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Abstract  
Our project is to develop a motorized device        

simulation that plays fetch with data received from        
Inertial Measurement Units (IMUs) on the user’s       
hand. Our previous project involved building an       
omnidirectional robot to anticipate, catch, and return       
the object thrown, but due to constraints related to         
COVID-19 and remote instruction, we have since       
moved to a simulation based design for the robot. The          
data is fed into the inputs of a simulation to represent           
an omnidirectional motorized base. The result is a        
simulation that predicts the thrown object’s landing       
location from the IMU data and then provides a         
visual representation of the object’s projectile motion       
in three dimensions and of whether or not the robot          
may reasonably catch it.  
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Introduction 
Our project is aimed towards children who       

would like to play fetch with a real dog but are           
unable to because of allergies, housing constraints,       
and other external factors. While the only current        
function of our device is the ability to play fetch (i.e.           
anticipate throw and catch the ball, or in our case a           
cornhole bag) virtually, most commercial robot dog       
products do not have this option in real life. As far as            
other motorized devices capable of catching items,       
there have been similar projects in the past, e.g.         
Smart Trashbox from Minoru Kurata and Smart       

Trash Can from F19 Team B4. Kurata’s device had a          
success rate of about 20% but was highly adaptable         
and motorized, while Team B4’s device had a        
success rate of about 50% with small movements and         
low motorization (i.e. small range of ~30 cm). Our         
goal was to create a highly mobile device (i.e. range          
of 1m) with a success rate over 50%. While previous          
projects had different approaches, to our knowledge,       
this is the only project to use IMUs to predict the           
trajectory of the object thrown. Our original project        
involved building an omnidirectional motorized base.      
This would be moved by motors on a PID control          
system based on data first sent over WiFi from a          
Particle Photon to a Jetson Nano. Given the sudden         
necessity to work remotely due to COVID-19       
concerns, our project has now moved to a simulation         
based design that incorporates the same data from the         
hand IMU sensors, a portion of our project that we’ve          
been able to maintain. Our project now consists of         
having a Particle Photon connected to two IMUs on a          
user’s glove, which sends the necessary input data for         
the simulation when an object is thrown, from which         
the simulation predicts a landing location that is then         
compared on-screen to the real one. 

Design Requirements 
The design requirements for our     

catch-and-retrieve system center around the need for       
an intuitive ‘dog’ virtual simulation that can catch the         
ball thrown in different locations with a success rate         
greater than 50%. In order to achieve greater than a          
50% success rate and properly mimic the experience        
of playing catch, we are enforcing a starting distance         
of 1m away from the user and limiting the catch          
radius to 1m around this starting position. Thus, if the          
user decides to throw outside of this range, the         
simulator will refuse to catch the object thrown and a          
manual reset will be necessary. 
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In order to create a viable catch scenario, we         

are also enforcing the use of an action we term the           
“prethrow.” The purpose of the prethrow is largely to         
collect data on the thrown object’s approximate       
starting direction and speed before it is actually        
thrown. Multiple prethrows over several trials allow       
for a much more stable and accurate final trajectory         
prediction. From this data, we aim to compute        
accurate measurements on the bag’s height at launch        
and the X,Y, and Z components of its velocity. In          
addition, due to changes made from our original dead         

reckoning system, we now require the user to input         
the resting height of their arm from the ground and          
the starting horizontal angle they wish to throw from. 

 
To give the robot a good chance of actually         

catching the ball, a small-enough total computation       
time for predicting landing position and transmitting       
data is necessary. Deeming that the robot needs about         
0.5 seconds out of an average 0.8 second        
time-of-flight to catch the ball, the total computation        
time must be less than 0.3 seconds. 

Architecture and/or Principle of 
Operation 

 
Figure 1 displaying Architectural Layout [11] 

 
Our design, shown in Figure 1, consists of        

three main parts: the IMU data collection and        
transmission from the user’s arm to a laptop, the         
computation to map raw hand IMU data to 3D         
velocity and throw height when the ball is released,         
and the robot simulation based on aforementioned       
data. 

