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Abstract 
Our project is to develop a motorized device that         
plays Fetch. After an initial calibration with the user,         
the device will be able to move away, anticipate the          
trajectory of the object thrown using a pre-throw,        
catch the object thrown, and move back to the user to           
return the object. Calibration will be facilitated       
through the use of IMUs, which are also instrumental         
in predicting object trajectory from the user’s hand.        
Communication from user to device is made through        
wireless connection between a Particle Photon and a        
NVIDIA Jetson Nano.  

Index Terms 
Inertial Measurement Unit (IMU), Particle Photon,      
I2C, Wireless Communication, NVIDIA Jetson     
Nano, Kalman Filter, Dead Reckoning, Target      
Estimation, PID 

Introduction 
Our project is aimed towards children who       

would like to play fetch with a real dog but are           
unable to because of allergies, housing constraints,       
and other external factors. While the only current        
function of our device is the ability to play fetch (i.e.           
anticipate throw, catch, and return), most commercial       
robot dog products do not have this option. As far as           
other motorized devices capable of catching items,       
there have been similar projects in the past, e.g.         
Smart Trashbox from Minoru Kurata and Smart       
Trash Can from F19 Team B4. Kurata’s device had a          
success rate of about 20% but was highly adaptable         
and motorized, while Team B4’s device had a        
success rate of about 50% with small movements and         
low motorization (i.e. small range of ~30 cm). Our         
goal is to create a highly mobile device (i.e. range of           

1m) with a success rate over 50%. While previous         
projects had different approaches, to our knowledge,       
this is the only project to use inertial measurement         
units to predict the trajectory of the object thrown.         
Our method involves an initial calibration between       
user and device, data sent over wifi to the motorized          
device, a control system that coordinates the       
omnidirectional wheels to anticipate the landing, and       
a successful return of the caught object to the user.  

Design Requirements  
The design requirements for our     

catch-and-retrieve system center around the need for       
an intuitive dog simulator that can catch at a >50%          
rate and effectively bring the ball back to the user for           
consecutive throws to different locations. In order to        
achieve a >50% success rate and properly mimic the         
experience of playing catch, we are enforcing a        
starting distance of 2m away from the user and         
limiting the catch radius to 1m around this starting         
position. Thus, if the user decides to throw outside of          
this range, the simulator will refuse to catch the ball          
and a manual reset will be necessary. 

 
In order to create a viable catch scenario, we         

are also enforcing the use of an action we term the           
“prethrow”. This forces the user to wind up into their          
next throw and the arc of this prethrow thus indicates          
the approximate landing location and angle. Once the        
simulator is facing the user, the user can release the          
ball and the robot’s adjustments towards the actual        
landing location can take place. These adjustments       
are thus likely to be minimal and realizable within the          
time it takes for the ball to be caught. We also ask            
that the user throw the ball in the general direction of           
the robot once the robot is facing them. This         
minimizes the need for lateral movement which is        
generally slower than vertical movement. To make       
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sure that the angle of the prethrow and actual throw          
don’t significantly differ, we are setting a       
requirement for a <5% difference between the two        
that we will test by subtracting them as soon as the           
actual throw occurs. 

 
Another critical aspect to our design is the        

maintaining of correct relative distance between the       
simulator and the user. We will begin the throw         
experience by the user picking the ball out of the          
catch receptacle to calibrate position between their       
tracking IMU and the robot’s tracking IMU. Then,        
after the simulator drives out 2m, catches the ball,         

and returns to the user, the user’s retrieval of the ball           
should recalibrate the position system. However, it is        
more than likely that a positional offset can occur         
during this time. Thus, we are enforcing a        
requirement of less than 12.5cm offset per each catch         
since 12.5cm will be the radius of the catch         
receptacle. We will calculate this offset by measuring        
the distance away from the proper 2m drive-out point         
at the start of the next catch. If this requirement is not            
met, the user will have to place the robot in front of            
them and initiate a physical reset with the IMUs in          
extremely close proximity. 

