
18-500 Final Report - May 6, 2020 Page 1 of 19

CodeBlox
18-500 Spring 2020
Authors: Melodee Li, Eric Maynard, Aarohi Palkar

Electrical and Computer Engineering, Carnegie Mellon University

Abstract—CodeBlox is a set of blocks
representing syntax that users, primarily children,
can piece together to form programs. These
programs are sent to an interpreter, which displays
a GUI of the configuration of blocks, the output,
errors that occurred and their locations, if any. The
design of this project is split into three main parts:
the interpreter/GUI, the embedded communication
protocol, and the electronics within the tiles. The
electronics comprise of a battery powered circuit that
interacts with its environment entirely through IR
and visible light sensors and emitters. Our final code
can be found here.

Index Terms—Circuit, Embedded, Interpreter,
PCB, GUI, Sensor, Syntax, IR, Programming
Teaching Tools

1 INTRODUCTION

Programming has traditionally been confined to a
written form. Even programming tools aimed for kids,
such as MIT Scratch, are usually intangible “drag and
drop” programs. Because of this, coding is mostly
only accessible to reading/writing learners. We hope
to solve this dilemma by liberating coding from its
written medium through the use of tangible building
blocks. Kids will be able to connect these smart blocks
together and build real programs. This will better engage
visual and kinesthetic learners and allow children to be
introduced to the field of programming at a younger age.
Additionally, we hope to make coding more collaborative
and exciting by allowing children to work with these tiles
together in an educational environment.

In CodeBlox, users will learn how to code using
tiles with syntax terms. A user should be able to piece
tiles together to form programs. Once the user hits a
“run” button, the program will be sent to a laptop with
the CodeBlox interpreter which will then execute the
code. The language should include basic programming
control sequences, such as “loop”, “if”, variables, and
mathematical operators; it should also include syntax
to output the result of a program to a computer screen.
Some example programs a user should be able to write
using CodeBlox is printing out numbers and running a
while loop.

Before COVID-19, we were going to use a robot to

perform the actions specified by the CodeBlox programs.
However, due to constraints presented to us from this
new situation, we have replaced the robot (and its on-
board interpreter) with a interpreter and GUI on a
laptop. The GUI displays the tiles read, the output
of the program, and any errors that occur. Since we
no longer had the robot to display output, we added a
”print” syntax to our language, to visualize the output
the robot would otherwise be receiving.

2 DESIGN REQUIREMENTS

The following are some requirements we outlined
during our design process, followed up with the results of
whether we met these requirements in whole, partially,
or not at all.

2.1 Child Safety - Success

Description: Children may handle the final product
in unexpected ways, and our design must defend against
misuse. Thus, the design of the tiles’ interior as well as
the interaction between tiles must be safe; there should
be no way to short any two components of any part of
the system and harm the user.

Results: Our project uses no external electrical
connections and each tile is powered by an on-board
battery. The tiles could then be totally sealed to prevent
tampering with by the child.

2.2 Latency - Fail

Description: The entire system must also run with
low latency. External research has demonstrated that
the average human attention span after a stimulus is 8
seconds.[4] Therefore, the system should take 8 seconds
to run after the “run” button is pressed on the master
tile. This includes the tiles communicating the tile
topology between themselves, the master communicating
the full topology to the interpreter, and the GUI
displaying the results.

Results: When bench-marking our results we
discovered that our compilation time varied with the
configuration of our tiles. When placed in a grid,
our tiles compiled much faster than when placed in a
line. In a line it takes 6.17 seconds to compile 9 tiles,

https://github.com/melodeeli98/codeblox-capstone

18-500 Final Report - May 6, 2020 Page 2 of 19

whereas in a perfect square, it only takes 4.3 seconds
to compile those same 9 tiles. Seeing that the linear
formation is our worst-case configuration, we did our
benchmarking that way. Below in Figure 1 is a graph
showing compilation time v.s the number of tiles. It
shows a very linear runtime behavior, which we can
extrapolate to guess that the compilation of 20 tiles
would take 14.222 seconds. This exceeds our goal of 8
seconds. However, it is important to note that we are
powering our microcontroller with a 1MHz internal clock.
At our given voltage, we could increase it to 4MHz, thus
quadrupling our compilation time. If we did this, we
would drop our compilation time to 3.56 seconds, which
is well within our target goal.

Figure 1: Compilation time vs. the number of tiles placed in
a single line. Compilation time varies linearly with increasing
number of tiles.