 
We are using the MPU 9250 (IMU) for        

motion sensing. It is small, light, and contains an         

accelerometer as well as a gyroscope which we both         
need to estimate the location where the ball will land.          
The raw data of the devices is read by the Particle           
Photon which communicates with the IMUs through       
the I2C serial communication protocol [7]. One IMU        
is located on the user’s hand and the other is located           
on one of the user’s fingers. Once the accelerometer         
and gyroscope data are received by the Particle        
Photon, they are converted to m s-2 and deg s-1          
respectively. Because wireless communication from     
the Particle Photon ended up being too slow, we are          
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now sending data from the Photon to a laptop through          
serial communication..  
 

The hand IMU data is passed into       
Madgwick’s AHRS Sensor Fusion Algorithm, which      
maps the hand IMU raw data to the IMU’s velocity in           
3D and throw height when the ball is released. The          
height of the IMU from the ground when the user’s          
arm is straight pointing down is measured and fed         
into the software. The increase in vertical distance        
from the AHRS algorithm is added to the starting         
height to determine the throw height of the ball.  

 
The throw is detected using the y gyroscope        

value of the finger IMU. We determined a threshold         
through experimentation. We made sure that the       
threshold is low enough to consistently determine       
when the ball is thrown but not too low, otherwise a           
throw would be falsely detected during a swing. 
 

The data at the throw are applied to        
equations of motion in 3D to predict the landing         
location of the ball. The data is fed into the          
simulation, which displays the ball moving to its        
actual landing location, indicated by a yellow circle,        
and the robot moving to the predicted landing        
location, indicated by a blue circle. To simulate the         
ball moving to its actual landing location, we        
measure the ball’s actual landing location after it        
lands using a tape measure and also its time of flight           
using a slow-motion camera and input these data into         
the simulation. If the user wants to throw the ball at           
an angle rather than straight, the user must also input          
the horizontal angle into the simulation. After the ball         
is caught, the robot returns the ball to the user and           
then moves back to its starting position. The        
simulation includes a bird’s eye view and a side view.          
The motion of the objects in both views are         
synchronized and all speeds and distances are to        
scale. 
 

We model real-world behavior in the      
simulation. Since we are simulating the robot we        
included a simulated PID control system to control its         
speed. Another example of real-world behavior is the        
reaction time of the robot. The AHRS computation        
time is fed into the simulation so that the robot is           

delayed by at least this amount of time before it          
moves. 
 

The Particle Photon is programmed using      
C++. We use Python to run the AHRS algorithm and          
use Processing for our simulation. Processing makes       
it easier to work with graphics than a language like          
Python and it is very compatible with serial outputs. 

System Description 

IMUs to Photon 
The gyroscope data and accelerometer data 

are read from the two MPU 9250 devices (IMUs) by 
the Particle Photon using I2C. The data is transmitted 
from IMUs to the Photon through the circuit 
connections shown in Figure 2 below, and is later 
used to compute the ball’s trajectory data. 

 
We write to the gyroscope configuration and       

accelerometer configuration registers select the     
full-scale range for each device. The gyroscope can        
be set to have a full-scale range of either ± 250dps           
(degrees per second), ± 500dps, ± 1000dps and ±         
2000dps. The accelerometer can be set to have a         
full-scale range of either ± 2g (g = 9.81m s-2), ± 4g, ±             
8g or 16g. We want the full-scale range for each          
device to be as low as possible to get greater          
sensitivity. Through experimentation, we determined     
that ± 500dps for the gyroscope and ± 2g for the           
accelerometer are ideal. After reading the data, the        
Particle Photon sends the data to a laptop through         
serial communication. 

 
Each IMU contains an AD0 pin, which is        

used to set the device address of the IMU. This pin is            
connected to ground by solder, which sets the device         
address to 0x68. To address the second IMU, we         
removed the solder from the AD0 pin of the second          
IMU and connected the pin to VDD, setting the         
IMU’s device address to 0x69. 
 

