the desired audio. Once mixed together, 
the audio will be controlled by three more registers, in memory, 
which dictate how the stream is outputted. This audio is in 
digital format so it cannot be outputted directly, so we will feed 
it into a DAC which will output it to our speaker through an 
audio jack breakout board. 

For the video display, the CPU will write the desired image 
to a designated area in memory, which we’ll call VRAM. There 
are also special registers in the PPU which are used to set 
settings related to which parts of the image in VRAM to render. 
Other registers are used to enable interrupts when certain stages 
of rendering are reached or when a certain coordinate starts 
getting rendered, which are useful if the CPU plans to change 
something mid-render (developers use this to create graphical 
tricks or more intuitive interfaces). The PPU will then render 
only one area of the image on the screen because the size of the 
displayed image is smaller than the size of the in-memory 
image. This is useful for the scrolling effects in games such as 
Mario Brothers. 

The SoC will not be too involved in this execution process 
other than generating the interrupts from the controllers. It will 
be involved with the beginning of execution, and also at the end. 
At the beginning of execution, it will write all of the game data 
to the SDRAM, this data is usually contained in a ROM file. 

We are planning on having some mechanism to allow the user 
to switch games, probably through one of the FPGA buttons. 
When a game switch happens, the SoC will let the current 
screen finish rendering and then stop the CPU’s execution. 
Once the execution is stopped, all the CPU’s state and the 
memory will be saved for later re-execution. Afterwards, all the 
state will be cleared, and the new game state will be loaded in. 

 

 
Fig. 1. High-level System Architecture 
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IV. SYSTEM DESCRIPTION 

A full, more detailed, system diagram is located at the end. 

A. CPU 

The CPU is a combination of the Intel 8080 and the Z80 
CPUs. The ISA is the union of subsets from both ISAs, plus 
some extra instructions for array looping. The CPU has 8 (8-
bit) general purpose registers: A, B, C, D, E, F, H, and L. Note 
that the CPU also allows programmers to merge the 8-bit 
registers into 16-bit registers for 16-bit arithmetic operations. 
Additionally, it also has two 16-bit registers: SP and PC. The 
memory has a 16-bit address space, so the special and merged 
registers are used for accessing it. The CPU has a single 
address line going into memory, which is not dual ported. 

The Game Boy’s main execution component, the ALU, is 
very simple. It has two 8-bit input lines, one 8-bit flags input 
line and a 4-bit operation input. It is only capable of 
performing 8-bit arithmetic but supports a wide variety of 
operations. The ALU is capable of simple operations such as 
adding, subtracting, bitwise operations and logical operations, 
but it also supports more complex operations such as bit 
rotations and word swapping. When it performs an operation, 
it sets the processors flags based on the result which are: 
Carry, Half-Carry, Zero, and Overflow. The ALU is the main 
form of interaction between the registers and this same ALU is 
used to support 16-bit operations. To achieve such operations, 
the CPU splits the operations into two distinct operations over 
two cycles.  

Fig. 2. CPU datapath 

As mentioned, memory is 16-bit addressed and it is byte-
addressable. The CPU has no memory hierarchy, which means 
that there is only the main memory and registers for storage. 
There are no caching layers because execution of the 
instructions is driven by the memory’s clock. Unlike more 
modern architectures there are also no separate instruction and 
data memories. Since memory is not dual ported, we can only 
either read instructions or perform memory operations on 
separate cycles. The Game Boy also uses memory banking to 
make up for the limited address space since some games were 
too large to fit into the address space. Thus, the Game Boy can 
programmatically change which part of physical memory it 
accesses, allowing it to support games that are bigger than its 
address space. Memory is the main tool for communication 
between the CPU, the PPU, and the APU. We have added a 

memory map at the end of the document to illustrate all the 
distinct memory regions. 

To manage these elements of the datapath, we will use 
control signals to enable different parts of the datapath 
depending on the current instruction. These control signals are 
generated by the decoder module, which reads the 
instructions. The decoder module, along with the instruction 
fetching, is part of the first stage of the two-stage pipeline in 
the CPU.  

The Game Boy’s is a CISC, meaning instructions have 
varying lengths and cycle lengths. Some instructions do 
multiple operations over many cycles. This is due to the 
limited resources that the CPU has. As mentioned, it has a 
single 8-bit ALU, a single ported memory that is shared for 
both instructions and data, and only two pipeline stages. To 
handle this, complicated instructions are broken up into 
smaller instructions which are slowly processed by the 
processor. To break up these instructions, we will use multiple 
FSMs. We have divided the FSMs based on the instruction’s 
family which will generate new control signals to be fed into 
the execute stage of the pipeline. 