2.3 Programming Language - Partial
Success

Description: The programming language should be
designed in a way that would be intuitive for children
while being robust to program with. Therefore, the
language should support the following constructs:

• booleans and numbers

• loops (e.g. ”while”)

• conditionals (e.g. ”if”, ”else”)

• output in the form of print statements

• variables and assignments

• math (e.g. comparisons, numbers, operations)

• functions in zero or one variable

The language does not have to support:

• strings

• parentheses

• higher order mathematics

• functions with 2+ arguments

Results: The programming language CodeBlox uses
supports booleans and numbers, loops and conditions,
print statements, variables and assignments and a variety
of mathematical operations. We also included a dynamic
typechecking system in order to teach the children
about invoking mathematical operations with the correct
types. However, we did not get around to implementing
functions, since we ended up adding a GUI feature to
display the output of the program instead of simply
relaying output to a robot. Because of this extra GUI
addition, the implementation of functions was pushed
behind, leading to it only being half completed (designed,
but not implemented) by the end of the semester.

2.4 Battery Life - Success

Description: The toy should support 15 hours of
continuous usage over a 3 month period. If our product
meets these requirements, it could be used in settings
such as CMU’s SPARK Saturdays[5] for a semester’s
worth of classes without needing to replace the batteries.
To test this, we will do a component-by-component
energy analysis.

Results: Our tiles draw 18.5 uA of quiescent current.
This means they could last for 6 years in sleep mode.
When being used, they only draw a few milliAmps for
the few seconds that the tiles are compiling. Thus we
have very much met our power goals.

2.5 Pad Syntax Accuracy - Success

Description: Measuring the encoding should have
a 100% accuracy, because it would be frustrating for a
child to recompile their code multiple times for an error
that is not their fault.

Results: With paper syntax pads, we were getting
about 95% accuracy in measurements. However, when
we tested a more rigid material like cardboard or wood,
we measured 100% accuracy.

2.6 Inter-Tile Messages Accuracy -
Success

Description: The data sent between tiles should
also have a 100% accuracy rate. This requirement is
necessary because any small error can cause readings
that a child would be very confused by.

Results: We tested our system on several different
topologies, and 20 out of 20 of our compilations contained
all of the correct tiles and their locations. Thus, we
believe that we have 100% accuracy in regards to reading
tile topology.

18-500 Final Report - May 6, 2020 Page 3 of 19

2.7 Syntax Pad Construction - Success

Description: The syntax pads should be easy to
construct with household items. We want replacement
pads to be reliably made using only materials found at
stores like Walmart.

Results: Although paper or cardboard pad
construction doesn’t yield the best results in terms of
reading accuracy, a parent could definitely make a new
pad using cardboard, paper, tape and sharpie markers in
a pinch.

3 ARCHITECTURE OVERVIEW

3.1 System Configuration

We built several connectable tiles with custom PCBs
and a microcontroller on each board. These tiles
communicate with each other and are able to determine
their relative location to each other and communicate
with one master tile. This master tile determines the
absolute location of all tiles and communicates this
topology to the interpreter via serial communication.
The interpreter then executes the code, and then display
the results in a GUI.

3.2 Tiles

Each tile represents one syntax term. The syntax
term a tile represents is determined by a pad that is
placed on top of the tile. The tile itself is generic and
can be configured by any syntax pad. The tile houses
a micro-controller and sensors which read which pad is
above the tile and communicates this to neighboring tiles,
with the ultimate goal to transmitting this information
back to the master tile.

To read the pad on top of the tile, the tile has 6
reflective sensors mounted on top. These reflective
sensors measure whether the spot on the pad placed
directly above the sensor is dark or light. By placing
6 colored spots on the pad, the tile can read this 6 bit
encoding to determine which pad is placed on top of it.
This allows for 64 different pad types.

To accomplish tile to tile communication, we use IR
LEDs to transmit data back and forth between adjacent
tiles. Each tile has 4 onboard IR emitters and 4 IR
receivers, with one emitter and one receiver per side of
the tile. Tiles pulse the IR emitters to communicate
with adjacent tiles.

Each tile is powered with its own battery. Since the
batteries create a limit on how much power these tiles
can use before the batteries die, the tiles spend most of
the time in power-saving sleep mode. A tile will then
only be awake if its neighbor sends a wake-up IR signal

to indicate that a compilation has started.

Mechanically, these tiles attach to each other using
magnets. By orienting the magnets as such in Figure
3, two tiles only connect in the correct orientation, or if
flipped 180 degrees. Because our design is symmetric, a
180 degree flip is still valid.

Figure 2: An upside-down view of a constructed tile
enclosure, without the bottom wood piece. The six holes on
the top are for the reflective sensors to read the 6 bit encoding
of the pad placed on top of the tile. The two holes on each
side are for the IR emitters and receivers.

