
18-500 Design Report: 3/2/2020

1

Abstract—A system capable of cycle-accurate emulation of most

Game Boy games on a field programmable gate array (FPGA) for
all non-illegal behavior. This means our goal is to have games
running at the same speed as the original console, with the same
graphics, framerate, audio, etc. The main difference will be the
output and input peripherals, but our objective is to give a similar
experience to what users experienced on the original console. We
believe the level of documentation that Capstone entails will also
help us contribute documentation for future hardware developers
who want to create their own versions and iterate on our design.

Index Terms—CISC, Computer architecture, Cycle-accurate,
Emulator, FPGA, Game Boy

I. INTRODUCTION

he first Game Boy was released in 1989 and was the
first handheld console to use video game cartridges.
It popularized handheld consoles and started a

family of consoles that was manufactured until 2010. Our goal
is to learn more about the game console that shaped gaming
today by creating a cycle-accurate Game Boy emulator on an
FPGA. Currently, there are numerous software emulators that
are downloadable and playable on both your mobile device
and laptop. We want to challenge those emulators by creating
our emulator on an FPGA to give our users a more realistic
experience. Although there are some hardware emulators, they
are incomplete and did not aim to perform as well as or better
than the Game Boy. In addition to our emulator functionality,
we want to be able to switch between games smoothly, which
involves loading from and saving game state to persistent
memory. To manage this, our System-on-Chip (SoC) will
contain game switching logic that will allow the user to select
the game they want to play and feed the FPGA the information
it should load into its working memory. For user input, we will
be using a NES controller because it maps nicely to the input
controls required. To assure that we are cycle accurate, we
will compare trace logs of our emulator to verified hardware
and software emulators. For unit testing, to save us from
having to write tests in Game Boy assembly, we will use
Blarggs and Mooneye test suites, which are the gold standards
in the emulator community. The test suites contain unit tests
for memory and timing that assure accuracy and timing.

II. DESIGN REQUIREMENTS

We outlined the following design requirements based on what
has been achieved by previous software and hardware
emulators and specifications of the original Game Boy (DMG
versions), since we want to replicate or exceed its
performance.

Performance Requirements
 Games should run at 59.73 frames per second: This is

the same framerate at which the original ran in. A
framerate lower than this would severely impact the
user experience due to lowered responsiveness.

 Audio is sampled at a rate of at least 44.1 kHz, the
same frequency at which the Game Boy sampled its
audio: Sampling at anything lower would lead to
lowered audio resolution, affecting the user
experience.

 The input latency should be lower than 55 ms: this is
based on experiments done with the Game Boy
Advance by some of the emulator community. High
input latency makes games feel unresponsive, so this
is very important.

 We want to have accuracy comparable to Verilog
Boy, one of the better hardware emulators we found.

Qualitative Requirements
 Our emulator should be able to save game state and

switch between games without having to reflash the
FPGA.

 Audio and video should be in sync.
 All our code should be well documented, and it

should follow a high standard of coding. We want to
contribute to the emulator community by showing
them a well-documented project which they can use
as a reference for future projects.

Verification methodology
 The emulator community has spent countless man-

hours working on getting the timings for instructions
and execution of the Game Boy. Thus, we’ll be using
the test ROMs that they have come up with to test
that the different timings work. These tests are
Mooneyes-gb tests and Blarggs instruction tests,
which are very comprehensive. These will prove that
our emulator has reasonable cycle-accuracy and will
allow us to compare the accuracy of our emulators
with other emulators. We want to pass at least as
many tests as Verilog Boy did, a reasonably accurate
hardware emulator.

 We will use a high-speed camera to measure the
input delay, measuring the time it takes from a button
press to a change registering on the screen.

 We will instrument the video code to count the
number of frames per second.

