
18-500 Design Report: 2 Mar 2020
1

That’s so Fetch
Luca Amblard, Dan Barychev, Hana Frluckaj

Electrical and Computer Engineering,
Carnegie Mellon University

{lamblard, dbaryche, hfrlucka}@andrew.cmu.edu

Abstract
Our project is to develop a motorized device that
plays Fetch. After an initial calibration with the user,
the device will be able to move away, anticipate the
trajectory of the object thrown using a pre-throw,
catch the object thrown, and move back to the user to
return the object. Calibration will be facilitated
through the use of IMUs, which are also instrumental
in predicting object trajectory from the user’s hand.
Communication from user to device is made through
wireless connection between a Particle Photon and a
NVIDIA Jetson Nano.

Index Terms
Inertial Measurement Unit (IMU), Particle Photon,
I2C, Wireless Communication, NVIDIA Jetson
Nano, Kalman Filter, Dead Reckoning, Target
Estimation, PID

Introduction
Our project is aimed towards children who

would like to play fetch with a real dog but are
unable to because of allergies, housing constraints,
and other external factors. While the only current
function of our device is the ability to play fetch (i.e.
anticipate throw, catch, and return), most commercial
robot dog products do not have this option. As far as
other motorized devices capable of catching items,
there have been similar projects in the past, e.g.
Smart Trashbox from Minoru Kurata and Smart
Trash Can from F19 Team B4. Kurata’s device had a
success rate of about 20% but was highly adaptable
and motorized, while Team B4’s device had a
success rate of about 50% with small movements and
low motorization (i.e. small range of ~30 cm). Our
goal is to create a highly mobile device (i.e. range of

1m) with a success rate over 50%. While previous
projects had different approaches, to our knowledge,
this is the only project to use inertial measurement
units to predict the trajectory of the object thrown.
Our method involves an initial calibration between
user and device, data sent over wifi to the motorized
device, a control system that coordinates the
omnidirectional wheels to anticipate the landing, and
a successful return of the caught object to the user.

Design Requirements
The design requirements for our

catch-and-retrieve system center around the need for
an intuitive dog simulator that can catch at a >50%
rate and effectively bring the ball back to the user for
consecutive throws to different locations. In order to
achieve a >50% success rate and properly mimic the
experience of playing catch, we are enforcing a
starting distance of 2m away from the user and
limiting the catch radius to 1m around this starting
position. Thus, if the user decides to throw outside of
this range, the simulator will refuse to catch the ball
and a manual reset will be necessary.

In order to create a viable catch scenario, we

are also enforcing the use of an action we term the
“prethrow”. This forces the user to wind up into their
next throw and the arc of this prethrow thus indicates
the approximate landing location and angle. Once the
simulator is facing the user, the user can release the
ball and the robot’s adjustments towards the actual
landing location can take place. These adjustments
are thus likely to be minimal and realizable within the
time it takes for the ball to be caught. We also ask
that the user throw the ball in the general direction of
the robot once the robot is facing them. This
minimizes the need for lateral movement which is
generally slower than vertical movement. To make

18-500 Design Report: 2 Mar 2020
2

sure that the angle of the prethrow and actual throw
don’t significantly differ, we are setting a
requirement for a <5% difference between the two
that we will test by subtracting them as soon as the
actual throw occurs.

Another critical aspect to our design is the

maintaining of correct relative distance between the
simulator and the user. We will begin the throw
experience by the user picking the ball out of the
catch receptacle to calibrate position between their
tracking IMU and the robot’s tracking IMU. Then,
after the simulator drives out 2m, catches the ball,

and returns to the user, the user’s retrieval of the ball
should recalibrate the position system. However, it is
more than likely that a positional offset can occur
during this time. Thus, we are enforcing a
requirement of less than 12.5cm offset per each catch
since 12.5cm will be the radius of the catch
receptacle. We will calculate this offset by measuring
the distance away from the proper 2m drive-out point
at the start of the next catch. If this requirement is not
met, the user will have to place the robot in front of
them and initiate a physical reset with the IMUs in
extremely close proximity.