Finally, the CPU has multiple interrupt lines that come from 
the PPU, the timer, and the controllers. The CPU uses a vector 
table to service these interrupts and it is in a special area in 
memory for each of these interrupts to jump to. Interrupts can 
be enabled or disabled through special registers. 

B. PPU 

The PPU (Pixel Processing Unit), handles the rendering of 
the game’s frames for the Game Boy. Frames are rendered in 
the same order as a VGA screen; pixels are drawn from left to 
right and from top to bottom where each row is called a 
scanline. Just like VGA, the rendering process is divided into 
stages based on this pattern. The PPU cycles through 4 stages: 
OAM search, Pixel Fetching and Drawing, H-Blank and V-
Blank. OAM search and pixel drawing happen in between 
every H-Blank stage. 

We will discuss the different objects that are involved in a 
frame being displayed to create a background in the discussion 
that will follow. The basic building block for images is a pixel. 
The original Game Boy only supported 4 colors, or 5 if you 
count transparent as a color. As a result, pixels are encoded as 
two-bit values which are then translated using a look-up table 
or “palette”. The next building block is tiles, tiles are 8x8 
arrays of pixels. Tiles are identified by a unique number (their 
offset in memory) and make up the main display elements, 
background, windows, and sprites. When rendering, 
background is the default element to be displayed. There are 
special registers and memory regions that determine when a 
different kind of element must be rendered. There are window 
coordinate registers, which will make the PPU start rendering 
from the window memory instead of the background memory. 
A similar system is used for sprites, but the only difference is 
that sprites have their coordinates encoded in each one of them 
because we can have up to 16. Thus, the PPU has an array of 
comparators to check for this. 

Sprites are treated differently from other elements. On top 
of the basic pixel encoding they have a variety of different 
attributes that are encoded in four bytes. The first two bytes 
are used for the X and Y coordinates. The third byte contains 
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the tile number. Finally, the fourth byte contains extra 
attributes: 

 Priority with respect to the background: this 
dictates whether the sprite will be rendered on top of 
the background (i.e. it will overwrite the background) 

 X and Y flip bits: these bits mirror the sprite with 
respect to the X or Y axis so that developers don’t 
have to take up extra space for the sprite facing 
different ways 

 Palette number: there are 2 different palettes that 
sprites can have in the Game Boy DMG, this bit 
chooses between them.  

The rest of the bits are unused by the original Game Boy. 
As mentioned, sprites are drawn on top of the background, 

unlike windows which are drawn instead of the background. 
There are also special considerations for what happens when 
multiple sprites overlap. The PPU uses a FIFO queue for 
pixels which is not able to commit pixels to the screen until it 
has at least 8 pixels in it. This is for mixing purposes because 
when a sprite is about to be rendered its pixels are “mixed” 
with the background pixels. This is done based on the sprite’s 
priority over the background. If the sprite has a transparent 
pixel then the background pixel will be displayed no matter 
what. For sprites being drawn over sprites, the sprites at the 
smaller x-coordinate get picked instead. 

The image that is being displayed is 160x144, but the actual 
image in memory is 256x256. Games with scrolling effects are 
a good application of this fact. To select the area of the 
256x256 image the scrolling registers are used (SCX and 
SCY). These registers say which region of this image should 
be drawn. When rendering, pixels at coordinates outside of the 
range established by these registers are discarded. To achieve 
a scrolling effect, the CPU can adjust these registers based on 
the user’s position, to be able to change these things users can 
make use of the interrupts and special registers that the PPU 
offers. 

The PPU communicates with the CPU through memory and 
the special “registers”. These registers are what control the 
palettes, the window region, whether background, windows or 
sprites are being drawn, and interrupts. There are multiple 
kinds of interrupts that the CPU can enable, these are all set in 
the PPU’s STAT register. An interrupt can be set for the 
beginning of each of the PPU’s stages (except for the fetching 
and rendering). To make up for the missing fetching/rendering 
interrupts there is also the LYC interrupt where users can set 
the LY register with a value and then the LYC interrupt will 
trigger an interrupt the LYth scanline is reached. These 
interrupts are used for a variety of reasons. They help 
developers modify the PPU’s state at certain points of 
execution to achieve various visual effects. For example, to 
make sprites not draw over windows, they can set LY = WY 
so that they can turn off sprites when we are rendering a 
window, and then turn them back on when we are done. They 
can also use this to dynamically scroll an image as it is being 
rendered to achieve a “warping” effect. 