Desiring an IMU sampling rate that would       
give us an acceptable granularity and wishing to        
avoid processing times of more than 0.5 seconds, we         
decided to sample data at 50Hz. We noticed similar         
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sampling rates among individuals using the      
MPU9250 for granular tasks and decided 50Hz       
should suffice in terms of accuracy and speed. 
 

Figure 2 of connections between MPUs and Particle Photon 
 

IMU raw data conversion  
Formulas to convert gyroscope and accelerometer      
data to angular velocity(deg s-1 ) and acceleration (in        
g) values respectively: 

 
For the gyroscope: 

angular velocity (dps) =
aw data / sensitivity scale factorr  

For the accelerometer:  
acceleration (g) =  

aw data /  sensitivity scale factorr  
g: gravitational field strength in m s-2 

 

The raw data can take values between 0 and         
32768. Sensitivity scale factor (S.F.) is determined by        
the full-scale range used by the corresponding device.        
The tables below show the sensitivity scale factor that         
corresponds to each full-scale range for each device        
(accelerometer and gyroscope) [5]. 
 

Gyroscope : 

Full Scale Range (deg s-1) Sensitivity S.F. ( deg-1 s ) 

± 250 131 

± 500 65.5 

± 1000 32.8 

± 2000 16.4 

 
Accelerometer: 

Full Scale Range (g) Sensitivity S.F. (g-1) 

± 2 16384 

± 4 8192 

± 6 4096 

± 8 2048 
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Madgwick’s AHRS 
At the core of our prediction system, we 

have Sebastian Madgwick’s Attitude and Heading 
Reference System (AHRS) algorithm. Madgwick’s 
algorithm is an orientation filter that allows for an 
IMU’s gyroscope and accelerometer readings to work 
in tandem. While the gyroscope provides angular 
velocities in the sensor plane, the accelerometer 
provides information about the Earth’s gravitational 
field. By integrating quaternion derivatives and 
performing gradient descent on a large amount of 
possible rotations, Madgwick’s algorithm provides an 
estimate for the sensor’s rotation relative to the 
Earth’s plane. This then allows us to rotate our 
acceleration data accordingly and subtract the effect 
of gravity from the z axis. As a result, we achieve 

accurate acceleration vectors in all three dimensions 
[1]. 
 

After calculating the proper acceleration 
vectors in all three dimensions, we can then integrate 
the acceleration to achieve velocity and subsequently 
integrate the velocity to achieve position. After each 
integration step, however, we must apply a high pass 
filter (HPF) to eliminate an appropriate amount of 
drift [2]. This allows us to significantly simplify our 
dead reckoning solution. Due to the double 
integration, this approach works best with cyclic 
motion, where mean velocity and displacement are 0. 
Since our throwing motion resembles a cyclic 
pendulum, the integration/HPF approach works quite 
well and our resulting 3D position data is quite true to 
form. 

 
Figure 3 showing the 3D position results of a set of ~20 pre-throws. Release point is in red 
 

Simulated PID Control System 
 
The simulated PID controller takes in the 

error, which is the difference between the target 
speed and actual speed, and outputs the duty cycle, 
which would be used in a PWM driver. The duty 
cycle is used to calculate corresponding voltage of 
the signal, which is then used to determine the actual 
speed. A random error within the 10% error of the 
motors is generated at the start of the simulation and 

is used throughout to simulate the actual speed of the 
motors, which would be determined by encoders 
[11]. 

Parabolic Landing Estimation 
Once the 3D velocity, throw height and 

horizontal angle of the ball at release are determined, 
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we predict the ball’s landing location using equations 
of motion in 3D and trigonometry. The Z-axis is the 
vertical axis, the Y-axis a horizontal axis 
(forward/backward) and the  X-axis is the second 
horizontal axis (left/right). We start by calculating the 
predicted landing location in 2D using Vz (vertical) 
and Vy (forward direction) as well as the throw 
height. We then add the third dimension by 
introducing Vx (left/right) to calculate where the ball 
lands to the side. Finally, we add the horizontal angle 
component by rotating the predicted landing location 
around the user by this angle. We obtain (x, y) 
coordinates for the ball’s predicted landing location, 
where the positive Y-axis is the forward direction 
relative to the user with the user positioned at the 
origin. 
 