Architecture and/or Principle of Operation

Our design consists of two main parts: the
IMU data collection and transmission from the user’s
arm and the robot which is responsible for all the
computation and reaching the target location on time
to catch the ball thrown by the user.

We will be using the MPU 9250 (IMU) for
motion sensing. It is small, light and contains an
accelerometer as well as a gyroscope which we will
both need to estimate the location where the ball will
land. The raw data of the devices is read by the

Particle Photon which communicates with the IMUs
through the I2C serial communication protocol.

The Particle Photon, which is an IoT device,
transmits the IMU raw data to the Jetson Nano which
is located on the robot car chassis. All the
computation is done on the Jetson Nano since it has
more processing power than the Photon. The Particle
Photon and the Jetson Nano communicate via WiFi.
When the whole system is turned on, a socket
connection is set up between the two devices and the
Particle then sends data streams of IMU data to the

18-500 Design Report: 2 Mar 2020
3

Jetson Nano via the Transmission Control Protocol
(TCP).

Once the accelerometer and gyroscope data
have been received on the Jetson Nano they are
converted to ​m s​-2 and ​deg s​-1 respectively. The data is
then passed through a Kalman filter which is used to
obtain 3D points in space. The angle of projection
and speed of the ball when it is released from the
hand are applied to suvat equations to predict the
landing location of the ball. Details about how the
ball release from the hand is detected will be covered
in the System Description section. We’ll have to use
the heaviest possible ball that will not break the robot
in order to minimize air resistance. The exact size and
weight will be determined when we receive the robot
cart chassis.

As the robot moves the distance left to travel

and the direction to the target are updated using the
previous position and the distance and direction
travelled from that position. The data of the
displacement from the previous position is obtained
by passing the data of the IMU on the board through
Kalman filters. The Jetson Nano communicates with
the IMU on the robot using I2C as well.

The robot moves by controlling four motors
on an omni-directional robot car chassis. To move at
a given angle the robot car will have to move each of
the four motors at certain speeds and angles. We will
tune the parameters for mapping angle to motor target
speeds and direction when we receive the robot car
chassis. The direction and speed of each motor are
fed into a PID control system that determines the
Pulse Width Modulation (PWM) duty cycle. This
duty cycle is passed into the PWM driver and the
direction of rotation is passed into the motor driver.
The speed of the given motor is determined by the
encoder driver. The error, which is the absolute value
of the difference between the target speed and actual
speed are passed back into the controller of the
system.

We decided to use C++ for the following

three reasons: C++ is compatible with the Jetson
Nano, C++ is the language used to program the
Particle Photon so this would make the networking

between the devices easier and C++ is one of the
fastest programming languages, which is important
for the project because the robot needs to react very
quickly.

Design Trade Studies

Tradeoffs over IMU placement (inside ball v. on
wrist)

In discussing possible IMU placement
configurations, we considered the possibility of
placing an IMU inside the ball. The benefit to doing
this would be the ability to track the trajectory of the
ball as it moves through the air, thus mimicking the
functionality of a CV setup. The issue with this setup,
however, is that we would not know the ball’s release
point from an internal IMU alone. In order to avoid
beginning landing prediction once the ball fell from
the air, we would still need to have an IMU on the
user’s hand to determine release. We decided that
having IMUs in three different locations (hand, ball,
and robot) would be too excessive and would take
away from the uniqueness of the technical challenge.
In addition, we would like for our system to work
with multiple types of balls. We thus decided on
having a knuckle IMU for release and a wrist IMU
for trajectory upon release.

Jetson Nano v. Raspberry Pi

We are using a Jetson Nano in our project as
opposed to a Raspberry Pi because it has more
processing power so it would be able to do
computation faster. Cost is not a factor because Luca
already owns a Jetson Nano. There are no device
compatibility issues that arise in our project from the
use of the Jetson Nano instead of the Raspberry Pi.