Gameboi: An FPGA-Based Gameboy Emulator

Author: Adolfo Victoria, Tess Chan, Pratyusha Duvvuri: Electrical and Computer Engineering,
Carnegie Mellon University

T

18-500 Design Report: 3/2/2020

2

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

The overall architecture follows that of a simple computer
system where the main CPU will be reading and executing the
instructions of the current game from the on-board SDRAM.
The CPU will communicate with the Pixel Processing Unit
(PPU), the Audio Processing Unit (APU) and the timer. The
specifics of the communication will be covered when
discussing each of these devices. We will have a software
component being controlled by the on-board SoC, which also
manages game-switching and game-state saving. For our
peripherals, the SoC will implement a controller driver and
notify the FPGA of button presses through its GPIO pins. We
will be using VGA as our display method due to its ease of use
and availability. A VGA controller will take the PPU’s video
output and display it. Finally, we will use a digital-to-analog
converter (DAC) to convert the digital audio from the APU and
output it from a speaker.

We will upload ROMs to the memory region that is assigned
to our CPU, which will then execute a boot sequence and start
running the game. The execution of games is mostly interrupt
driven due to having to render an updated screen every time the
previous one stops drawing. Thus, the CPU will do a certain
amount of setup every time a screen is displayed to prepare for
the next one. This involves a combination of memory, APU,
and PPU. Furthermore, there is also computation being done
whenever there are controller or timer interrupts. The following
processes are executed every audio and video output cycle.

The CPU will generate the audio that it wants to output for
the current time frame by writing to the APU’s registers (which
are just a specific regions of memory). This audio will be in an
encoded format which the APU will then decode it into a
frequency/amplitude pair. There are multiple audio streams that
will be generated, thus after being decoded the APU will mix
them together to create the desired audio. Once mixed together,
the audio will be controlled by three more registers, in memory,
which dictate how the stream is outputted. This audio is in
digital format so it cannot be outputted directly, so we will feed
it into a DAC which will output it to our speaker through an
audio jack breakout board.

For the video display, the CPU will write the desired image
to a designated area in memory, which we’ll call VRAM. There
are also special registers in the PPU which are used to set
settings related to which parts of the image in VRAM to render.
Other registers are used to enable interrupts when certain stages
of rendering are reached or when a certain coordinate starts
getting rendered, which are useful if the CPU plans to change
something mid-render (developers use this to create graphical
tricks or more intuitive interfaces). The PPU will then render
only one area of the image on the screen because the size of the
displayed image is smaller than the size of the in-memory
image. This is useful for the scrolling effects in games such as
Mario Brothers.

The SoC will not be too involved in this execution process
other than generating the interrupts from the controllers. It will
be involved with the beginning of execution, and also at the end.
At the beginning of execution, it will write all of the game data
to the SDRAM, this data is usually contained in a ROM file.

We are planning on having some mechanism to allow the user
to switch games, probably through one of the FPGA buttons.
When a game switch happens, the SoC will let the current
screen finish rendering and then stop the CPU’s execution.
Once the execution is stopped, all the CPU’s state and the
memory will be saved for later re-execution. Afterwards, all the
state will be cleared, and the new game state will be loaded in.

Fig. 1. High-level System Architecture

18-500 Design Report: 3/2/2020

3

IV. SYSTEM DESCRIPTION

A full, more detailed, system diagram is located at the end.

A. CPU

The CPU is a combination of the Intel 8080 and the Z80
CPUs. The ISA is the union of subsets from both ISAs, plus
some extra instructions for array looping. The CPU has 8 (8-
bit) general purpose registers: A, B, C, D, E, F, H, and L. Note
that the CPU also allows programmers to merge the 8-bit
registers into 16-bit registers for 16-bit arithmetic operations.
Additionally, it also has two 16-bit registers: SP and PC. The
memory has a 16-bit address space, so the special and merged
registers are used for accessing it. The CPU has a single
address line going into memory, which is not dual ported.