Figure 3: Orientation of the magnets inside each tile.
Opposite polarities attract, making the two tiles only connect
correctly in a horizontal orientation (with respect to the
orientation of the six reflective sensors on top of the tile)

3.3 Pads

Each pad is double sided. The top side contains the
syntax associated with the pad. The bottom side of the
pad contains the binary encoding of the syntax. The bits
are represented by squares, where a white square encodes
a ”1” and a black square encodes a ”0”.

18-500 Final Report - May 6, 2020 Page 4 of 19

Figure 4: Top side of a syntax pad, displaying the syntax
and its corresponding encoding value. The pad can be
easily made using paper and a sharpie, as represented in this
picture. The encoding value, in this picture 41, is unique to
a syntax, in this picture ”print”, and the binary encoding of
41 will be colored in the back.

Figure 5: Bottom side of a syntax pad, displaying the
binary encoding through sharpied-in squares. Black squares
represents a ”0” while a white square represents a ”1”. In
this picture, the encoding is read from bottom, 101001, which
corresponds to a 41, a ”print” command.

3.4 GUI

The GUI resides on the laptop where the user receives
output. Once the interpreter has executed all the code
in the the CodeBlox program, the GUI receives four
inputs: the input blocks to the program, the file in which
the interpreter writes its output (more detail about the
interpreter architecture can be found in the subsystems
section), whether any errors occurred during execution
and which tile caused the error. A sample output of the
GUI with and without error is shown in Appendix G.

4 SYSTEM DESCRIPTION

4.1 Electrical Subsystem

The electronics of each tile are built upon a custom
made PCB. The PCB contains through-hole components.
Appendix D shows the schematic of this circuit and the
PCB layout.

The circuit consists of an Atmega328p as the micro-
controller, 4 IR communication circuits for inter-tile
communication, 6 reflective sensor circuits to read the
top tile encodings, and support for ISP programming
and serial communication for debugging.

See Appendix D for an image of the circuit schematic
and images of the actual soldered PCB.

Most of the details about the electrical system can be
seen in the schematic and in the Design Trade Studies
section below.

4.2 Embedded Subsystem

4.2.1 Topology Formation

Once a user constructs their program and presses
the ”run” button, the tiles will begin communicating
with each other and figuring out the configuration of the
program. This methodology can be broken up into three
parts:

1. Starting from the master tile, form a tree graph
amongst the tiles, with parent-child relationships.
The master tile is at the top of the hierarchy.

2. Starting from the ”leaf” tiles, forward the locations
and configurations of tiles from children to parents.
By the time the forwarding reaches the master tile,
it will receive the full topology of the tiles.

3. The master tile sends the topology to the
interpreter via serial.

The lifecycle of a tile (let’s call it Tile A) during this
methodology can thus be broken down into five states:

1. Tile A waits for another tile to request to be its
parent.

18-500 Final Report - May 6, 2020 Page 5 of 19

2. Tile A receives a parent request and immediately
sends its own configuration to the parent. It
ignores any other parent requests.

3. Tile A requests for all of its adjacent tiles (besides
its parent) to be its child.

4. The tiles that agree to be Tile A’s child will send
the configurations they have learned to Tile A. As
soon as Tile A receives any configuration, it will
asynchronously forward it to its parent.

5. When Tile A receives a ”done” message from a
child, it assumes that the child is done sending
information. Once Tile A receives ”done” messages
from all of its children, it sends a ”done” message
to its parent.

6. Tile A resets back to its original state.

Let’s say Tile A is sending the topology it knows to
its parent, and it is currently sending information about
Tile B. When Tile A sends a topology, the message
is composed of four words: a word saying that the
message is a ”tile info” message, a word sending the
x coordinate, a word sending the y coordinate, and a
word sending the encoding. The x-coordinate and y-
coordinate are of Tile B relative to the position of Tile A,
with Tile A being at coordinate (0,0). These coordinate
messages will represent a signed binary number, with the
most significant bit indicating the sign of the number.
The encoding that Tile A sends will contain the binary
encoding of Tile B’s syntax.

4.2.2 Inter-tile messages

Each tile spends most of its lifecycle in a power-
saving sleep mode. In the Atmega328p environment,
we are putting these tiles in this sleep mode using the
LowPower.h library.[1]

A tile (let’s call it Tile A) will wake up when a
neighboring tile (Tile B) sends a high IR signal. This
signal will trigger an interrupt that will cause Tile A to
wake up and start reading the rest of Tile B’s messages.
Tile B will wait an entire word for Tile A to wake up,
and then begin communicating with it.