The actual landing location and actual time of flight 
of the ball are measured and fed into the simulation. 

Using these data, along with the ball’s throw height, 
we can calculate the ball’s actual velocity in 3D 
throughout its flight and simulate the actual throw 
and display the ball’s trajectory. 
Vz (vertical) is constantly updated due the Earth’s 
gravitational field strength and the Vy and Vx 
components (horizontal) remain constant. 
 
The ball’s actual time of flight is also important to 
determine whether the robot catches the ball. In order 
for the robot to catch the ball, the predicted landing 
location must be very close to the actual landing 
location. Additionally, the AHRS algorithm 
execution time, the landing location prediction time 
as well as the robot’s reaction time and time to move 
to the target location must all fall below the actual 
time of flight of the ball. 

 
Figure 4 of Initial Frame (See [10] for image citations): 

 
 

In Figure 4, we can see the initial state of the 
simulation. On the left hand side, in the Bird’s Eye 
View,  we can see the initial positions of the user at 
the bottom of the screen and the robot waiting 1m 
directly in front of them. We see several distance 
markers in the robot’s movement radius that indicate 
displacement relative to the user. The user has not yet 

thrown the ball at this point. On the right hand side, 
we see the side view, which displays a user standing 
to the left of that screen, poised to throw the ball. 
This view also displays the side view of the robot 
with implied omnidirectional wheels, distance 
markers and  several parameters including time and 
the initial velocities for the robot and ball. 
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Figure 5 of Movement Frame: 

 
 

In Figure 5 above, we may observe the 
simulation 0.4 seconds into flight, as indicated by the 
time on screen. In the Bird’s Eye view, we may 
observe that the ball has moved forward and to the 
left of the user mid-flight, while the robot has moved 
about 0.25m leftward to the predicted landing 

position. In the Side View, we’re able to see the ball 
following a parabolic motion, the robot moving 
slightly forward towards the user, with the Altitude, 
Ball Speed, and Robot Speed constantly updating on 
the side. From these views, it appears that the robot is 
on track to catch the ball. 

 
Figure 6 of Catch and Return Frame: 
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In the final frame in Figure 6, we can see 
that the ball has been caught and returned to the user. 
The total time of flight was 0.8 seconds as shown on 
the screen, and we can see from both views that the 
robot has returned to the feet of the user. In the Bird’s 
Eye view we may note that the ball is caught in the 
center of the robot’s basket. In the Side View, we 
may see the ball’s final velocity when it landed, as 
well as the altitude showing that the ball is currently 
on the ground or in the basket. 
 

Design Trade Studies 

IMU placement (inside ball v. on hand) 
In discussing possible IMU placement     

configurations, we considered the possibility of      
placing an IMU inside the ball. The benefit to doing          
this would be the ability to track the trajectory of the           
ball as it moves through the air, thus mimicking the          
functionality of a CV setup. An issue with this setup,          
however, is that we would not know the ball’s release          
point from an internal IMU alone. In order to avoid          
beginning landing prediction once the ball fell from        
the air, we would still need to have an IMU on the            
user’s hand to determine release. Furthermore, we       
would either need to connect the IMU within the ball          
over WiFi which could result in an unstable        
connection as the ball flies through the air, or connect          
the IMU through an extremely long wire to the rest of           
the circuit. Either way, both of these options would         
mean that the IMU could withstand potential damage        
from being thrown around, and any potential       
incremental changes we’d like to make to the circuit         
would be extremely inconvenient. We decided that       
having IMUs in three different locations (hand, ball,        
and robot) would be too excessive and would take         
away from the uniqueness of the technical challenge.        
In addition, we would like for our system to work          

with multiple types of balls. We thus decided on         
having a knuckle IMU for detecting the hand opening         
at ball release and a hand IMU for trajectory         
information upon release.  

