
18-500 Team B4 Final Report: 6 May 2020 1

That’s so Fetch
Luca Amblard, Dan Barychev, Hana Frluckaj

Electrical and Computer Engineering,
Carnegie Mellon University

{lamblard, dbaryche, hfrlucka}@andrew.cmu.edu

Abstract
Our project is to develop a motorized device

simulation that plays fetch with data received from
Inertial Measurement Units (IMUs) on the user’s
hand. Our previous project involved building an
omnidirectional robot to anticipate, catch, and return
the object thrown, but due to constraints related to
COVID-19 and remote instruction, we have since
moved to a simulation based design for the robot. The
data is fed into the inputs of a simulation to represent
an omnidirectional motorized base. The result is a
simulation that predicts the thrown object’s landing
location from the IMU data and then provides a
visual representation of the object’s projectile motion
in three dimensions and of whether or not the robot
may reasonably catch it.

Keywords
Inertial Measurement Unit (IMU), Particle Photon,
I2C, Serial Communication, Magdwick’s Filter, Dead
Reckoning, Ball Release Detection, Equations of
Motion, Target Estimation, Simulation, PID

Introduction
Our project is aimed towards children who

would like to play fetch with a real dog but are
unable to because of allergies, housing constraints,
and other external factors. While the only current
function of our device is the ability to play fetch (i.e.
anticipate throw and catch the ball, or in our case a
cornhole bag) virtually, most commercial robot dog
products do not have this option in real life. As far as
other motorized devices capable of catching items,
there have been similar projects in the past, e.g.
Smart Trashbox from Minoru Kurata and Smart

Trash Can from F19 Team B4. Kurata’s device had a
success rate of about 20% but was highly adaptable
and motorized, while Team B4’s device had a
success rate of about 50% with small movements and
low motorization (i.e. small range of ~30 cm). Our
goal was to create a highly mobile device (i.e. range
of 1m) with a success rate over 50%. While previous
projects had different approaches, to our knowledge,
this is the only project to use IMUs to predict the
trajectory of the object thrown. Our original project
involved building an omnidirectional motorized base.
This would be moved by motors on a PID control
system based on data first sent over WiFi from a
Particle Photon to a Jetson Nano. Given the sudden
necessity to work remotely due to COVID-19
concerns, our project has now moved to a simulation
based design that incorporates the same data from the
hand IMU sensors, a portion of our project that we’ve
been able to maintain. Our project now consists of
having a Particle Photon connected to two IMUs on a
user’s glove, which sends the necessary input data for
the simulation when an object is thrown, from which
the simulation predicts a landing location that is then
compared on-screen to the real one.

Design Requirements
The design requirements for our

catch-and-retrieve system center around the need for
an intuitive ‘dog’ virtual simulation that can catch the
ball thrown in different locations with a success rate
greater than 50%. In order to achieve greater than a
50% success rate and properly mimic the experience
of playing catch, we are enforcing a starting distance
of 1m away from the user and limiting the catch
radius to 1m around this starting position. Thus, if the
user decides to throw outside of this range, the
simulator will refuse to catch the object thrown and a
manual reset will be necessary.

18-500 Team B4 Final Report: 6 May 2020 2

In order to create a viable catch scenario, we

are also enforcing the use of an action we term the
“prethrow.” The purpose of the prethrow is largely to
collect data on the thrown object’s approximate
starting direction and speed before it is actually
thrown. Multiple prethrows over several trials allow
for a much more stable and accurate final trajectory
prediction. From this data, we aim to compute
accurate measurements on the bag’s height at launch
and the X,Y, and Z components of its velocity. In
addition, due to changes made from our original dead

reckoning system, we now require the user to input
the resting height of their arm from the ground and
the starting horizontal angle they wish to throw from.

To give the robot a good chance of actually

catching the ball, a small-enough total computation
time for predicting landing position and transmitting
data is necessary. Deeming that the robot needs about
0.5 seconds out of an average 0.8 second
time-of-flight to catch the ball, the total computation
time must be less than 0.3 seconds.

Architecture and/or Principle of
Operation

Figure 1 displaying Architectural Layout [11]

Our design, shown in Figure 1, consists of

three main parts: the IMU data collection and
transmission from the user’s arm to a laptop, the
computation to map raw hand IMU data to 3D
velocity and throw height when the ball is released,
and the robot simulation based on aforementioned
data.