Photon v. Arduino & Transmitter

We needed a WiFi transmitter in order to
send data from the IMUs to the Jetson, and the two
best options were just using a Photon, or using an
Arduino in conjunction with a transmitter. We
decided to use the Photon for a number of reasons.
Hana was already familiar with the device since they
had worked with it on a previous project. There is an
active community surrounding the device with

18-500 Design Report: 2 Mar 2020
4

detailed documentation. The device also has a web
IDE and intuitive user interface. In the event that we
have irreconcilable issues with the Photon, we may
switch to an Arduino with a transmitter (and possibly
a receiver), although that may lead to some latency
issues.

I2C v. SPI

The the main advantages of SPI over I2C are
the following: SPI is faster and consumes less power
than I2C. However, we have decided to use I2C for
the serial communication between the arm IMUs and
the Particle Photon and the IMU on the robot and the
Jetson Nano. I2C is less affected by noise than SPI
and makes sure that data sent is received by the target
slave device. Receiving accurate data from the IMUs
reliably is important to accurately predict the ball’s
landing location coordinates. Additionally, I2C is
better suited to send data through long wires. The
wires would be along the user’s arm in our case.

TCP v. UDP

One thing when planning communication
over a browser socket between the Photon and Jetson
is that there are two options: UDP and TCP. Both are
protocols used for sending packets over the Internet
and both are built on top of the IP protocol. TCP is
much more commonly used, and UDP is mostly the
same except that it doesn’t do error correction,
resulting in faster speeds. If we were worried about
speed, we might consider UDP. However, given the
extra time from the pre throw and the Jetson’s
overkill processing power, TCP is the better choice.
There are more resources online for sending data
through TCP and error correction can benefit us in
debugging and other issues down the road. [8​]

Omni-Directional Wheels

We are using omni-directional wheels for the robot so
it can directly move to the target location in a straight
line. We think that this method would be faster than
rotating the robot and then moving in the direction of
the target location. It is crucial for the robot to reach
its destination as fast as possible in order to catch the
ball. We have not received the Mobius robot car
chassis yet but we will proceed to testing both
approaches to confirm this choice as soon as we

receive it. The diagram below indicates how
omnidirectional wheels can seamlessly change
direction.

WiFi v. Bluetooth

In our choice for a WiFi module, we
discussed the differences between the Particle
Photon, a WiFi IoT device, and the Particle Argon,
which is also Bluetooth capable. In the end, we
decided that WiFi best fits our constraints. We’re
planning on having the device capable of catching
over a relatively large distance compared to other
projects, 2 meters. WiFi is much better at covering
this distance at a much faster speed. A drawback of
WiFi is latency and timing issues; however, this issue
is eliminated by the fact that our method involves the
pre throw. We timed the transmission of data over
WiFi, which turned out to be 0.1 seconds. This is
well within the time granted to us from the end of the
pre throw’s trajectory at the cusp of release to the
time for the user to bring their arm back for the actual
swing, and then for the user to actually swing and
throw the object, about 2 to 3 seconds. Therefore,
we’re confident WiFi is the best choice for our
project.

18-500 Design Report: 2 Mar 2020
5

System Description

IMUs to Photon

The gyroscope data and accelerometer data

are read from the two MPU 9250 devices (IMUs) by
the Particle Photon using I2C. The I2C clock
frequency for the IMUs is 400kHz. The data is then
transmitted from the Particle Photon to the Jetson
Nano over WiFi. The Photon and the two IMUs are
connected as shown in the diagram above. We found
a ​MPU9250PhotonLibrary [1] which contains code to
initialize I2C as well as code for the Photon to read
from and write to different IMU registers.

The IMUs contain a register called
WHOAMI which contains the device address of the
IMU. One IMU will have WHOAMI register value of
0x71 which is the default value and another IMU will

have its WHOAMI register value changed to another
value so the Photon can address each individual IMU.