Each ”word” of transmission consists of 10 bits:

• Bit 0: Synchronization Bit. This high bit will
mark the beginning of a message (and the end of
a previous message) to allow Tile A to synchronize
with Tile B.

• Bits 1-8: Message Bits. These bits contain the
message that Tile B is sending.

• Bit 9: End bit. If another word follows this
word, this bit is the same bit as the next word’s
Synchronization Bit.

Messages can be composed of 1-4 words. The first
word of a message describes the type of message being
sent, and the subsequent words (if any) describe the
contents of the message. The following are different types
of messages that could be sent:

• Alive message. A tile would send this message
to indicate that it is still alive and present. This
message contains a single word describing that the
message type is ”alive”.

• Parent request message. A tile would send this
message to request to be its neighbor’s parent. This
message contains two words. The first describes
that the message type is ”request parent”. The
second describes the location of the tile relative to
the neighbor that it is sending the message to. The
purpose of the second word is so a tile can figure
out if it was placed upside-down. For example, if
a tile receives from its top side a ”Request Parent
- Bottom” message, the tile will realize that the
neighbor is actually below it, not above it. Then it
will flip its internal orientation accordingly.

• Tile information message. A tile would
send this message to send a particular tile’s
information. This message contains four words.
The first describes that the message type is ”tile
information”. The second and third describe the
x- and y-coordinates of the tile, and the fourth
describes the syntax encoding.

• Done message. A tile would send this message to
indicate that it has sent all of the tile information it
knows, and that it will discontinue communication
with the neighbor. This message contains a single
word describing that the message type is ”done”.

A demonstration of how the communication protocol
would be implemented with a sample program can be
found in Appendix C.

4.3 Interpreter and GUI Subsection

The interpreter is written in Python. The syntax of
the Codeblox language is similar to that of Python’s;
however, the size of programs is limited by the number
of tiles a user currently possesses.

First, the top level program on the computer parses
the stream from the master tile as an m × n array that
can be parsed by the interpreter. This array is then
passed to the interpreter, which runs the code defined
by the tiles sequentially, running through each row.

Since the only kind of output we have is displaying
to the screen (print), the interpreter writes all print
statements to a local file, including any possible errors.
Once the interpreter finishes running (more on non-
terminating programs later), the GUI begins to run.

18-500 Final Report - May 6, 2020 Page 6 of 19

The GUI is implemented as a pygame program with
three features: first, it displays a virtual representation
of the user’s CodeBlox program. The benefits of this
is twofold: the user is able to visualize any potential
errors with their code, and if the virtual representation
is different from their tiles, the user knows that the error
is caused by the serialization process, and not their code.

As mentioned, the GUI also displays error statements
and outputs. A box at the bottom is used to display
output to the user, and if there is any error in the
program, the the GUI displays a message saying what
kind of error it is in the output box, as well as highlights
the faulty tile in the virual representation of the program.
This was designed keeping the user in mind, since it is
very beneficial to the user to know why their program
isn’t working, which tile they should fix and what they
should do to fix the issue.

The following describes the formal specification of the
CodeBlox programming language [3]:
Types: bool | num
Expressions:

Conditional:
if(e : bool)(e′)
if(e1 : bool)else(e2)
while(e : bool)e′

Variables:
v1, v2, v3, v4, v5

Operator:
(e1 : num) + (e2 : num) : num
(e1 : num)− (e2 : num) : num
(e1 : num)× (e2 : num) : num
(e1 : num)÷ (e2 : num) : num

Comparator:
(e1 : num) = (e2 : num) : bool
(e1 : num) 6= (e2 : num) : bool
(e1 : num) < (e2 : num) : bool
(e1 : num) ≤ (e2 : num) : bool
(e1 : num) > (e2 : num) : bool
(e1 : num) ≥ (e2 : num) : bool

Logic:
(e1 : bool) and (e2 : bool) : bool
(e1 : bool) or (e2 : bool) : bool

Commands:
print(e : τ) : ()

Nop:
nop

The interpreter first receives a stream of m × n
tile codes, representing the position and code of the
tiles in the current CodeBlox program. It then calls
run code() on this stream. It interprets and runs each
line at a time. More details about implementation can
be found in the software diagram in Appendix F. If an
error is encountered, it stops execution and uses the
in-built python exception handling mechanism to write
an error to the output file and terminate. If no error is

encountered, the program runs to completion.

Once the interpreter is done running, as described
above, the GUI now runs in a pygame program. There
are four inputs to the GUI program: the blocks
themselves, the output file where the output of the
interpreter is written, whether an error was encountered
in the interpreter and the location of such error. The GUI
reads the input blocks as draws a virtual representation
of them on the screen. Then, it reads the output file
and writes the output on the screen. If an error was
encountered, first it highlights the tile corresponding to
the location passed in as the fourth parameter. Then, in
the output section, it prints out the type of error, from
the output file.