We are using the MPU 9250 (IMU) for

motion sensing. It is small, light, and contains an

accelerometer as well as a gyroscope which we both
need to estimate the location where the ball will land.
The raw data of the devices is read by the Particle
Photon which communicates with the IMUs through
the I2C serial communication protocol [7]. One IMU
is located on the user’s hand and the other is located
on one of the user’s fingers. Once the accelerometer
and gyroscope data are received by the Particle
Photon, they are converted to m s-2 and deg s-1
respectively. Because wireless communication from
the Particle Photon ended up being too slow, we are

18-500 Team B4 Final Report: 6 May 2020 3

now sending data from the Photon to a laptop through
serial communication..

The hand IMU data is passed into
Madgwick’s AHRS Sensor Fusion Algorithm, which
maps the hand IMU raw data to the IMU’s velocity in
3D and throw height when the ball is released. The
height of the IMU from the ground when the user’s
arm is straight pointing down is measured and fed
into the software. The increase in vertical distance
from the AHRS algorithm is added to the starting
height to determine the throw height of the ball.

The throw is detected using the y gyroscope

value of the finger IMU. We determined a threshold
through experimentation. We made sure that the
threshold is low enough to consistently determine
when the ball is thrown but not too low, otherwise a
throw would be falsely detected during a swing.

The data at the throw are applied to
equations of motion in 3D to predict the landing
location of the ball. The data is fed into the
simulation, which displays the ball moving to its
actual landing location, indicated by a yellow circle,
and the robot moving to the predicted landing
location, indicated by a blue circle. To simulate the
ball moving to its actual landing location, we
measure the ball’s actual landing location after it
lands using a tape measure and also its time of flight
using a slow-motion camera and input these data into
the simulation. If the user wants to throw the ball at
an angle rather than straight, the user must also input
the horizontal angle into the simulation. After the ball
is caught, the robot returns the ball to the user and
then moves back to its starting position. The
simulation includes a bird’s eye view and a side view.
The motion of the objects in both views are
synchronized and all speeds and distances are to
scale.

We model real-world behavior in the
simulation. Since we are simulating the robot we
included a simulated PID control system to control its
speed. Another example of real-world behavior is the
reaction time of the robot. The AHRS computation
time is fed into the simulation so that the robot is

delayed by at least this amount of time before it
moves.

The Particle Photon is programmed using
C++. We use Python to run the AHRS algorithm and
use Processing for our simulation. Processing makes
it easier to work with graphics than a language like
Python and it is very compatible with serial outputs.

System Description

IMUs to Photon
The gyroscope data and accelerometer data

are read from the two MPU 9250 devices (IMUs) by
the Particle Photon using I2C. The data is transmitted
from IMUs to the Photon through the circuit
connections shown in Figure 2 below, and is later
used to compute the ball’s trajectory data.

We write to the gyroscope configuration and

accelerometer configuration registers select the
full-scale range for each device. The gyroscope can
be set to have a full-scale range of either ± 250dps
(degrees per second), ± 500dps, ± 1000dps and ±
2000dps. The accelerometer can be set to have a
full-scale range of either ± 2g (g = 9.81m s-2), ± 4g, ±
8g or 16g. We want the full-scale range for each
device to be as low as possible to get greater
sensitivity. Through experimentation, we determined
that ± 500dps for the gyroscope and ± 2g for the
accelerometer are ideal. After reading the data, the
Particle Photon sends the data to a laptop through
serial communication.

Each IMU contains an AD0 pin, which is

used to set the device address of the IMU. This pin is
connected to ground by solder, which sets the device
address to 0x68. To address the second IMU, we
removed the solder from the AD0 pin of the second
IMU and connected the pin to VDD, setting the
IMU’s device address to 0x69.

Desiring an IMU sampling rate that would
give us an acceptable granularity and wishing to
avoid processing times of more than 0.5 seconds, we
decided to sample data at 50Hz. We noticed similar

18-500 Team B4 Final Report: 6 May 2020 4

sampling rates among individuals using the
MPU9250 for granular tasks and decided 50Hz
should suffice in terms of accuracy and speed.