 

Architecture and/or Principle of Operation 

 
 
 

Our design consists of two main parts: the        
IMU data collection and transmission from the user’s        
arm and the robot which is responsible for all the          
computation and reaching the target location on time        
to catch the ball thrown by the user. 
 

We will be using the MPU 9250 (IMU) for         
motion sensing. It is small, light and contains an         
accelerometer as well as a gyroscope which we will         
both need to estimate the location where the ball will          
land. The raw data of the devices is read by the           

Particle Photon which communicates with the IMUs       
through the I2C serial communication protocol. 
 

The Particle Photon, which is an IoT device,        
transmits the IMU raw data to the Jetson Nano which          
is located on the robot car chassis. All the         
computation is done on the Jetson Nano since it has          
more processing power than the Photon. The Particle        
Photon and the Jetson Nano communicate via WiFi.        
When the whole system is turned on, a socket         
connection is set up between the two devices and the          
Particle then sends data streams of IMU data to the          
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Jetson Nano via the Transmission Control Protocol       
(TCP).  
 

Once the accelerometer and gyroscope data      
have been received on the Jetson Nano they are         
converted to ​m s​-2 and ​deg s​-1 respectively. The data is           
then passed through a Kalman filter which is used to          
obtain 3D points in space. The angle of projection         
and speed of the ball when it is released from the           
hand are applied to suvat equations to predict the         
landing location of the ball. Details about how the         
ball release from the hand is detected will be covered          
in the System Description section. We’ll have to use         
the heaviest possible ball that will not break the robot          
in order to minimize air resistance. The exact size and          
weight will be determined when we receive the robot         
cart chassis. 

 
As the robot moves the distance left to travel         

and the direction to the target are updated using the          
previous position and the distance and direction       
travelled from that position. The data of the        
displacement from the previous position is obtained       
by passing the data of the IMU on the board through           
Kalman filters. The Jetson Nano communicates with       
the IMU on the robot using I2C as well. 
 

The robot moves by controlling four motors       
on an omni-directional robot car chassis. To move at         
a given angle the robot car will have to move each of            
the four motors at certain speeds and angles. We will          
tune the parameters for mapping angle to motor target         
speeds and direction when we receive the robot car         
chassis. The direction and speed of each motor are         
fed into a PID control system that determines the         
Pulse Width Modulation (PWM) duty cycle. This       
duty cycle is passed into the PWM driver and the          
direction of rotation is passed into the motor driver.         
The speed of the given motor is determined by the          
encoder driver. The error, which is the absolute value         
of the difference between the target speed and actual         
speed are passed back into the controller of the         
system. 

 
We decided to use C++ for the following        

three reasons: C++ is compatible with the Jetson        
Nano, C++ is the language used to program the         
Particle Photon so this would make the networking        

between the devices easier and C++ is one of the          
fastest programming languages, which is important      
for the project because the robot needs to react very          
quickly. 

Design Trade Studies  

Tradeoffs over IMU placement (inside ball v. on        
wrist)  

In discussing possible IMU placement     
configurations, we considered the possibility of      
placing an IMU inside the ball. The benefit to doing          
this would be the ability to track the trajectory of the           
ball as it moves through the air, thus mimicking the          
functionality of a CV setup. The issue with this setup,          
however, is that we would not know the ball’s release          
point from an internal IMU alone. In order to avoid          
beginning landing prediction once the ball fell from        
the air, we would still need to have an IMU on the            
user’s hand to determine release. We decided that        
having IMUs in three different locations (hand, ball,        
and robot) would be too excessive and would take         
away from the uniqueness of the technical challenge.        
In addition, we would like for our system to work          
with multiple types of balls. We thus decided on         
having a knuckle IMU for release and a wrist IMU          
for trajectory upon release.  