We also perform simple error checking on the tiles.
The following are the types of errors that can be thrown:
Errors:

SYNTAX : Syntax error.
TYPE: Type mismatch error.
INDENT : Unexpected indentation error
DIVZERO : Division by zero error.
OVERFLOW: Program has run for too many

iterations.

Since the GUI runs after the interpreter terminates,
something we were limited by was what would happen if
the user wrote an infinite loop. Since CodeBlox programs
are meant for young children to learn programming, we
believe that teaching the children that an infinite loop
was happening (and thus throwing an overflow error)
was more beneficial than the program looping and not
providing any output. Since we are not controlling a
robot any more as well, we do not run into a situation
where a program would necessarily need to infinite loop.
Therefore, after 50,000 iterations of a while loop, the
interpreter erases all output to the output file, and
terminates with an overflow error. Now the GUI can
be called and the child can see that they inadvertently
wrote a loop that does not terminate.

5 DESIGN TRADE STUDIES

5.1 Optical vs Electrical Communication

When determining how these tiles would
communicate, we initially thought that direct electrical
contacts would be the ideal medium to communicate
across. A direct electrical connection allows for short
rise times and low energy communication.

However, as we learned from our Build18 project,
these electrical contacts are very finicky and unreliable.
It is challenging to form a solid electrical connection
between 4 contacts without using some form of a socket.
Additionally, electrical connections need to be external
to the tile, and thus require additional construction

18-500 Final Report - May 6, 2020 Page 7 of 19

beyond the PCBs.

To address these issues, we decided to use IR emitters
and receivers to communicate data. These do not
require a robust connection between neighboring tiles
nor do they require any additional construction beyond
assembling the PCBs. However, they do draw more
current and have slower rise times than direct electrical
connections.

5.2 Power Supply

We originally planned to power all the slave tiles from
the master tile, but realized that this had severe safety
implications. At the time, we anticipated that each tile
would draw 100mA of current, and thus, powering 30
tiles would require a 3 amp power supply. This posed a
fire hazard and risk for shock.

Our first solution was to switch to using onboard
batteries to power the tile. We chose two unregulated
AAA batteries to power the circuit. We chose to
not put a voltage regulator on the batteries because
of the voltage regulators’ high quiescent current.
Instead, we lowered the brown-out detection from the
microcontroller to 1.8volts and lowered the clock speed
of the microcontroller to 1MHz to allow an operating
voltage range of 1.8 to 3 volts. This allows the two AAA
batteries use almost all of their energy before the circuit
no longer functions. All components on the board were
spec’ed to this voltage range.

Because our tiles operate within a voltage range
instead of at a fixed voltage, our emitters, receivers,
and reflective sensors needed to operate within a voltage
range as well. Experimentally, this proved fine for
the IR circuitry, but for the reflective sensors, we
measured inconsistent values for different voltages. To
address this issue, we powered the reflective sensors with
their own voltage regulator, which was only powered
while measuring the sensors. Thus, we obtained the
consistency of a voltage regulator without the high
quiescent current cost.

5.3 Internal or External Clock

When designing our communication protocol, we
considered whether we wanted to use an external clock
or synchronize using the tile’s internal clock. If we used
an external clock, we would need two emitters and two
receivers per side. Having two emitters on the same side
of the tile would increase the chance of interference and
increase the cost per tile.

By synchronizing using the internal clock, we can
get away with only one receiver and one emitter per
side. We chose this paradigm because it’s cheaper and
causes less interference. However, as a consequence of

synchronizing using the tile’s internal timer, we had
strict timing deadlines to meet and had to use a slower
transmission rate.

5.4 Pulses vs Continuous Emission

We originally intended for the IR emitters to be on
for the entire duration of a clock cycle when emitting a
logical 1. However, this would require 20mA per side for
an entire clock duration. If all 4 sides are transmitting
and we were reading our reflective sensors (+120mA),
our current draw would be 200mA. This is too high be
powered by batteries for an extended period of time. Our
solution was to only emit the IR emitters and reflective
sensors in brief pulses that consume a small fraction of
this energy.

5.5 Interrupts vs. Polling

Originally, our embedded protocol would poll each
IR photo-transistor to see if its value had changed. This
required continuous IR emission to work. To work with
pulses, we enabled external interrupts to handle signal
changes. We originally did not do this because interrupts
aren’t surfaced in the Arduino IDE for the Atmega328p,
but we discovered that the micro-controller does support
these.[2] Before using interrupts, we had to leave the
signal on for a whole clock cycle, but with interrupts,
we could send a brief pulse of only 100nS in width at a
1kHZ rate and have the interrupt handler not miss any
pulses.