Figure 2 of connections between MPUs and Particle Photon

IMU raw data conversion
Formulas to convert gyroscope and accelerometer
data to angular velocity(deg s-1) and acceleration (in
g) values respectively:

For the gyroscope:

angular velocity (dps) =
aw data / sensitivity scale factorr

For the accelerometer:
acceleration (g) =

aw data / sensitivity scale factorr
g: gravitational field strength in m s-2

The raw data can take values between 0 and
32768. Sensitivity scale factor (S.F.) is determined by
the full-scale range used by the corresponding device.
The tables below show the sensitivity scale factor that
corresponds to each full-scale range for each device
(accelerometer and gyroscope) [5].

Gyroscope :

Full Scale Range (deg s-1) Sensitivity S.F. (deg-1 s)

± 250 131

± 500 65.5

± 1000 32.8

± 2000 16.4

Accelerometer:

Full Scale Range (g) Sensitivity S.F. (g-1)

± 2 16384

± 4 8192

± 6 4096

± 8 2048

18-500 Team B4 Final Report: 6 May 2020 5

Madgwick’s AHRS
At the core of our prediction system, we

have Sebastian Madgwick’s Attitude and Heading
Reference System (AHRS) algorithm. Madgwick’s
algorithm is an orientation filter that allows for an
IMU’s gyroscope and accelerometer readings to work
in tandem. While the gyroscope provides angular
velocities in the sensor plane, the accelerometer
provides information about the Earth’s gravitational
field. By integrating quaternion derivatives and
performing gradient descent on a large amount of
possible rotations, Madgwick’s algorithm provides an
estimate for the sensor’s rotation relative to the
Earth’s plane. This then allows us to rotate our
acceleration data accordingly and subtract the effect
of gravity from the z axis. As a result, we achieve

accurate acceleration vectors in all three dimensions
[1].

After calculating the proper acceleration
vectors in all three dimensions, we can then integrate
the acceleration to achieve velocity and subsequently
integrate the velocity to achieve position. After each
integration step, however, we must apply a high pass
filter (HPF) to eliminate an appropriate amount of
drift [2]. This allows us to significantly simplify our
dead reckoning solution. Due to the double
integration, this approach works best with cyclic
motion, where mean velocity and displacement are 0.
Since our throwing motion resembles a cyclic
pendulum, the integration/HPF approach works quite
well and our resulting 3D position data is quite true to
form.

Figure 3 showing the 3D position results of a set of ~20 pre-throws. Release point is in red

Simulated PID Control System

The simulated PID controller takes in the

error, which is the difference between the target
speed and actual speed, and outputs the duty cycle,
which would be used in a PWM driver. The duty
cycle is used to calculate corresponding voltage of
the signal, which is then used to determine the actual
speed. A random error within the 10% error of the
motors is generated at the start of the simulation and

is used throughout to simulate the actual speed of the
motors, which would be determined by encoders
[11].

Parabolic Landing Estimation
Once the 3D velocity, throw height and

horizontal angle of the ball at release are determined,

18-500 Team B4 Final Report: 6 May 2020 6

we predict the ball’s landing location using equations
of motion in 3D and trigonometry. The Z-axis is the
vertical axis, the Y-axis a horizontal axis
(forward/backward) and the X-axis is the second
horizontal axis (left/right). We start by calculating the
predicted landing location in 2D using Vz (vertical)
and Vy (forward direction) as well as the throw
height. We then add the third dimension by
introducing Vx (left/right) to calculate where the ball
lands to the side. Finally, we add the horizontal angle
component by rotating the predicted landing location
around the user by this angle. We obtain (x, y)
coordinates for the ball’s predicted landing location,
where the positive Y-axis is the forward direction
relative to the user with the user positioned at the
origin.

The actual landing location and actual time of flight
of the ball are measured and fed into the simulation.

Using these data, along with the ball’s throw height,
we can calculate the ball’s actual velocity in 3D
throughout its flight and simulate the actual throw
and display the ball’s trajectory.
Vz (vertical) is constantly updated due the Earth’s
gravitational field strength and the Vy and Vx
components (horizontal) remain constant.