The Game Boy’s main execution component, the ALU, is
very simple. It has two 8-bit input lines, one 8-bit flags input
line and a 4-bit operation input. It is only capable of
performing 8-bit arithmetic but supports a wide variety of
operations. The ALU is capable of simple operations such as
adding, subtracting, bitwise operations and logical operations,
but it also supports more complex operations such as bit
rotations and word swapping. When it performs an operation,
it sets the processors flags based on the result which are:
Carry, Half-Carry, Zero, and Overflow. The ALU is the main
form of interaction between the registers and this same ALU is
used to support 16-bit operations. To achieve such operations,
the CPU splits the operations into two distinct operations over
two cycles.

Fig. 2. CPU datapath

As mentioned, memory is 16-bit addressed and it is byte-
addressable. The CPU has no memory hierarchy, which means
that there is only the main memory and registers for storage.
There are no caching layers because execution of the
instructions is driven by the memory’s clock. Unlike more
modern architectures there are also no separate instruction and
data memories. Since memory is not dual ported, we can only
either read instructions or perform memory operations on
separate cycles. The Game Boy also uses memory banking to
make up for the limited address space since some games were
too large to fit into the address space. Thus, the Game Boy can
programmatically change which part of physical memory it
accesses, allowing it to support games that are bigger than its
address space. Memory is the main tool for communication
between the CPU, the PPU, and the APU. We have added a

memory map at the end of the document to illustrate all the
distinct memory regions.

To manage these elements of the datapath, we will use
control signals to enable different parts of the datapath
depending on the current instruction. These control signals are
generated by the decoder module, which reads the
instructions. The decoder module, along with the instruction
fetching, is part of the first stage of the two-stage pipeline in
the CPU.

The Game Boy’s is a CISC, meaning instructions have
varying lengths and cycle lengths. Some instructions do
multiple operations over many cycles. This is due to the
limited resources that the CPU has. As mentioned, it has a
single 8-bit ALU, a single ported memory that is shared for
both instructions and data, and only two pipeline stages. To
handle this, complicated instructions are broken up into
smaller instructions which are slowly processed by the
processor. To break up these instructions, we will use multiple
FSMs. We have divided the FSMs based on the instruction’s
family which will generate new control signals to be fed into
the execute stage of the pipeline.

Finally, the CPU has multiple interrupt lines that come from
the PPU, the timer, and the controllers. The CPU uses a vector
table to service these interrupts and it is in a special area in
memory for each of these interrupts to jump to. Interrupts can
be enabled or disabled through special registers.

B. PPU

The PPU (Pixel Processing Unit), handles the rendering of
the game’s frames for the Game Boy. Frames are rendered in
the same order as a VGA screen; pixels are drawn from left to
right and from top to bottom where each row is called a
scanline. Just like VGA, the rendering process is divided into
stages based on this pattern. The PPU cycles through 4 stages:
OAM search, Pixel Fetching and Drawing, H-Blank and V-
Blank. OAM search and pixel drawing happen in between
every H-Blank stage.

We will discuss the different objects that are involved in a
frame being displayed to create a background in the discussion
that will follow. The basic building block for images is a pixel.
The original Game Boy only supported 4 colors, or 5 if you
count transparent as a color. As a result, pixels are encoded as
two-bit values which are then translated using a look-up table
or “palette”. The next building block is tiles, tiles are 8x8
arrays of pixels. Tiles are identified by a unique number (their
offset in memory) and make up the main display elements,
background, windows, and sprites. When rendering,
background is the default element to be displayed. There are
special registers and memory regions that determine when a
different kind of element must be rendered. There are window
coordinate registers, which will make the PPU start rendering
from the window memory instead of the background memory.
A similar system is used for sprites, but the only difference is
that sprites have their coordinates encoded in each one of them
because we can have up to 16. Thus, the PPU has an array of
comparators to check for this.

Sprites are treated differently from other elements. On top
of the basic pixel encoding they have a variety of different
attributes that are encoded in four bytes. The first two bytes
are used for the X and Y coordinates. The third byte contains

18-500 Design Report: 3/2/2020

4

the tile number. Finally, the fourth byte contains extra
attributes:

 Priority with respect to the background: this
dictates whether the sprite will be rendered on top of
the background (i.e. it will overwrite the background)

 X and Y flip bits: these bits mirror the sprite with
respect to the X or Y axis so that developers don’t
have to take up extra space for the sprite facing
different ways

 Palette number: there are 2 different palettes that
sprites can have in the Game Boy DMG, this bit
chooses between them.