Figure 6: Detecting pulses and responding in 20uS.

5.6 On/Off Switch vs. Sleep Mode

Since we designed each of our tiles to be individually-
powered, we needed a mechanism to make sure that
the tiles wouldn’t always be fully on, or else we would
be wasting power and wouldn’t meet our battery life
requirement. We debated over two solutions: 1) each
tile would have an on/off switch, or 2) each tile would
be in a power-saving sleep mode when it is not being

18-500 Final Report - May 6, 2020 Page 8 of 19

used. We eventually settled on the sleep mode solution,
because although the switches may save more energy in
the long run, they create a more tedious user experience.
In sleep-mode, we measured a current draw of 18.5 uA
on the micro-controller, which is nearly negligible.

5.7 Clock Speed

We arrived at a minimum clock speed of 1kHZ
computing the load time of 30 linearly stacked tiles
and choosing a clock speed that could reduce the time
to 8 seconds, which is our requirement.

Consider an extreme scenario, in which 20 tiles are
lined up in a row. Total message sent =

= n+ (1 + 3(1)) + (1 + (3(2)) + . . .+ (1 + 3(n))

= n+ n+ 3(1 + 2 + . . .+ n)

= 2n+ 3(
n(n+ 1)

2
))

= O(n2)

Worst case runtime is O(n2), where n is the number of
tiles.
Let n = 20. Then the total number of messages sent

is 2(20) + 3(20(20+1)
2) = 670 messages. Our word size

is 8. Therefore the number of clock cycles required is
670× 8 = 5360.
Our constraint is that the total time should take 8
seconds.
Assuming all other operations take negligent time, out
clock speed would have to be ≤ 8sec

5360cycles = 1.493

ms/cycle.

5.8 Interpreter Language

After moving from the robot to an interpreter housed
on a laptop, we were not constrained to writing our
interpreter in C or C++. We compared C/C++ against
python and a functional programming language such as
OCaml and evaluated the pros and cons of each. These
pros and cons can be found below:

1. C/C++

+ Fast

- Difficult to use higher level data structures

2. python

+ Easy to understand and write

+ Familiar

+ Easy deserialization library

+ Pygame for GUI

- Slow

3. OCaml

+ Can do recursive computation easily

+ Compilers usually written in a functional
language

- Unfamiliar

- Less support for GUI

Overall, we decided to work with python since we would
not be writing large programs that the latency would
contribute significantly to the endpoint latency of the
system, and since python gave us the most support with
the GUI.

6 PROJECT MANAGEMENT

6.1 Schedule

We have split up our project into four mostly parallel
tasks: PCB design and soldering, embedded protocol
design and implementation, tile enclosure design and
assembly, and interpreter/GUI design. Our Gantt chart
(see Appendix B) reflects these splits accordingly.

6.2 Team Member Responsibilities

Due to COVID-19, the team decided to divide
up responsibilities such that Aarohi worked on the
interpreter/GUI independently, while Eric and Melodee
worked on the circuits, firmware, and tile construction
together. We assigned these responsibilities so that
Aarohi wouldn’t have to work on any physical part of
the project, since she was not in the same location as
Eric and Melodee.

• PCB Design: Eric was responsible for the PCB
design since he had the most experience with PCB
design, especially related to the Build18 project.
He tested each component to make sure they
behaved as expected, and tested the PCBs when
they arrived.

• Soldering: Eric and Melodee worked together in
soldering the components to the PCBs, using a
soldering iron that Eric had.

• Embedded Protocol: Eric and Melodee developed
an embedded protocol for communication between
the master and slave tiles. Melodee fleshed out the
protocol in Python, and then they worked together
on writing the C++ firmware, which they then
uploaded to the tile microcontrollers. Melodee also
integrated the master tile to the interpreter via
serial communication.

• Tile Construction: Eric and Melodee cut out wood
pieces for the tile enclosures, drilled holes for the
sensors, and used wood glue to glue them together.
They then used epoxy to glue magnets to the
corners of the tiles, and then used a hot glue gun
to glue the PCBs to the wood.

18-500 Final Report - May 6, 2020 Page 9 of 19

• Pad Construction: Melodee constructed the pads
with paper, tape, and sharpie.

• Interpreter: Aarohi was responsible for developing
the interpreter logic. Aarohi worked on fully
defining these and implementing them in the
interpreter, as well as rewriting the majority of the
interpreter to make it more robust to requirements
such as conditional statements and loop exit
conditions. She also added dynamic type checking
and error checking to the interpreter. Aarohi was
also responsible for parsing the stream from the
master tile.