The ball’s actual time of flight is also important to
determine whether the robot catches the ball. In order
for the robot to catch the ball, the predicted landing
location must be very close to the actual landing
location. Additionally, the AHRS algorithm
execution time, the landing location prediction time
as well as the robot’s reaction time and time to move
to the target location must all fall below the actual
time of flight of the ball.

Figure 4 of Initial Frame (See [10] for image citations):

In Figure 4, we can see the initial state of the
simulation. On the left hand side, in the Bird’s Eye
View, we can see the initial positions of the user at
the bottom of the screen and the robot waiting 1m
directly in front of them. We see several distance
markers in the robot’s movement radius that indicate
displacement relative to the user. The user has not yet

thrown the ball at this point. On the right hand side,
we see the side view, which displays a user standing
to the left of that screen, poised to throw the ball.
This view also displays the side view of the robot
with implied omnidirectional wheels, distance
markers and several parameters including time and
the initial velocities for the robot and ball.

18-500 Team B4 Final Report: 6 May 2020 7

Figure 5 of Movement Frame:

In Figure 5 above, we may observe the
simulation 0.4 seconds into flight, as indicated by the
time on screen. In the Bird’s Eye view, we may
observe that the ball has moved forward and to the
left of the user mid-flight, while the robot has moved
about 0.25m leftward to the predicted landing

position. In the Side View, we’re able to see the ball
following a parabolic motion, the robot moving
slightly forward towards the user, with the Altitude,
Ball Speed, and Robot Speed constantly updating on
the side. From these views, it appears that the robot is
on track to catch the ball.

Figure 6 of Catch and Return Frame:

18-500 Team B4 Final Report: 6 May 2020 8

In the final frame in Figure 6, we can see
that the ball has been caught and returned to the user.
The total time of flight was 0.8 seconds as shown on
the screen, and we can see from both views that the
robot has returned to the feet of the user. In the Bird’s
Eye view we may note that the ball is caught in the
center of the robot’s basket. In the Side View, we
may see the ball’s final velocity when it landed, as
well as the altitude showing that the ball is currently
on the ground or in the basket.

Design Trade Studies

IMU placement (inside ball v. on hand)
In discussing possible IMU placement

configurations, we considered the possibility of
placing an IMU inside the ball. The benefit to doing
this would be the ability to track the trajectory of the
ball as it moves through the air, thus mimicking the
functionality of a CV setup. An issue with this setup,
however, is that we would not know the ball’s release
point from an internal IMU alone. In order to avoid
beginning landing prediction once the ball fell from
the air, we would still need to have an IMU on the
user’s hand to determine release. Furthermore, we
would either need to connect the IMU within the ball
over WiFi which could result in an unstable
connection as the ball flies through the air, or connect
the IMU through an extremely long wire to the rest of
the circuit. Either way, both of these options would
mean that the IMU could withstand potential damage
from being thrown around, and any potential
incremental changes we’d like to make to the circuit
would be extremely inconvenient. We decided that
having IMUs in three different locations (hand, ball,
and robot) would be too excessive and would take
away from the uniqueness of the technical challenge.
In addition, we would like for our system to work

with multiple types of balls. We thus decided on
having a knuckle IMU for detecting the hand opening
at ball release and a hand IMU for trajectory
information upon release.

Kalman Filter v. Madgwick’s AHRS
When first brainstorming ways to track the

motion of a hand while swinging, we settled on using
a Kalman filter due to its widespread use in similar
dead reckoning systems, as shown in Figure 1. We
reasoned that after calibrating the hand IMU with the
robot IMU, we could reliably track the position of
both entities as they interacted with one another.
Unfortunately, we severely underestimated the
contribution of IMU drift to our measurement error.
In addition, our sampling rate of 50Hz proved to be
well outside of the ideal Kalman filter range (512 Hz
- 30 kHz) [1] so detecting that an IMU was stationary
would take around 5 seconds. These measurement
errors and drift accumulations made it difficult to
build a Kalman filter for both the gyroscope and
accelerometer readings (necessary to remove
gravitational influence). To solve these issues, we
turned to Madgwick’s AHRS orientation filter which
could reliably tell us the hand IMU’s orientation,
allowing us to remove effects of the Earth’s
gravitational pull from our readings. By following
this algorithm with double integration and use of high
pass filters for drift, we were able to get reliable
velocity and position readings since our swinging
motion was cyclic. Unfortunately, however, we lost
the ability to tell the user’s starting height and
horizontal throwing angle as relative swinging
motion does not provide this. Since use of a reliable
Kalman filter would require a dramatically different
sampling rate and would likely fail to sufficiently
eliminate the influence of drift, accurately tracking
starting angle and height simply became an
impossibility with our available hardware.

