
That’s So Fetch
B4 (Luca Amblard, Dan Barychev, Hana Frluckaj)

Presented by: Luca Amblard

Application Area
● Motorized device that can:

○ Anticipate user’s throw using motion
sensors on hand

○ Move to predicted landing location in
real time

○ Catch the object thrown
○ Returns to original position

● Users:
○ People allergic to dogs but still want

to play a game of Fetch
○ Fun alternative to having a pet

Solution Approach: General
Photon reads

IMU data

Photon reads
finger IMU and
hand IMU data
through I2C

Detect ball
release

Detect when ball
is thrown from
hand through
finger IMU angular
velocity

Determine
throw data

Determine Vx, Vy,
Vz, throw height,
and horizontal
angle of ball at
throw using
Madgwick’s AHRS
sensor fusion
algorithm

Simulate
Fetch

Simulate the
throw/catch
process after data
is fed into the
simulation

Prediction

Predict ball
landing location
and time of flight
using equations of
motion in 3D and
measure actual
landing location in
real life grid

Solution Approach: Changes
● Changes due to COVID-19 constraints:

○ No physical robot for retrieval ￫ move to
simulation based motorized retriever

○ Simulate Fetch using inputs and timing

● Changes due to current testing constraints:
○ Wireless capability too slow ￫ serial output

recording through micro-usb used instead
○ IMU sensing misinterprets fast throws ￫ robot

catching range decreased to 1m

● Changes due to Design Improvement:
○ Kalman filter solutions resulted in too much

drift with our sample rate of 50Hz.
○ Switch made to AHRS for accuracy

Simulation based design:

Robot

Actual L

Predict L

Block Diagram

Solution - Simulation
The simulation presents two
views of the project:

Bird’s Eye View ➡

View of robot moving in order to retrieve
ball

Side View
View showing the ball’s trajectory and how
far up/back the robot must move to
retrieve it

https://docs.google.com/file/d/1rxaOZhxjofz43_Y2XgtoxC17RyvPElno/preview

Metrics and Validation
Process Specs

Success Rate (#balls thrown v. #balls caught) > 50%

User throw range (distance between user and dog) 1m radius

Device retrieval range 1m radius

Device basket diameter 25cm

Difference predicted ball landing position and actual landing position < 12.5 cm

Minimum prethrow number 20

AHRS computation time < 0.5s

Metrics and Validation: Results
● Our tests focused on the system’s ability to create accurate estimates upon a

straight line
● We currently have a ~50% catch rate with our most reliable data
● These are the results of two straight throws of around 1m length

Metrics and Validation: Results Cont.
● Madgwick AHRS Algorithm gives us clear parabolic throw data
● Our throws conform to the type of cyclic motion the algorithm handles well
● 95% of our data files process the results in under 0.5s (allowing the simulated

robot enough time to make the catch)

Metrics and Validation: Trade-offs
● Kalman v. Madgwick’s AHRS

○ Kalman filter: best between 512Hz and 30kHz, but exhibited far too much drift at 50Hz
○ Madgwick’s AHRS filter: uses gradient descent and quaternions to give rotation data, allowing

for integrable acceleration data

● Wireless v. Serial
○ Able to achieve wireless functionality with Particle Photon but data transmission rate was too

slow. Instead, relied on long micro-USB cable for serial communication to have free movement

● IMU in ball v. IMU on hand
○ IMU in the ball would give information concerning the ball’s path. This would be hard to estimate

with IMU positioning so we decided just to place one on the hand instead

● Cornhole bag v. hacky sack
○ Decided to use a cornhole bag since it rarely bounces, although a hacky sack is much easier to

throw and restricts arm motion much less

Validation - IMU data and Simulation
How to verify IMU data

● IMU provides height object is thrown at, as
well as velocity and angles in three
dimensions

● These data points can be roughly checked
through recorded video

● Madgwick’s AHRS algorithm prefers cyclic
motion since mean position and velocity
are 0

● Deviations from this in the throw pattern
lead to angle and position errors that we
correct for using trigonometry

How to verify a simulation

● Difficult to take all variables into account:
air resistance, object weight, etc.

● Ball will be thrown and ideally land within
the bounds of a measured grid

● The actual landing location will be
compared to the result of the simulation

● Accuracy goal: >50%

Project Management