• GUI: Aarohi was responsible for creating a simple
GUI to view the output of the CodeBlox program,
as well as a virtual representation of the tiles
along with displaying information regarding errors.
Aarohi compared pygame with tkinter for creating
the GUI, and ultimately decided on pygame since it
gave her the most control over text representation.

6.3 Budget

See appendix E for and itemized breakdown of our
budget. Our total cost of all materials is $493.42.

7 RELATED WORK

CodeBlox is based off the original CodeBlox, a project
from Build18 2019. We have improved communication
between the tiles to make it more reliable, and changed
the communication protocol to account for this change.
We’ve also added more functionality to the interpreter,
which now supports error checking and a dynamic
typechecker.

Some related work to CodeBlox is MIT Scratch or
MIT AppInventor, which support drag-and-drop syntax
”building blocks” to create a program. CodeBlox takes
this to the next level by bringing these blocks to the
physical world.

We also compared our work to that of Dave
Touretzky’s from the Carnegie Mellon Robotics
Department. [6] This work, named Kodu, is very similar
to ours, in that it uses physical tiles to teach children
programming. However, Kodu largely focuses on using
colors and shapes in order to reinforce programming
paradigms, instead of focusing on strict python-like
syntax like CodeBlox. Additionally, Kodu was fortunate
to be able to test their tiles with second grade students,
something CodeBlox was unable to do.

8 SUMMARY

Overall, we believe that our project was very
successful. We were fortunate to be able to continue

the project with minimal re-scoping, even when the class
transitioned to online instruction. Although the system
is slower than our initial goals and the language doesn’t
support functions, these design goals are achievable if we
decide to continue with this project.

8.1 Lessons Learned

We can identify several lessons that we have learned
throughout the semester.

• Microcontroller with more memory. As
we were writing the firmware for the tiles, we
tried to structure our code in a way that
would take advantage of C++’s function lambdas.
However, we realized that this uses up a lot
of the Atmega328p’s memory, and we had to
restructure our implementation. If we had used
a microcontroller with more memory, we wouldn’t
have to be so memory-conscious.

• Greater visibility between IR sensors. Since
we couldn’t use a laser cutter to cut our wood,
and since the soldered IR sensors could be slightly
shifted from tile to tile, it is possible for us to
construct a tile such that the IR sensors aren’t lined
up with the side-holes of the tile. This could cause
a lot of IR emitter pulses to not be received by
the IR receivers. If we were to reconstruct these
tiles, we would have each side of the tile have one
large hole that both the IR emitter and receiver
can emit/read through.

• Indicator light during compilation. We
considered adding an indicator light to the master
and/or slave tiles, so that a child would receive
feedback that the system is compiling. Having
compilation lights on the slave tiles could also
indicate to a user that the tile is being included
in the topology. This idea was not a high priority
for us, so it ultimately did not happen. In the next
iteration of Codeblox, we believe that having an
indicator light would improve the user experience,
especially since we would want to return to using
the robot instead of a GUI.

• Surface mount components. Due to COVID-
19, the ability to use surface mount components
wasn’t in our control, since we didn’t have a
reflow oven at hand. But in the next iteration we
would use surface mount instead of through-hole
components. We’ve realized that soldering many
PCBs is a tedious task, and we would save a lot of
time if we learn how to use a reflow oven.

• Multiple serial cables. We only bought one
serial cable to debug the tiles with, which forced
us to only read serial output from one tile at a
time. Debugging would be easier and faster if we
had more than one serial cable.

18-500 Final Report - May 6, 2020 Page 10 of 19

• Designing all parts of the programming
language. A major reason why functions took a
while to implement and were left unfinished was
that they were not scoped well at the beginning.
We were unable to determine whether functions
should be treated as expressions (which are not
allowed to appear by themselves in a line in our
programming language), or as a command/variable
assignment statement. Since in our language
variables are allowed to modify state (not a
pure programming language), functions could be
categorized as both expressions and commands,
which would meant restructuring the interpreter,
something we could have avoided if we had speced
out functions in full detail before implementation.

References

[1] “Arduino Low Power - How to run ATMEGA328P
for a year on coin cell battery”. In: Home
Automation Community (Feb. 2020).

[2] “Arduino Pin Change Interrupts”. In: The
Wandering Engineer (Aug. 2014).

[3] Robert Harper. Practical Foundations for
Programming Languages. Cambridge University
Press, 2016.

[4] Kevin Mcspadden. “You Now Have a Shorter
Attention Span Than a Goldfish”. In: Time (May
2015).

[5] SPARK Saturdays. 2020.