Jetson Nano v. Raspberry Pi  

We are using a Jetson Nano in our project as          
opposed to a Raspberry Pi because it has more         
processing power so it would be able to do         
computation faster. Cost is not a factor because Luca         
already owns a Jetson Nano. There are no device         
compatibility issues that arise in our project from the         
use of the Jetson Nano instead of the Raspberry Pi. 

Photon v. Arduino & Transmitter  

We needed a WiFi transmitter in order to        
send data from the IMUs to the Jetson, and the two           
best options were just using a Photon, or using an          
Arduino in conjunction with a transmitter. We       
decided to use the Photon for a number of reasons.          
Hana was already familiar with the device since they         
had worked with it on a previous project. There is an           
active community surrounding the device with      
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detailed documentation. The device also has a web        
IDE and intuitive user interface. In the event that we          
have irreconcilable issues with the Photon, we may        
switch to an Arduino with a transmitter (and possibly         
a receiver), although that may lead to some latency         
issues. 

I2C v. SPI  

The the main advantages of SPI over I2C are         
the following: SPI is faster and consumes less power         
than I2C. However, we have decided to use I2C for          
the serial communication between the arm IMUs and        
the Particle Photon and the IMU on the robot and the           
Jetson Nano. I2C is less affected by noise than SPI          
and makes sure that data sent is received by the target           
slave device. Receiving accurate data from the IMUs        
reliably is important to accurately predict the ball’s        
landing location coordinates. Additionally, I2C is      
better suited to send data through long wires. The         
wires would be along the user’s arm in our case. 

TCP v. UDP  

One thing when planning communication     
over a browser socket between the Photon and Jetson         
is that there are two options: UDP and TCP. Both are           
protocols used for sending packets over the Internet        
and both are built on top of the IP protocol. TCP is            
much more commonly used, and UDP is mostly the         
same except that it doesn’t do error correction,        
resulting in faster speeds. If we were worried about         
speed, we might consider UDP. However, given the        
extra time from the pre throw and the Jetson’s         
overkill processing power, TCP is the better choice.        
There are more resources online for sending data        
through TCP and error correction can benefit us in         
debugging and other issues down the road. [8​] 

Omni-Directional Wheels  

We are using omni-directional wheels for the robot so         
it can directly move to the target location in a straight           
line. We think that this method would be faster than          
rotating the robot and then moving in the direction of          
the target location. It is crucial for the robot to reach           
its destination as fast as possible in order to catch the           
ball. We have not received the Mobius robot car         
chassis yet but we will proceed to testing both         
approaches to confirm this choice as soon as we         

receive it. The diagram below indicates how       
omnidirectional wheels can seamlessly change     
direction.

 

WiFi v. Bluetooth 

In our choice for a WiFi module, we        
discussed the differences between the Particle      
Photon, a WiFi IoT device, and the Particle Argon,         
which is also Bluetooth capable. In the end, we         
decided that WiFi best fits our constraints. We’re        
planning on having the device capable of catching        
over a relatively large distance compared to other        
projects, 2 meters. WiFi is much better at covering         
this distance at a much faster speed. A drawback of          
WiFi is latency and timing issues; however, this issue         
is eliminated by the fact that our method involves the          
pre throw. We timed the transmission of data over         
WiFi, which turned out to be 0.1 seconds. This is          
well within the time granted to us from the end of the            
pre throw’s trajectory at the cusp of release to the          
time for the user to bring their arm back for the actual            
swing, and then for the user to actually swing and          
throw the object, about 2 to 3 seconds. Therefore,         
we’re confident WiFi is the best choice for our         
project. 
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System Description 

IMUs to Photon 

 

 
The gyroscope data and accelerometer data      

are read from the two MPU 9250 devices (IMUs) by          
the Particle Photon using I2C. The I2C clock        
frequency for the IMUs is 400kHz. The data is then          
transmitted from the Particle Photon to the Jetson        
Nano over WiFi. The Photon and the two IMUs are          
connected as shown in the diagram above. We found         
a ​MPU9250PhotonLibrary [1] which contains code to       
initialize I2C as well as code for the Photon to read           
from and write to different IMU registers. 
 