18-500 Team B4 Final Report: 6 May 2020 9

Figure 7 showing velocity and position estimation from a Kalman filter for a stationary IMU. 1600 samples in this
case is equivalent to 32 seconds.

Wireless v. Serial

In our original design, we strived to
communicate with the robot wirelessly using the
Particle Photon’s WiFi capabilities. We unfortunately
discovered during implementation, however, that the
Particle Photon’s speed of transmission for wireless
data was simply too slow. When trying to transmit
each data point, we noticed that any delay of less than
a full second between transmissions would result in
data corruption. With 10 prethrows and 800
corresponding data points, transmitting this data
wirelessly would take a full 13.33 minutes. In
contrast, sending this data continuously through serial
communication is nearly instantaneous. Even in a
scenario where the Particle Photon would run
Madgwick’s orientation filter and output the data at
time of object release, we would still have to wait a
full second for this data to transmit, which is certainly
too long for a successful catch. Thus, having to
unfortunately subtract from the robustness of the
project, we decided to rely upon the existing serial

communication pipeline that we were using for
testing due to it’s fast speed of transmission.

Cornhole bag v. Hackysack
While there is no longer a physical robot

that actually retrieves the projectile, we still need to
throw something in order to gage the actual landing
location and simulate the ball’s actual trajectory. A
standard rubber or plastic ball would’ve bounced
everywhere and it would be difficult to accurately
determine the ball’s actual landing location.
Therefore we devised to either use a cornhole bag or
a hacky sack. Combined with the gloved hand, the
hacky sack is much easier to throw as it doesn’t
restrict the user’s arm movement like the cornhole
bag, which is large and hard to grip properly.
However, the hacky sack is more prone to rolling
about 10 cm off from the actual landing, and would
therefore be less likely to provide accurate landing
data. As such, we decided to use the cornhole bag.

18-500 Team B4 Final Report: 6 May 2020 10

One IMU v. Two IMUs
Throughout the development process, our

team discussed the possibility of simply using one
IMU (likely positioned on the finger) to interpret both
the arm’s motion and its release point. The advantage
of doing this option would be an added simplicity and
a clear benefit to computational load when only
having to continuously address one I2C device
instead of two. When testing this strategy, we
discovered that although it was feasible to use such
an approach, the results were noticeably worse than
those obtained using two IMUs. As shown in Figure
8, using the finger IMU for the hand motion at time
of release creates a significant position error (clear if
compared to Figure 3) when the user’s finger opens
to release their object. Thus, despite the advantages in
computation time and constructional simplicity this
method would allow, we resolved to stick to our
design of a two-IMU system.

Figure 8 showing throw position / release data all
from one IMU

Project Management
After re-working our design because of the new
constraints of COVID-19, we also had to rework our
schedule. This is an updated schedule which shows
several changes during that time, most notably the
removal of several hardware components and
communication between said components, with the

addition of a simulation to represent the removed
modules. Overall, Dan worked primarily on the
motion sensing and hardware components, Hana
worked primarily on the simulation, and Luca worked
on both aspects in conjunction with both members.
Our schedule indicating the changes in roles due to
COVID-19 and redesign are shown in Figure 9 on the
following page.

Related Work
There are two existing similar projects:

Smart Trashbox from Minoru Kurata and Smart
Trash Can from F19 Team B4. The success rate for
both projects were relatively low, with Kurata’s
device at about 20% and Team B4’s at about 50%.
We hope to accomplish a success rate over 50%
within our simulation, as we do not have a physical
product.

Kurata’s device is a much faster and

mobilized version than Team B4’s, and so it could
cover greater distances. This probably contributed to
the low success rate there was a lot of distance to
cover. From Team B4’s project demo, it appears that
their trash can could not move very far (~30cm), and
so the team had a high success rate from aiming the
object thrown very close to the device’s rim.