[6] David S. Touretzky. “Teaching Kodu with Physical
Manipulatives, Vol 5 No. 4”. In: ACM Inroads (Dec.
2014).

18-500 Final Report - May 6, 2020 Page 11 of 19

Appendix A

Figure 7: Overarching system diagram for CodeBlox. Contains three major components: slave tiles, the master tile, and the
interpreter/GUI. Communication between slave tiles and the master tile is performed through IR, and communication between
the master tile and the interpreter is performed through serial communication. Hardware parts are in the red box, and software
parts are in the green box. The master tile, slave tiles, and syntax pads were assembled by us. Everything in the diagram was
bought except for the syntax pad materials and laptop.

18-500 Final Report - May 6, 2020 Page 12 of 19

Appendix B

Figure 8: Gantt Chart. The tasks were split primarily into PCB, Embedded Communication and Interpreter/GUI, each of
which was handled by Eric, Melodee and Aarohi respectively. An additional task, Tile Enclosures, was performed by Eric and
Melodee

18-500 Final Report - May 6, 2020 Page 13 of 19

Appendix C

Figure 9: Example of possible program, with messages that would be sent during compilation. Each colored rectangle represents
a word. The example program consists of a master tile, a ”print” tile below it, and a ”7” tile to the right of the ”print” tile.

18-500 Final Report - May 6, 2020 Page 14 of 19

Appendix D

Figure 10: This is the circuit schematic for the tile. The circuit is composed of 4 IR emitter and receiver circuits, 6 reflective
sensor circuits which are powered by a voltage regulator which is controlled by a PNP BJT. These circuits are controlled by an
atmega328p microcontroller with ISP and serial interfaces for programming and debugging. This is all powered by two AAA
batteries.

18-500 Final Report - May 6, 2020 Page 15 of 19

Figure 11: Top side of soldered PCB. This shows the 6 reflective sensors which read the pad encoding.

Figure 12: Bottom side of soldered PCB. You can see the IR circuits at the edges of the tile for communication and the battery
and micro-controller towards the center.

18-500 Final Report - May 6, 2020 Page 16 of 19

Appendix E

Figure 13: Budget: Total cost = $493. The budget created accounted for the creation and assembly of 30 tiles. The electrical
components on board the tiles are scaled accordingly.

18-500 Final Report - May 6, 2020 Page 17 of 19

Appendix F

Figure 14: The specification of the interpreter. There are three main functions that each represent the three things that
are valid statements in CodeBlox: commands, conditionals and assign statements. All function evaluate expressions using the
evalExpression function, which calls the eval function, which recursively computes a value using helper functions. All functions
then return the next row the interpreter then has to process. For commands and assign statements, this is simply the next row.
However, since conditional statements are allowed to jump and loop, an exit position (representing the position the indentation
realigns with the caller conditional) is returned instead. The different places different types of errors can be encountered is also
seen in the diagram.

18-500 Final Report - May 6, 2020 Page 18 of 19

Appendix G

Figure 15: A program the prints out the squares of numbers from 0 to 4, inclusive. There are no errors in this program, so once
the interpreter finishes running, the GUI plots this program along with the output. The ”All good!” at the end lets the user know
that there was no error in their program.

18-500 Final Report - May 6, 2020 Page 19 of 19

Figure 16: A program that attempts to do addition, but there is no second argument to add. The interpreter recognizes this
incomplete syntax and throws an error where it was expecting another argument. The GUI then draws a red box around where the
interpreter expected an argument, indicating to the user that the error occurred at that location. The output also says ”Syntax
error”. Notice that the ”All good!” message is missing, due to the error.

	INTRODUCTION
	DESIGN REQUIREMENTS
	Child Safety - Success
	Latency - Fail
	Programming Language - Partial Success
	Battery Life - Success
	Pad Syntax Accuracy - Success
	Inter-Tile Messages Accuracy - Success
	Syntax Pad Construction - Success

	ARCHITECTURE OVERVIEW
	System Configuration
	Tiles
	Pads
	GUI

	SYSTEM DESCRIPTION
	Electrical Subsystem
	Embedded Subsystem
	Topology Formation
	Inter-tile messages

	Interpreter and GUI Subsection

	DESIGN TRADE STUDIES
	Optical vs Electrical Communication
	Power Supply
	Internal or External Clock
	Pulses vs Continuous Emission
	Interrupts vs. Polling
	On/Off Switch vs. Sleep Mode
	Clock Speed
	Interpreter Language

	PROJECT MANAGEMENT
	Schedule
	Team Member Responsibilities
	Budget

	RELATED WORK
	SUMMARY
	Lessons Learned