The IMUs contain a register called      
WHOAMI which contains the device address of the        
IMU. One IMU will have WHOAMI register value of         
0x71 which is the default value and another IMU will          

have its WHOAMI register value changed to another        
value so the Photon can address each individual IMU. 

 
We will first try 4.7kΩ pull-up resistors as        

these are typical pull-up resistor values to start with.         
We will carry out some tests to determine the highest          
possible pull-up resistor values for which the I2C        
serial communication will function properly in order       
to minimize current flow through them and power        
consumption. The Photon has an internal pull-up       
resistor but the IMUs don’t so we will just use these           
pull-up resistors shown in the diagram for both the         
Photon and the IMUs. 
 

https://github.com/jdvr1994/MPU9250PhotonLibrary
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The gyroscope configuration and    
accelerometer configuration registers will be used to       
select the full-scale range for each device. The        
gyroscope can be set to have a full-scale range of          
either ± 250dps (degrees per second), ± 500dps, ±         
1000dps and ± 2000dps. The accelerometer can be        
set to have a full-scale range of either ± 2g (g =            
9.81ms​-2​), ± 4g, ± 8g or ± 16g. We will confirm the            
scale to use for each device by spending time moving          
the IMUs in different ways while data is being         
collected from them. It is important to use the         
smallest scale possible for each device because       
smaller scale range leads to greater sensitivity. 

 
The IMUs will be polled for data at a         

frequency of 100Hz. The reason for this is the         
following: the polling frequency needs to be high        
enough to detect the user’s hand opening, which is         
when the ball leaves the hand. Five IMU readings are          
required during the time that the hand is opened and          
our estimate is that it will not take less than 0.05s for            
a user to open their hand. To poll the IMUs five times            
in 0.05s, we need a polling frequency of 100Hz. 

Particle Photon to NVIDIA Jetson Nano 

The Particle Photon is not only capable of        
receiving data over WiFi, but it is also a WiFi          
transmitter. We will be using this to send data to the           
NVIDIA Jetson Nano, which is capable of receiving        
such data. The Photon has a single antenna port and          
with a frequency band of 2.412 to 2.462 GHz. ​When          
the Photon is powered via the USB port, VIN will          
output a voltage of approximately 4.8VDC. When       
used as an output, the max load on VIN is 1A. The            
typical average current consumption for it is 80mA        
with 5V at VIN with Wi-Fi on. [10] 

 
The NVIDIA Jetson Nano has serial      

peripheral interface controllers that operate up to       
65Mbps in master mode and 45Mbps in slave mode.         
It allows a duplex, synchronous, serial      
communication between the controller and external      
peripheral devices. It consists of four signals, SS_N        
(Chip select), SCK (clock), MOSI (Master data out        
and Slave data in) and MISO (Slave data out and          
master data in). The data will be transferred through         

MISO on every SCK edge. The receiver always        
receives the data on the other edge of SCK. 

 
The goal is to create a serial connection        

between the Photon and the Jetson, hopefully       
achieved by sending a message virtual serial port        
which is then redirected to a portal using the TCP          
protocol. The Photon will act as the TCP Server and          
the Jetson as the TCP Client, with the Jetson needing          
a Nodejs server that can send “D7-ON” and        
“D7-OFF” and the Photon needs a means to        
communicate with it, which we are planning on using         
a modern browser web socket for. [11​] 

IMU Raw Data Conversion 

Here are the formulas to convert gyroscope       
data and accelerometer data to angular velocity( in        
deg s​-1​ ) and acceleration (in g) values respectively: 

 
For the gyroscope: 

angular velocity (​dps​) =
aw data / sensitivity scale factorr  

For the accelerometer:  
acceleration (g) =  

aw data /  sensitivity scale factorr  
g: gravitational field strength in ​m s​-2 

 

The raw data can take values between 0 and         
32768. Sensitivity scale factor (S.F.) is determined by        
the full-scale range used by the corresponding device.        
The details about full-scale range are located in the         
IMUs to Photon section. The tables below show the         
sensitivity scale factor that corresponds to each       
full-scale range for each device (accelerometer and       
gyroscope). 
 