VRAM is divided into three blocks of 128 tiles each, the 
three blocks are block 0 ($8000-$87FF), block 1 ($8800-
$8FFF) and block 2 ($9000-$97FF). Sprites can only go in 
block 0 from $8000 to $8FFF. There is a special area in 

memory called the Sprite Attribute Table (or OAM - Object 
Attribute Memory) which spans $FF00 - $FE9F. This table 
can only hold up to 40 sprites, which means that only up to 40 
sprites can be displayed on the screen at once (without tricks) 
and only 10 sprites can be rendered in each scanline.  

For writing to VRAM and OAM, there is a contract that the 
CPU must follow to avoid crashing the system. For VRAM, 
the CPU is only able to access it during H-Blank, V-Blank or 
OAM search, and the status of the rendering can be polled 
through the PPU’s STAT register or by enabling interrupts in 
that same register. The OAM table has two ways of accessing 
it. It is often recommended that it is accessed using the built in 
DMA functionality, which lets the user read it at any time. To 
use DMA, the CPU must write a target address, must be 
divisible by 0x100, from ROM or RAM to write or read from, 
respectively, to the DMA transfer register. Afterwards a DMA 
transfer will start; note that during this timeframe, the CPU 
can only access a special region in memory called HRAM. 
Thus, the function that is used for DMA should be located in 
this memory region. Other than using DMA, the CPU can 
directly access OAM during H-Blank and V-Blank. 
 

 
Fig. 3. The PPU system diagram. 

C. APU 

The APU is a read-only subsystem. There are four voices 
that make up the sound: Pulse 1, Pulse 2, Wave, and Noise. 
Pulse 1 and Pulse 2 are the tones, Wave dictates the shape, and 
Noise is white noise. Each is allocated five 8-bit registers in 
memory where the CPU will change the values depending on 
the sound that is needed. This was done because when the 
Game Boy was designed, having pre-built sound files took up 
too much space in the cartridge. To compensate for this, 
engineers developed this four-voice system to have a real-time 
synthesizer.  

Although the voices have the same number of registers that 
correspond to similar parts of the sound, the bits are in 
different parts and bits in the same location have a different 
meaning. For our APU, we will have four decoders, one for 
each voice, that will translate the information in memory to 
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standard values that can be combined to make one sound. 
Once translated, a mixer will combine the four voices using 
the information set by the three sound controller registers (also 
in memory). The sound controller registers are the masters that 
control if the sound is outputted, which speaker it is outputted 
to, and which channels are used. 

Fig. 4. The APU system diagram. 

Once a final audio signal is created, it will be sent to the 
DAC through the GPIO. We need a DAC to convert our 
digital audio signal into an analog audio signal so it can be 
outputted by a speaker. Our DAC is 16-bit wide with parallel 
load, which means we do not need to establish a serial 
protocol to send over our data. Rather, we need control signals 
that will control which rank we are writing to. The DAC has a 
two-stage rank system to create a double buffer organization 
in order to prevent spurious analog output values. Therefore, 
in addition to the digital audio signal, we will also need to 
send signals to control the DAC. CS_n and L1_n will control 
the first rank, and then LDAC will control the second rank. 
We will be sampling at a rate of 50 kHz, which is better than 
the Game Boy sampling rate of 44.1 kHz. 

 

 
Fig. 5. AD6699 DACPORT chip pinout 

From the DAC, we will attach an audio jack breakout board 
to the Vout line. The breakout board will allow us to plug in a 
3.5mm audio cable to connect the speaker. 

D. SoC 

The SoC has two main functions. Players will use the NES 
controller to input joypad instructions, which go through the 

SoC to the FPGA. To save game state and switch between 
different games, the SoC will keep track of the regions of 
persistent memory that contain game information and load the 
relevant game memory into the SDRAM. The loaded game 
resumes as usual. 

The ARM-based hard processor system (HPS) provides two 
instances of the USB On-The-Go (OTG) Controller. It 
supports high speed, full speed and low speed transfers in both 
the device and host modules and will be programmed to 
support data movement over the USB protocol between device 
and host. The two OTG controllers are independent of each 
other, and we will be using one of them to receive signals 
from the connected NES controller.  

The four directions on the “direction-pad” (dpad), two 
buttons for “Select and “Start”, and the ”A” and “B” buttons 
make up for a total of 8 signals to be sent to the FPGA. Once 
we receive the signals through the OTG controller on the SoC, 
we will choose 8 of the 32 GPIO signals provided to the 
FPGA, which are controlled through registers in the FPGA 
Manager on the SoC.  