The rest of the bits are unused by the original Game Boy.
As mentioned, sprites are drawn on top of the background,

unlike windows which are drawn instead of the background.
There are also special considerations for what happens when
multiple sprites overlap. The PPU uses a FIFO queue for
pixels which is not able to commit pixels to the screen until it
has at least 8 pixels in it. This is for mixing purposes because
when a sprite is about to be rendered its pixels are “mixed”
with the background pixels. This is done based on the sprite’s
priority over the background. If the sprite has a transparent
pixel then the background pixel will be displayed no matter
what. For sprites being drawn over sprites, the sprites at the
smaller x-coordinate get picked instead.

The image that is being displayed is 160x144, but the actual
image in memory is 256x256. Games with scrolling effects are
a good application of this fact. To select the area of the
256x256 image the scrolling registers are used (SCX and
SCY). These registers say which region of this image should
be drawn. When rendering, pixels at coordinates outside of the
range established by these registers are discarded. To achieve
a scrolling effect, the CPU can adjust these registers based on
the user’s position, to be able to change these things users can
make use of the interrupts and special registers that the PPU
offers.

The PPU communicates with the CPU through memory and
the special “registers”. These registers are what control the
palettes, the window region, whether background, windows or
sprites are being drawn, and interrupts. There are multiple
kinds of interrupts that the CPU can enable, these are all set in
the PPU’s STAT register. An interrupt can be set for the
beginning of each of the PPU’s stages (except for the fetching
and rendering). To make up for the missing fetching/rendering
interrupts there is also the LYC interrupt where users can set
the LY register with a value and then the LYC interrupt will
trigger an interrupt the LYth scanline is reached. These
interrupts are used for a variety of reasons. They help
developers modify the PPU’s state at certain points of
execution to achieve various visual effects. For example, to
make sprites not draw over windows, they can set LY = WY
so that they can turn off sprites when we are rendering a
window, and then turn them back on when we are done. They
can also use this to dynamically scroll an image as it is being
rendered to achieve a “warping” effect.

VRAM is divided into three blocks of 128 tiles each, the
three blocks are block 0 ($8000-$87FF), block 1 ($8800-
$8FFF) and block 2 ($9000-$97FF). Sprites can only go in
block 0 from $8000 to $8FFF. There is a special area in

memory called the Sprite Attribute Table (or OAM - Object
Attribute Memory) which spans $FF00 - $FE9F. This table
can only hold up to 40 sprites, which means that only up to 40
sprites can be displayed on the screen at once (without tricks)
and only 10 sprites can be rendered in each scanline.

For writing to VRAM and OAM, there is a contract that the
CPU must follow to avoid crashing the system. For VRAM,
the CPU is only able to access it during H-Blank, V-Blank or
OAM search, and the status of the rendering can be polled
through the PPU’s STAT register or by enabling interrupts in
that same register. The OAM table has two ways of accessing
it. It is often recommended that it is accessed using the built in
DMA functionality, which lets the user read it at any time. To
use DMA, the CPU must write a target address, must be
divisible by 0x100, from ROM or RAM to write or read from,
respectively, to the DMA transfer register. Afterwards a DMA
transfer will start; note that during this timeframe, the CPU
can only access a special region in memory called HRAM.
Thus, the function that is used for DMA should be located in
this memory region. Other than using DMA, the CPU can
directly access OAM during H-Blank and V-Blank.

Fig. 3. The PPU system diagram.

C. APU

The APU is a read-only subsystem. There are four voices
that make up the sound: Pulse 1, Pulse 2, Wave, and Noise.
Pulse 1 and Pulse 2 are the tones, Wave dictates the shape, and
Noise is white noise. Each is allocated five 8-bit registers in
memory where the CPU will change the values depending on
the sound that is needed. This was done because when the
Game Boy was designed, having pre-built sound files took up
too much space in the cartridge. To compensate for this,
engineers developed this four-voice system to have a real-time
synthesizer.