Gyroscope : 

Full Scale Range (​deg s​-1​) Sensitivity S.F. ( ​deg​-1​ s ​) 

± 250 131 

± 500 65.5 

± 1000 32.8 

± 2000 16.4 
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Accelerometer: 

Full Scale Range (​g​) Sensitivity S.F. (​g​-1​) 

± 2 16384 

± 4 8192 

± 6 4096 

± 8 2048 

Kalman Filters 
The key to deciphering the position across       

our catch system will be the Kalman filter. This         
mathematical concept allows us to determine      
approximate position, velocity, and angle by using       
successive measurements of acceleration and angular      
velocity from our IMUs. The key to the Kalman         
filter’s functionality is a continuous loop between       
predicting the upcoming state and updating the error        
covariance calculations we use to create that       
prediction. As a result, we receive a relatively        
accurate representation of our position by taking into        
account the error that occurs due to the IMUs         
constant motion. 

 
We will use a Kalman filter to determine the         

3D position, velocity, and angle of the ball upon its          
release point. The wrist IMU’s acceleration readings       
will be used to predict both velocity and position. The          
IMU’s angular velocity readings, on the other hand,        
will be used to determine the release angle. 

 
The Kalman filter will also be used to track         

the positional movement of the simulator from its        
IMU. These readings will be essential to maintaining        
the correct relative position between the user and        
simulator.

[12] 

Parabolic Landing Estimation 

Once we receive the 3D coordinates, speed,       
and angle from the Kalman filters, we must perform         
landing estimation using common parabolic     
equations. The necessary definitions are shown in the        
diagram below 

 

 
We will derive ​t from the equation for        

vertical distance and then apply it to the equation for          
horizontal distance. Since we are defining the robot’s        
movement in terms of vertical distance and angle        
(similar to polar coordinates), we don’t need to        
project the horizontal distance equation onto another       
plane. 

Displacement Update and Motor Rotation     
Mapping 

The robot’s projected travel distance and      
direction are updated at a regular frequency, which        
we will determine, using data read from the IMU on          
the robot. Once the final landing place is anticipated,         
the robot now has a fixed direction to move in. This           
direction determines in which manner the      
omnidirectional wheels will spin, albeit all in a        
uniform manner. The mapping from direction and       
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distance to travel to motor rotation will be determined         
once we receive the robot car chassis. From the IMU          
data received at a regular interval, we may obtain         
how close the robot is to the fixed landing location,          
and as a result, control acceleration/ deceleration.  

Motors 

The NVIDIA Jetson Nano will also be used        
to control the motors on the Moebius omnidirectional        
wheel base. The motors within the Moebius base are         
servo motors. Our goal is to control the servo motors          
over an I2C-controlled PWM/servo driver. PWM is a        
common method used for controlling motors because       
of fast digital pulses instead of a continuous analog         
signal. ​The Jetson has the capability of generating        
two PWM pulses on the J41 Header. However, we         
need to reconfigure the device tree to make these         
signals available on Pins 32 and 33. We will be using           
the PCA9685 breakout board, which uses 3.3V       
supply from J21 Pin 1, and GND from J21 Pin 6.  

 
We will be using the Adafruit ServoKit       

Library because it is a ​CircuitPython helper library        
for the PWM built on top of the Jetson Library,          

which also has a C++ version. We’re going to be          
using the version that supports C++ as our other         
devices, the Photon and Jetson, also use C++. ​A 5V          
and 4A power supply is connected to the breakout         
board. ​From the library, we will be using the         
‘​throttle​’ command function, which is useful for       
controlling continuous servos and the similar      
electronic speed controllers for motors.  