Kalman Filter v. Madgwick’s AHRS 
When first brainstorming ways to track the 

motion of a hand while swinging, we settled on using 
a Kalman filter due to its widespread use in similar 
dead reckoning systems, as shown in Figure 1. We 
reasoned that after calibrating the hand IMU with the 
robot IMU, we could reliably track the position of 
both entities as they interacted with one another. 
Unfortunately, we severely underestimated the 
contribution of IMU drift to our measurement error. 
In addition, our sampling rate of 50Hz proved to be 
well outside of the ideal Kalman filter range (512 Hz 
- 30 kHz) [1] so detecting that an IMU was stationary 
would take around 5 seconds. These measurement 
errors and drift accumulations made it difficult to 
build a Kalman filter for both the gyroscope and 
accelerometer readings (necessary to remove 
gravitational influence). To solve these issues, we 
turned to Madgwick’s AHRS orientation filter which 
could reliably tell us the hand IMU’s orientation, 
allowing us to remove effects of the Earth’s 
gravitational pull from our readings. By following 
this algorithm with double integration and use of high 
pass filters for drift, we were able to get reliable 
velocity and position readings since our swinging 
motion was cyclic. Unfortunately, however, we lost 
the ability to tell the user’s starting height and 
horizontal throwing angle as relative swinging 
motion does not provide this. Since use of a reliable 
Kalman filter would require a dramatically different 
sampling rate and would likely fail to sufficiently 
eliminate the influence of drift, accurately tracking 
starting angle and height simply became an 
impossibility with our available hardware. 
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Figure 7 showing velocity and position estimation from a Kalman filter for a stationary IMU. 1600 samples in this 
case is equivalent to 32 seconds. 

 

Wireless v. Serial  

In our original design, we strived to 
communicate with the robot wirelessly using the 
Particle Photon’s WiFi capabilities. We unfortunately 
discovered during implementation, however, that the 
Particle Photon’s speed of transmission for wireless 
data was simply too slow. When trying to transmit 
each data point, we noticed that any delay of less than 
a full second between transmissions would result in 
data corruption. With 10 prethrows and 800 
corresponding data points, transmitting this data 
wirelessly would take a full 13.33 minutes. In 
contrast, sending this data continuously through serial 
communication is nearly instantaneous. Even in a 
scenario where the Particle Photon would run 
Madgwick’s orientation filter and output the data at 
time of object release, we would still have to wait a 
full second for this data to transmit, which is certainly 
too long for a successful catch. Thus, having to 
unfortunately subtract from the robustness of the 
project, we decided to rely upon the existing serial 

communication pipeline that we were using for 
testing due to it’s fast speed of transmission. 

Cornhole bag v. Hackysack 
While there is no longer a physical robot 

that actually retrieves the projectile, we still need to 
throw something in order to gage the actual landing 
location and simulate the ball’s actual trajectory. A 
standard rubber or plastic ball would’ve bounced 
everywhere and it would be difficult to accurately 
determine the ball’s actual landing location. 
Therefore we devised to either use a cornhole bag or 
a hacky sack. Combined with the gloved hand, the 
hacky sack is much easier to throw as it doesn’t 
restrict the user’s arm movement like the cornhole 
bag, which is large and hard to grip properly. 
However, the hacky sack is more prone to rolling 
about 10 cm off from the actual landing, and would 
therefore be less likely to provide accurate landing 
data. As such, we decided to use the cornhole bag. 
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One IMU v. Two IMUs 
Throughout the development process, our 

team discussed the possibility of simply using one 
IMU (likely positioned on the finger) to interpret both 
the arm’s motion and its release point. The advantage 
of doing this option would be an added simplicity and 
a clear benefit to computational load when only 
having to continuously address one I2C device 
instead of two. When testing this strategy, we 
discovered that although it was feasible to use such 
an approach, the results were noticeably worse than 
those obtained using two IMUs. As shown in Figure 
8, using the finger IMU for the hand motion at time 
of release creates a significant position error (clear if 
compared to Figure 3) when the user’s finger opens 
to release their object. Thus, despite the advantages in 
computation time and constructional simplicity this 
method would allow, we resolved to stick to our 
design of a two-IMU system.  