We no longer have the same physical
constraints as these two previous projects due to the
fact that our robot is now a virtual one. Any latency
that would have resulted from the many modules
communicating between one another is now obsolete,
just as potential difficulties with the control system
managing the encoders, communication over WiFi,
and other unforeseen hardware obstacles are no
longer problems. As a result, our comparison is now
one of a more tangential nature as there are currently
no known projects like our hardware input-based
simulation.

18-500 Team B4 Final Report: 6 May 2020 11

Figure 9: Our updated Schedule

Summary

System Validation

IMU Data Verification
Through the MPUs on the user’s hand, we

are able to determine the velocity and angles that the
object is thrown at in three dimension (i.e. X, Y, Z
directions). These values are all relative to the
starting position of when the glove is turned on, and
so several prethrows may be necessary to get an
accurate trajectory of the hand’s motion. Once the
perceived hand motion measurements have stabilized,
we are able to obtain the aforementioned values.
These data points can be roughly checked through
recorded video from the side and above, especially
for the angles. It’s much easier to estimate and verify
the angles than it is to do the same for the velocities
from the video as it can be unclear how much
distance was travelled during a fixed period of time
based on the camera angle.

Madgwick’s AHRS algorithm prefers cyclic
motion since the mean displacement and velocity of
such motion are zero. Deviations from this in the
throw pattern may lead to angle and position errors
that may be corrected using basic trigonometry. We
are able to estimate such errors by throwing the bag
as straight in front of the user as possible, and
comparing the perceived IMU angle offset to that of
the real-life one that should be relatively close to
zero.

Simulation Verification
It is a challenge for our simulation to

perfectly mimic how our object (a cornhole bag)
would fall and how the robot would move in real life.
For the bag’s projectile motion, it is difficult to take
variables such as air resistance into account. For the
robot’s motion, it is similarly difficult to represent the
robot’s acceleration and directional changes of the
omnidirectional wheels, along with any wheel surface
friction, especially since we do not have a real life
robot to compare it to. However, despite these
difficulties, we are still able to verify the simulation
in a very simple way.

18-500 Team B4 Final Report: 6 May 2020 12

With the glove containing the IMUs, the

user may throw the cornhole bag onto a marked floor,
where the thrower can then measure the approximate
landing location on the floor. These (x,y) coordinates
will be inputted into the simulation along with the
perceived projectile inputs from the final throw.
Using the kinematic equations of motion, these inputs
should lead to a predicted landing location, given the
laws of physics. The predicted location and actual
location are represented on-screen, and the robot will
move to the predicted location. If the bag has been
thrown somewhere a overlap between the two
locations which is also within the bounds of the robot
net’s circumference, and the robot is able to get there
in time given the fixed speed we have assigned to it,
the simulation will show the robot catching the bag
and bringing it back to its starting position. If not, and
the robot wasn’t able to catch the bag properly, then
the bag will remain stationary in the predicted
landing spot and the robot will return to its starting
spot empty-handed.

Performance Results
In order to describe the system’s accuracy

within each of several forward distance regions
(forward displacements from user), we have divided
the three regions into the following ranges: 0m to
0.5m as Range 1, 0.6m to 1.4m as Range 2, and 1.5 to
2m as Range 3.

In Range 1, these distances are often
achieved by tossing the bag lightly on the ground.
This registers very slight measurements in the IMU
so the resulting prediction is often somewhere around
0.1m to 0.2m from the user. This leads to scenarios
where the prediction is accurate for throws around
0.1m to 0.2m but the robot doesn’t have time to get
there since the bag will have almost no vertical
velocity. In contrast, the robot has time to get to
throws around 0.4m even though the estimate is
lower. It’ll catch the ball along its path to the lower
estimate. It is also hypothetically possible to achieve
distances in this range by tossing directly up (giving
the robot more time to catch) but our attempts to do
this usually landed the thrown object into Range 2.

In Range 2, we have our ideal combination

of accurate estimates and time-friendly landing
locations. Since the robot is initially positioned at a
1m distance from the user, anything less than 0.4m
away from the robot will be easy to catch. In
addition, the AHRS prediction system exhibits the
greatest amount of accuracy for this location range
(roughly 60% success rate) as the IMU measurements
respond best when the bag is thrown more vertically
than horizontally (often landing in the 0.8m-1.2m
range - where most samples come from).