We could have also used a USB/PS2 adapter and have the 
FPGA directly communicate with the NES-controllers 
connected through the USB port, since there is a PS/2 input 
for the FPGA, and the protocol is not too complicated. 
However, we think it will be easier to have the SoC receive 
the signals and transmit them through the GPIO pins to the 
FPGA since we already plan on using the SoC for Game-
switching and state saving, as described below. 

The methodology for game switching is simple. We want to 
load game information being used into SDRAM, and when the 
player wants to switch games, the SoC will let the current 
screen finish rendering and then stop the CPU’s execution. 
Once the execution is stopped, all of the CPU’s state and the 
memory will be saved for later re-execution in persistent 
storage (flash memory). Afterwards, all of the state will be 
cleared, and the new game state will be loaded in from 
persistent memory to SDRAM. 
 

We plan on using external flash storage for persistent 
memory. NAND flash would be fast enough for game 
switching since we plan on doing bulk reads of data that has 
high locality. We considered using NOR flash, whose random-
access time is 0.075 micro-seconds per read. However, for 
NAND Flash while the first byte is read at 25 microseconds, 
the remaining bytes would be shifted out at 0.025 micro-
seconds (resulting in a bandwidth of 26 MB/s for 8 bit I/O and 
41 MB/s for 16 bit I/O). We will use the NAND flash memory 
controller; which directly corresponds to NAND flash 
persistent storage. 

To load a game after boot, the SoC will obtain the data from 
the flash and transfer it to the SDRAM on the FPGA via the 
HPS-FPGA bridge. The SDRAM Controller on the FPGA 
provides an interface to the 64 MB SDRAM on the board, 
which is organized as 32M x 16 bits. It is accessible by the 
HPS on the SoC using word (32-bit), halfword, or byte 
operations, and is mapped to the address space 0xC0000000 to 
0xC3FFFFFF.  Once we transfer the data to the SDRAM, we 
will use interrupts or GPIO pins to signal the FPGA to start 
the new game. 
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An alternative would be to use the HPS’s DDR3 memory 
and have the FPGA read it, since at the time we hadn’t figured 
out the HPS-FPGA bridge. We found the above described 
approach to be better since the SDRAM is directly connected 
to the FPGA. It was more intuitive to use SDRAM directly 
connected to the FPGA to perform memory operations since it 
uses a simpler interface for both the FPGA and the HPS. 

If another game was in progress, we would first save the 
game state by copying it into flash storage. We will have a 
Lookup Table stored in a reserved part of the Flash Storage 
which would give us the addresses to find the required data to 
load and store. 

Fig. 6. SoC Sub-System Diagram 

V. PROJECT MANAGEMENT 

A. Schedule 

See last page for our full Gantt chart. 
Our schedule is very detailed which goes through each 

necessary step for each part. We have added a lot of slack at 
the end because of the integration issues and small fixes that 
we will need to make once we are able to load games. 
Additionally, we are all debugging together because it would 
be too challenging to try and debug each other’s code. Our 
schedule has remained very similar to our proposal except we 
have updated the deadline for different tasks and minimized 
the date granularity.    

B. Team Member Responsibilities 

Adolfo - Adolfo is primarily in charge of the designing the 
CPU datapath and overall system layout. He will work with 
Tess and Pratyusha to implement and debug the CPU and 
integration. Additionally, he and Pratyusha will work on 
implementing and verifying memory mapping and 

communication between the SoC and FPGA. Adolfo is also 
responsible for researching, designing, and implementing the 
graphics. 

Pratyusha - Pratyusha is primarily in charge of learning 
and designing how the SoC will need to interact with the 
FPGA. Once she is done with her design, she will inform the 
rest of the team so all of us can work together on designing the 
interaction between the SoC and FPGA. Additionally, she will 
research, design, and implement the game-switching, 
controller and controller driver. 

Tess - Tess is primarily in charge of designing and 
implementing the FSMs for the CPU. She worked with Adolfo 
to design the initial FSM layout, and then designed most of 
them. Once all the FSMs are completed, she will be 
responsible for implementing them with the necessary control 
signals. Additionally, Tess is responsible for researching, 
designing, and implementing the sound circuitry and APU. 

All - As a team, we will work together to implement the 
CPU. Additionally, we will all work on the testing 
infrastructure and the integration. 