Although the voices have the same number of registers that
correspond to similar parts of the sound, the bits are in
different parts and bits in the same location have a different
meaning. For our APU, we will have four decoders, one for
each voice, that will translate the information in memory to

18-500 Design Report: 3/2/2020

5

standard values that can be combined to make one sound.
Once translated, a mixer will combine the four voices using
the information set by the three sound controller registers (also
in memory). The sound controller registers are the masters that
control if the sound is outputted, which speaker it is outputted
to, and which channels are used.

Fig. 4. The APU system diagram.

Once a final audio signal is created, it will be sent to the
DAC through the GPIO. We need a DAC to convert our
digital audio signal into an analog audio signal so it can be
outputted by a speaker. Our DAC is 16-bit wide with parallel
load, which means we do not need to establish a serial
protocol to send over our data. Rather, we need control signals
that will control which rank we are writing to. The DAC has a
two-stage rank system to create a double buffer organization
in order to prevent spurious analog output values. Therefore,
in addition to the digital audio signal, we will also need to
send signals to control the DAC. CS_n and L1_n will control
the first rank, and then LDAC will control the second rank.
We will be sampling at a rate of 50 kHz, which is better than
the Game Boy sampling rate of 44.1 kHz.

Fig. 5. AD6699 DACPORT chip pinout

From the DAC, we will attach an audio jack breakout board
to the Vout line. The breakout board will allow us to plug in a
3.5mm audio cable to connect the speaker.

D. SoC

The SoC has two main functions. Players will use the NES
controller to input joypad instructions, which go through the

SoC to the FPGA. To save game state and switch between
different games, the SoC will keep track of the regions of
persistent memory that contain game information and load the
relevant game memory into the SDRAM. The loaded game
resumes as usual.

The ARM-based hard processor system (HPS) provides two
instances of the USB On-The-Go (OTG) Controller. It
supports high speed, full speed and low speed transfers in both
the device and host modules and will be programmed to
support data movement over the USB protocol between device
and host. The two OTG controllers are independent of each
other, and we will be using one of them to receive signals
from the connected NES controller.

The four directions on the “direction-pad” (dpad), two
buttons for “Select and “Start”, and the ”A” and “B” buttons
make up for a total of 8 signals to be sent to the FPGA. Once
we receive the signals through the OTG controller on the SoC,
we will choose 8 of the 32 GPIO signals provided to the
FPGA, which are controlled through registers in the FPGA
Manager on the SoC.

We could have also used a USB/PS2 adapter and have the
FPGA directly communicate with the NES-controllers
connected through the USB port, since there is a PS/2 input
for the FPGA, and the protocol is not too complicated.
However, we think it will be easier to have the SoC receive
the signals and transmit them through the GPIO pins to the
FPGA since we already plan on using the SoC for Game-
switching and state saving, as described below.

The methodology for game switching is simple. We want to
load game information being used into SDRAM, and when the
player wants to switch games, the SoC will let the current
screen finish rendering and then stop the CPU’s execution.
Once the execution is stopped, all of the CPU’s state and the
memory will be saved for later re-execution in persistent
storage (flash memory). Afterwards, all of the state will be
cleared, and the new game state will be loaded in from
persistent memory to SDRAM.

We plan on using external flash storage for persistent
memory. NAND flash would be fast enough for game
switching since we plan on doing bulk reads of data that has
high locality. We considered using NOR flash, whose random-
access time is 0.075 micro-seconds per read. However, for
NAND Flash while the first byte is read at 25 microseconds,
the remaining bytes would be shifted out at 0.025 micro-
seconds (resulting in a bandwidth of 26 MB/s for 8 bit I/O and
41 MB/s for 16 bit I/O). We will use the NAND flash memory
controller; which directly corresponds to NAND flash
persistent storage.