In Range 3, we unfortunately have a set of
poor predictions and often time restrictive landing
points as we approach 2m. Due to the awkward
weight distribution of the cornhole bag, throwing
into this region required a rather flat forward throw.
In these throws, the IMU measurements tend to
respond poorly and fail to increase their estimates in
proportion to the additional velocity in the y
direction. Throwing closer to the 2m range also
makes it harder for the simulated robot to catch the
bag on time. Fortunately, most throws with the glove
rarely enter this area since it feels much more natural
to toss the bag lightly up into the air (often landing in
Range 2).

In terms of angular variety, the results line
up in terms of accuracy with each aforementioned
range. In Range 1, variety in angle doesn’t change
much in terms of the accuracy as our predictions
simply give readings that are too small to ensure a
successful catch. In Range 2, our system comfortably
handles throw angles from -45 degrees to +45
degrees. This was determined due to the fact that a
throw of 1.4m at a 45 degree angle would require the
robot to travel ~0.99 m in ~0.8 seconds (the limit of
retrieval within the throw range). Practically, throws
up to 1.2m at a 45 degree angle (0.85m) performed
the best. Finally, in Range 3, our predictions are often
too small to reflect throwing that far, but when we are
able to get a good prediction, we have seen that
variations of -10 degrees to +10 degrees seem to give
similar results.

Overall, even though our prediction system
struggles within especially short and long distances,

18-500 Team B4 Final Report: 6 May 2020 13

our excellent performance in Range 2 from a wide
variety of angles allows us to term the fundamental
inquiries of this project a success. We have achieved
a > 50% success rate in this region along with a
~0.85m horizontal range. Seeking to discover
whether IMUs could drive a throw prediction and
catch system, we discovered that, with
aforementioned limitations, they certainly could.

References

[1] Madgwick, Sebastian, “An efficient orientation
filter for inertial and inertial/magnetic sensor arrays,”
University of Bristol, April 2010
[2] xioTechnologies.
“Oscillatory-Motion-Tracking-With-x-IMU.”
GitHub, 1 October 2017,
https://github.com/xioTechnologies/Oscillatory-Moti
on-Tracking-With-x-IMU
[3] InvenSense, “MPU-9250 Register Map and
Descriptions Revision 1.4,” RM-MPU-9250A-00
datasheet, September 2013
[4] InvenSense, “MPU-9250 Product Specification
Revision 1.1,” PS-MPU-9250A-01 datasheet, June
2016
[5] Free Tutorials. "Understanding MPU6050 ACC
full scale range," YouTube, Oct. 8, 2019 [Video file].
Available:
https://www.youtube.com/watch?v=e28SHRiJBQY.
[Accessed: Feb. 28, 2020].
[6] AddOhms. "Picking Pull-Up Resistor Values | AO
#25," YouTube, May. 3, 2018 [Video file].
Available:
https://www.youtube.com/watch?v=u3Xiy2DVnI4.
[Accessed: March 2, 2020].
[7] Particle, “Photon Datasheet” V016 datasheet
[8] Balzer82. “Kalman.” GitHub, 12 March 2018,
https://github.com/balzer82/Kalman
[9] bolderflight. “MPU9250.” GitHub, 1 May 2020,
https://github.com/bolderflight/MPU9250
[10] DanBarychev. “ECE-Capstone.” GitHub, 3 May
2020,
https://github.com/DanBarychev/ECE-Capstone
[11] A. Rowe, G. Kesden, Class Lecture, Topic:
"Lecture 21: Implementing PID Control" 18-349,

College of Engineering, Carnegie Mellon University,
Pittsburgh, PA, Nov., 2019.

https://github.com/xioTechnologies/Oscillatory-Motion-Tracking-With-x-IMU
https://github.com/xioTechnologies/Oscillatory-Motion-Tracking-With-x-IMU
https://www.youtube.com/watch?v=e28SHRiJBQY
https://github.com/balzer82/Kalman
https://github.com/bolderflight/MPU9250
https://github.com/DanBarychev/ECE-Capstone