 

Figure 8 showing throw position / release data all 
from one IMU 

Project Management 
After re-working our design because of the new 
constraints of COVID-19, we also had to rework our 
schedule. This is an updated schedule which shows 
several changes during that time, most notably the 
removal of several hardware components and 
communication between said components, with the 

addition of a simulation to represent the removed 
modules. Overall, Dan worked primarily on the 
motion sensing and hardware components, Hana 
worked primarily on the simulation, and Luca worked 
on both aspects in conjunction with both members. 
Our schedule indicating the changes in roles due to 
COVID-19 and redesign are shown in Figure 9 on the 
following page. 

Related Work 
There are two existing similar projects:      

Smart Trashbox from Minoru Kurata and Smart       
Trash Can from F19 Team B4. The success rate for          
both projects were relatively low, with Kurata’s       
device at about 20% and Team B4’s at about 50%.          
We hope to accomplish a success rate over 50%         
within our simulation, as we do not have a physical          
product. 

 
Kurata’s device is a much faster and       

mobilized version than Team B4’s, and so it could         
cover greater distances. This probably contributed to       
the low success rate there was a lot of distance to           
cover. From Team B4’s project demo, it appears that         
their trash can could not move very far (~30cm), and          
so the team had a high success rate from aiming the           
object thrown very close to the device’s rim.  

We no longer have the same physical       
constraints as these two previous projects due to the         
fact that our robot is now a virtual one. Any latency           
that would have resulted from the many modules        
communicating between one another is now obsolete,       
just as potential difficulties with the control system        
managing the encoders, communication over WiFi,      
and other unforeseen hardware obstacles are no       
longer problems. As a result, our comparison is now         
one of a more tangential nature as there are currently          
no known projects like our hardware input-based       
simulation. 
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Figure 9: Our updated Schedule 

Summary 

System Validation 

IMU Data Verification 
Through the MPUs on the user’s hand, we 

are able to determine the velocity and angles that the 
object is thrown at in three dimension (i.e. X, Y, Z 
directions). These values are all relative to the 
starting position of when the glove is turned on, and 
so several prethrows may be necessary to get an 
accurate trajectory of the hand’s motion. Once the 
perceived hand motion measurements have stabilized, 
we are able to obtain the aforementioned values. 
These data points can be roughly checked through 
recorded video from the side and above, especially 
for the angles. It’s much easier to estimate and verify 
the angles than it is to do the same for the velocities 
from the video as it can be unclear how much 
distance was travelled during a fixed period of time 
based on the camera angle.  
 

Madgwick’s AHRS algorithm prefers cyclic 
motion since the mean displacement and velocity of 
such motion are zero. Deviations from this in the 
throw pattern may lead to angle and position errors 
that may be corrected using basic trigonometry. We 
are able to estimate such errors by throwing the bag 
as straight in front of the user as possible, and 
comparing the perceived IMU angle offset to that of 
the real-life one that should be relatively close to 
zero. 
 

Simulation Verification 
It is a challenge for our simulation to 

perfectly mimic how our object (a cornhole bag) 
would fall and how the robot would move in real life. 
For the bag’s projectile motion, it is difficult to take 
variables such as air resistance into account. For the 
robot’s motion, it is similarly difficult to represent the 
robot’s acceleration and directional changes of the 
omnidirectional wheels, along with any wheel surface 
friction, especially since we do not have a real life 
robot to compare it to. However, despite these 
difficulties, we are still able to verify the simulation 
in a very simple way. 
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With the glove containing the IMUs, the 