C. Budget 

We selected the DE10-Standard Development Board 
because it has an FPGA and SoC, so integration between the 
two would be easier, and it has a micro SD card reader. We 
need this reader because the micro SD will act as our 
persistent memory.  

For our audio, we needed a DAC to convert the digital 
signal into an analog signal so we could play the sound 
through a speaker. Since the DAC is a through-hole chip, we 
needed an audio jack breakout board to connect the DAC to 
the speaker through a 3.5 mm audio cable.  

For our controller, we needed a controller with a similar 
layout to the Game Boy and the closest we could find was the 
NES controller. We specifically chose one with a USB 
connector so the signals could be handled by the SoC. 
 

Part Anticipated Cost Status 

DE10-Standard Board $355* Received 

NES Controllers $15 Ordered 

Micro SD Card $20 Ordered 

AD669 DACPORT $50 Received 

Audio Jack $20 (for 3) Ordered 

Speaker $40 Ordered 

3.5 mm Audio Cable $7 Ordered 

* Is not subtracted from team budget 
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D. Risk Management 

For the project, the biggest risk is lack of official 
documentation for the Game Boy. Since we are building the 
emulator from scratch, we had to learn the Game Boy 
architecture through-and-through, but from the emulator 
community developed documents since Nintendo has not 
released an official manual. Therefore, all of the manuals and 
articles that we have read were written by developers who 
have created their own emulators in their spare time. Although 
they have found many of the nuances, they may not have 
found all, and each developer has their own solution for the 
various parts within the Game Boy. This meant that we had to 
reverse engineer the layout of each datapath and design 
handlers to the best of our ability based on what we have 
learned. To mitigate this risk, we have reviewed numerous 
GitHub repositories, watch tech-talks of industry leaders 
breaking down how the Game Boy works, and assuring our 
logic supports the necessary cycle count for instructions.  

The other big risk is the size of the system. The entire Game 
Boy system can be divided into the CPU, sound, video, 
memory accessing/assignment, and button input. On top of 
that, we have added an SoC component that will require 
memory mapping, memory transfers, and a controller driver to 
connect input signals from the USB of the controller to signals 
for the FPGA. We divided the components to play to each 
team member’s strengths, but we each have to learn how it is 
implemented in the Game Boy. Additionally, integration will 
be a significant portion of our debugging process because of 
all the interactions each unit will have with another and the 
different clocks throughout the system. To mitigate this risk, 
we plan on spending a significant time together in the 
beginning of the project to outline interactions to prevent these 
integration issues in the future. Additionally, we will all work 
together on the CPU to learn how the Game Boy system works 
overall, and in parallel we will conduct our individual research 
and implement our assigned section. 

VI. RELATED WORK 

There are multiple related works that we looked into and 
would also like to thank due to their comprehensiveness and 
insight. The Game Boy Pandocs, which were made to contain 
nitty gritty details about the timings of instructions, PPU, and 
APU. The Pandocs are the basis for many of the popular 
wikis. Another useful document that has a similar spirit is 
“Game Boy: Complete Technical Reference” by gekkio, it is a 
work in progress trying to give an approachable document that 
contains all the timings for the Game Boy instructions. 

Other emulators that make accuracy their top priority are 
Gambatte and Mooneye-gb. These are software-based 
emulators, and based on the research we did, they seem to be 
the closest to matching the timings of the Game Boy. Note 
that they have added support for the Game Boy Color as well 
so there may be some slight differences in their 
documentation. For hardware emulators, we found Verilog 
Boy, which we are using as the point of reference for our 
performance. There are other hardware emulators that we 
found, but don’t seem as polished. 
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Gameboy Memory Layout 

$FFFF Interrupt Enable Flag 

$FF80 - $FFFE Zero Page (127 bytes) 

$FF00 - $FF7F Hardware I/O Registers 

$FEA0 - $FEFF UNUSABLE 

$FE00 - $FE9F OAM – Object Attribute Memory 

$E000 - $FDFF Echo RAM 

$D000 - $DFFF Internal RAM (Memory banks 1 – 7) 

$C000 - $CFFF Internal RAM (Memory bank 0, fixed) 

$A000 - $BFFF Cartridge RAM 

$9C00 - $9FFF BG Map Data 1 

$9800 - $9BFF BG Map Data 2 

$8000 - $97FF Sprite RAM 

$4000 - $7FFF Cartridge ROM – Switchable Banks 

$0150 - $3FFF Cartridge ROM – Bank 0 

$0100 - $014F Cartridge Header Area 

$0000 - $00FF Restart and Interrupt Vectors 
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