To load a game after boot, the SoC will obtain the data from
the flash and transfer it to the SDRAM on the FPGA via the
HPS-FPGA bridge. The SDRAM Controller on the FPGA
provides an interface to the 64 MB SDRAM on the board,
which is organized as 32M x 16 bits. It is accessible by the
HPS on the SoC using word (32-bit), halfword, or byte
operations, and is mapped to the address space 0xC0000000 to
0xC3FFFFFF. Once we transfer the data to the SDRAM, we
will use interrupts or GPIO pins to signal the FPGA to start
the new game.

18-500 Design Report: 3/2/2020

6

An alternative would be to use the HPS’s DDR3 memory
and have the FPGA read it, since at the time we hadn’t figured
out the HPS-FPGA bridge. We found the above described
approach to be better since the SDRAM is directly connected
to the FPGA. It was more intuitive to use SDRAM directly
connected to the FPGA to perform memory operations since it
uses a simpler interface for both the FPGA and the HPS.

If another game was in progress, we would first save the
game state by copying it into flash storage. We will have a
Lookup Table stored in a reserved part of the Flash Storage
which would give us the addresses to find the required data to
load and store.

Fig. 6. SoC Sub-System Diagram

V. PROJECT MANAGEMENT

A. Schedule

See last page for our full Gantt chart.
Our schedule is very detailed which goes through each

necessary step for each part. We have added a lot of slack at
the end because of the integration issues and small fixes that
we will need to make once we are able to load games.
Additionally, we are all debugging together because it would
be too challenging to try and debug each other’s code. Our
schedule has remained very similar to our proposal except we
have updated the deadline for different tasks and minimized
the date granularity.

B. Team Member Responsibilities

Adolfo - Adolfo is primarily in charge of the designing the
CPU datapath and overall system layout. He will work with
Tess and Pratyusha to implement and debug the CPU and
integration. Additionally, he and Pratyusha will work on
implementing and verifying memory mapping and

communication between the SoC and FPGA. Adolfo is also
responsible for researching, designing, and implementing the
graphics.

Pratyusha - Pratyusha is primarily in charge of learning
and designing how the SoC will need to interact with the
FPGA. Once she is done with her design, she will inform the
rest of the team so all of us can work together on designing the
interaction between the SoC and FPGA. Additionally, she will
research, design, and implement the game-switching,
controller and controller driver.

Tess - Tess is primarily in charge of designing and
implementing the FSMs for the CPU. She worked with Adolfo
to design the initial FSM layout, and then designed most of
them. Once all the FSMs are completed, she will be
responsible for implementing them with the necessary control
signals. Additionally, Tess is responsible for researching,
designing, and implementing the sound circuitry and APU.

All - As a team, we will work together to implement the
CPU. Additionally, we will all work on the testing
infrastructure and the integration.

C. Budget

We selected the DE10-Standard Development Board
because it has an FPGA and SoC, so integration between the
two would be easier, and it has a micro SD card reader. We
need this reader because the micro SD will act as our
persistent memory.

For our audio, we needed a DAC to convert the digital
signal into an analog signal so we could play the sound
through a speaker. Since the DAC is a through-hole chip, we
needed an audio jack breakout board to connect the DAC to
the speaker through a 3.5 mm audio cable.

For our controller, we needed a controller with a similar
layout to the Game Boy and the closest we could find was the
NES controller. We specifically chose one with a USB
connector so the signals could be handled by the SoC.

Part Anticipated Cost Status

DE10-Standard Board $355* Received

NES Controllers $15 Ordered

Micro SD Card $20 Ordered

AD669 DACPORT $50 Received

Audio Jack $20 (for 3) Ordered

Speaker $40 Ordered

3.5 mm Audio Cable $7 Ordered

* Is not subtracted from team budget

18-500 Design Report: 3/2/2020

7

D. Risk Management

For the project, the biggest risk is lack of official
documentation for the Game Boy. Since we are building the
emulator from scratch, we had to learn the Game Boy
architecture through-and-through, but from the emulator
community developed documents since Nintendo has not
released an official manual. Therefore, all of the manuals and
articles that we have read were written by developers who
have created their own emulators in their spare time. Although
they have found many of the nuances, they may not have
found all, and each developer has their own solution for the
various parts within the Game Boy. This meant that we had to
reverse engineer the layout of each datapath and design
handlers to the best of our ability based on what we have
learned. To mitigate this risk, we have reviewed numerous
GitHub repositories, watch tech-talks of industry leaders
breaking down how the Game Boy works, and assuring our
logic supports the necessary cycle count for instructions.