user may throw the cornhole bag onto a marked floor, 
where the thrower can then measure the approximate 
landing location on the floor. These (x,y) coordinates 
will be inputted into the simulation along with the 
perceived projectile inputs from the final throw. 
Using the kinematic equations of motion, these inputs 
should lead to a predicted landing location, given the 
laws of physics. The predicted location and actual 
location are represented on-screen, and the robot will 
move to the predicted location. If the bag has been 
thrown somewhere a overlap between the two 
locations which is also within the bounds of the robot 
net’s circumference, and the robot is able to get there 
in time given the fixed speed we have assigned to it, 
the simulation will show the robot catching the bag 
and bringing it back to its starting position. If not, and 
the robot wasn’t able to catch the bag properly, then 
the bag will remain stationary in the predicted 
landing spot and the robot will return to its starting 
spot empty-handed. 

 

Performance Results 
In order to describe the system’s accuracy 

within each of  several forward distance regions 
(forward displacements from user), we have divided 
the three regions into the following ranges: 0m to 
0.5m as Range 1, 0.6m to 1.4m as Range 2, and 1.5 to 
2m as Range 3.  
 

In Range 1, these distances are often 
achieved by tossing the bag lightly on the ground. 
This registers very slight measurements in the IMU 
so the resulting prediction is often somewhere around 
0.1m to 0.2m from the user. This leads to scenarios 
where the prediction is accurate for throws around 
0.1m to 0.2m but the robot doesn’t have time to get 
there since the bag will have almost no vertical 
velocity. In contrast, the robot has time to get to 
throws around 0.4m even though the estimate is 
lower. It’ll catch the ball along its path to the lower 
estimate. It is also hypothetically possible to achieve 
distances in this range by tossing directly up (giving 
the robot more time to catch) but our attempts to do 
this usually landed the thrown object into Range 2. 

 
In Range 2, we have our ideal combination 

of accurate estimates and time-friendly landing 
locations. Since the robot is initially positioned at a 
1m distance from the user, anything less than 0.4m 
away from the robot will be easy to catch. In 
addition, the AHRS prediction system exhibits the 
greatest amount of accuracy for this location range 
(roughly 60% success rate) as the IMU measurements 
respond best when the bag is thrown more vertically 
than horizontally (often landing in the 0.8m-1.2m 
range - where most samples come from). 
 

In Range 3, we unfortunately have a set of 
poor predictions and often time restrictive landing 
points as we approach 2m. Due to the awkward 
weight distribution of the cornhole bag,  throwing 
into this region required a rather flat forward throw. 
In these throws, the IMU measurements tend to 
respond poorly and fail to increase their estimates in 
proportion to the additional velocity in the y 
direction. Throwing closer to the 2m range also 
makes it harder for the simulated robot to catch the 
bag on time. Fortunately, most throws with the glove 
rarely enter this area since it feels much more natural 
to toss the bag lightly up into the air (often landing in 
Range 2). 
 

In terms of angular variety, the results line 
up in terms of accuracy with each aforementioned 
range. In Range 1, variety in angle doesn’t change 
much in terms of the accuracy as our predictions 
simply give readings that are too small to ensure a 
successful catch. In Range 2, our system comfortably 
handles throw angles from -45 degrees to +45 
degrees. This was determined due to the fact that a 
throw of 1.4m at a 45 degree angle would require the 
robot to travel ~0.99 m in ~0.8 seconds (the limit of 
retrieval within the throw range). Practically, throws 
up to 1.2m at a 45 degree angle (0.85m) performed 
the best. Finally, in Range 3, our predictions are often 
too small to reflect throwing that far, but when we are 
able to get a good prediction, we have seen that 
variations of -10 degrees to +10 degrees seem to give 
similar results. 
 

Overall, even though our prediction system 
struggles within especially short and long distances, 
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our excellent performance in Range 2 from a wide 
variety of angles allows us to term the fundamental 
inquiries of this project a success. We have achieved 
a > 50% success rate in this region along with a 
~0.85m horizontal range. Seeking to discover 
whether IMUs could drive a throw prediction and 
catch system, we discovered that, with 
aforementioned limitations, they certainly could. 
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