 
The rotation of the servos will be controlled        

using a PID control system. The procedure for each         
servo is as follows. The target speed is input into the           
control system as shown in the diagram. The error is          
calculated by subtracting the target speed from the        
actual measured speed and it is input into the PID          
controller which gives a value between -1 and 1. This          
value is input into the servo.throttle function       
mentioned above and this causes the servo to rotate.         
The actual speed of rotation of the servo is measured          
by the servo encoder and is fed back to calculate the           
new error. The proportional, derivative and integral       
parameters will be tuned to minimize steady-state       
error, rise time and settling time. [13] 

 
 
 

Project Management  

Schedule ​(see last page) 

Team Member Responsibilities 
Currently, Dan is detailing the Kalman filter       

design to map raw IMU data to coordinates in 3D          
space, Luca is focused on the intricacies of the I2C          

communication between the Particle Photon and      
several IMUs, and Hana is dealing with the        
networking between the Particle Photon and the       
Jetson Nano and also the motor drivers on the Jetson          
Nano. In future steps, Dan will be largely responsible         
for projectile prediction, Dan and Luca will be        
responsible for the controls aspect of the base, Luca         
will be primarily responsible for IMU data analysis        
and system architecture, Hana and Luca will work        
together on interfacing the Photon with IMU data and         
sending that to the Jetson, and Hana will be         
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responsible for motor control and base construction.       
All team members will convene towards the end of         
the project for ensuring proper retrieval and returning        
of the device.  

 

Budget 

Date  Item  Cost Total Left 

1 Feb  NA  $600 

8 Feb  6 IMUs and   
shipping 
(SparkFun) 

$89.30  $510.70 

10 Feb  1 Photon and   
shipping 

$27.81 $482.89 

17 Feb  Moebius Chassis $63.99 $418.90 

 

Risk Management 

Currently, we are still waiting on the arrival        
of the Moebius omnidirectional wheel base. It was        
estimated to arrive this past week, but recent issues         
indicate that our package is lost. We are not sure          
when it will arrive, so we are adapting to this by           
working on all other aspects. 

  
There are several aspects of our project       

which are dependent on communication between      
different modules (i.e. IMUs to Photon, Photon to        
Jetson, Jetson to servo motors). We will do        
preliminary tests to just send a few bits of data from           
each, get acknowledgements, and send some data       
back. This will ensure that communication is possible        
and does not hinder further work that depends on         
communication as a foundation.  

Related Work  
There are two existing similar projects:      

Smart Trashbox from Minoru Kurata and Smart       
Trash Can from F19 Team B4. The success rate for          
both projects were relatively low, with Kurata’s       
device at about 20% and Team B4’s at about 50%.          

Clearly, we hope to accomplish a success rate over         
50%. 

 
Kurata’s device is a much faster and       

mobilized version than Team B4’s, and so it could         
cover greater distances. This probably contributed to       
the low success rate there was a lot of distance to           
cover. From Team B4’s project demo, it appears that         
their trash can could not move very far (~30cm), and          
so the team had a high success rate from aiming the           
object thrown very close to the device’s rim. We         
hope to make our device much more receptive.  

Summary  
Our goal is to create a motorized device that         

is able to play the game of Fetch, hence the infamous           
title of ‘That’s so Fetch.’ Our project starts with an          
initial calibration with the user where the IMU on the          
user’s hand is close to the the device’s IMUs for a           
starting point. Then, the device will be able to move          
away at a distance about 2m from the user, anticipate          
the trajectory of the object thrown using data from         
the user’s pre-throw, catch the object thrown, and        
move back to the user to return the object. Moving          
back to the user is possible by reversing the         
difference from the initial calibration.     
Communication from user to device is made through        
wireless connection between a Particle Photon and a        
NVIDIA Jetson Nano. The Jetson will then control        
the servo motors, which guide the omnidirectional       
wheels, and move them in a way where our 3D          
printed net atop the base will catch the object.  
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