The other big risk is the size of the system. The entire Game
Boy system can be divided into the CPU, sound, video,
memory accessing/assignment, and button input. On top of
that, we have added an SoC component that will require
memory mapping, memory transfers, and a controller driver to
connect input signals from the USB of the controller to signals
for the FPGA. We divided the components to play to each
team member’s strengths, but we each have to learn how it is
implemented in the Game Boy. Additionally, integration will
be a significant portion of our debugging process because of
all the interactions each unit will have with another and the
different clocks throughout the system. To mitigate this risk,
we plan on spending a significant time together in the
beginning of the project to outline interactions to prevent these
integration issues in the future. Additionally, we will all work
together on the CPU to learn how the Game Boy system works
overall, and in parallel we will conduct our individual research
and implement our assigned section.

VI. RELATED WORK

There are multiple related works that we looked into and
would also like to thank due to their comprehensiveness and
insight. The Game Boy Pandocs, which were made to contain
nitty gritty details about the timings of instructions, PPU, and
APU. The Pandocs are the basis for many of the popular
wikis. Another useful document that has a similar spirit is
“Game Boy: Complete Technical Reference” by gekkio, it is a
work in progress trying to give an approachable document that
contains all the timings for the Game Boy instructions.

Other emulators that make accuracy their top priority are
Gambatte and Mooneye-gb. These are software-based
emulators, and based on the research we did, they seem to be
the closest to matching the timings of the Game Boy. Note
that they have added support for the Game Boy Color as well
so there may be some slight differences in their
documentation. For hardware emulators, we found Verilog
Boy, which we are using as the point of reference for our
performance. There are other hardware emulators that we
found, but don’t seem as polished.

REFERENCES
[1] Game boy Architecture: A Practical Analysis,

https://copetti.org/projects/consoles/game-boy
[2] Game Boy CPU Manual,

http://marc.rawer.de/Gameboy/Docs/GBCPUman.pdf
[3] VerilogBoy - GameBoy on FPGA, https://hackaday.io/project/57660-

verilogboy-gameboy-on-fpga
[4] gbdev/awesome-gbdev, https://github.com/gbdev/awesome-gbdev
[5] Gekkio/mooneye-gb, https://github.com/Gekkio/mooneye-gb
[6] DE10-Standard User Manual, https://www.terasic.com.tw/cgi-

bin/page/archive_download.pl
[7] Cyclone V HPS Manual:

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/liter
ature/hb/cyclone-v/cv_54001.pdf

18-500 Design Report: 3/2/2020

8

18-500 Design Report: 3/2/2020

9

Gameboy Memory Layout

$FFFF Interrupt Enable Flag

$FF80 - $FFFE Zero Page (127 bytes)

$FF00 - $FF7F Hardware I/O Registers

$FEA0 - $FEFF UNUSABLE

$FE00 - $FE9F OAM – Object Attribute Memory

$E000 - $FDFF Echo RAM

$D000 - $DFFF Internal RAM (Memory banks 1 – 7)

$C000 - $CFFF Internal RAM (Memory bank 0, fixed)

$A000 - $BFFF Cartridge RAM

$9C00 - $9FFF BG Map Data 1

$9800 - $9BFF BG Map Data 2

$8000 - $97FF Sprite RAM

$4000 - $7FFF Cartridge ROM – Switchable Banks

$0150 - $3FFF Cartridge ROM – Bank 0

$0100 - $014F Cartridge Header Area

$0000 - $00FF Restart and Interrupt Vectors

18-500 Design Report: 3/2/2020

10