We will first try 4.7kΩ pull-up resistors as

these are typical pull-up resistor values to start with.
We will carry out some tests to determine the highest
possible pull-up resistor values for which the I2C
serial communication will function properly in order
to minimize current flow through them and power
consumption. The Photon has an internal pull-up
resistor but the IMUs don’t so we will just use these
pull-up resistors shown in the diagram for both the
Photon and the IMUs.

https://github.com/jdvr1994/MPU9250PhotonLibrary

18-500 Design Report: 2 Mar 2020
6

The gyroscope configuration and
accelerometer configuration registers will be used to
select the full-scale range for each device. The
gyroscope can be set to have a full-scale range of
either ± 250dps (degrees per second), ± 500dps, ±
1000dps and ± 2000dps. The accelerometer can be
set to have a full-scale range of either ± 2g (g =
9.81ms​-2​), ± 4g, ± 8g or ± 16g. We will confirm the
scale to use for each device by spending time moving
the IMUs in different ways while data is being
collected from them. It is important to use the
smallest scale possible for each device because
smaller scale range leads to greater sensitivity.

The IMUs will be polled for data at a

frequency of 100Hz. The reason for this is the
following: the polling frequency needs to be high
enough to detect the user’s hand opening, which is
when the ball leaves the hand. Five IMU readings are
required during the time that the hand is opened and
our estimate is that it will not take less than 0.05s for
a user to open their hand. To poll the IMUs five times
in 0.05s, we need a polling frequency of 100Hz.

Particle Photon to NVIDIA Jetson Nano

The Particle Photon is not only capable of
receiving data over WiFi, but it is also a WiFi
transmitter. We will be using this to send data to the
NVIDIA Jetson Nano, which is capable of receiving
such data. The Photon has a single antenna port and
with a frequency band of 2.412 to 2.462 GHz. ​When
the Photon is powered via the USB port, VIN will
output a voltage of approximately 4.8VDC. When
used as an output, the max load on VIN is 1A. The
typical average current consumption for it is 80mA
with 5V at VIN with Wi-Fi on. [10]

The NVIDIA Jetson Nano has serial

peripheral interface controllers that operate up to
65Mbps in master mode and 45Mbps in slave mode.
It allows a duplex, synchronous, serial
communication between the controller and external
peripheral devices. It consists of four signals, SS_N
(Chip select), SCK (clock), MOSI (Master data out
and Slave data in) and MISO (Slave data out and
master data in). The data will be transferred through

MISO on every SCK edge. The receiver always
receives the data on the other edge of SCK.

The goal is to create a serial connection

between the Photon and the Jetson, hopefully
achieved by sending a message virtual serial port
which is then redirected to a portal using the TCP
protocol. The Photon will act as the TCP Server and
the Jetson as the TCP Client, with the Jetson needing
a Nodejs server that can send “D7-ON” and
“D7-OFF” and the Photon needs a means to
communicate with it, which we are planning on using
a modern browser web socket for. [11​]

IMU Raw Data Conversion

Here are the formulas to convert gyroscope
data and accelerometer data to angular velocity(in
deg s​-1​) and acceleration (in g) values respectively:

For the gyroscope:

angular velocity (​dps​) =
aw data / sensitivity scale factorr

For the accelerometer:
acceleration (g) =

aw data / sensitivity scale factorr
g: gravitational field strength in ​m s​-2

The raw data can take values between 0 and
32768. Sensitivity scale factor (S.F.) is determined by
the full-scale range used by the corresponding device.
The details about full-scale range are located in the
IMUs to Photon section. The tables below show the
sensitivity scale factor that corresponds to each
full-scale range for each device (accelerometer and
gyroscope).

Gyroscope :

Full Scale Range (​deg s​-1​) Sensitivity S.F. (​deg​-1​ s ​)

± 250 131

± 500 65.5

± 1000 32.8

± 2000 16.4

18-500 Design Report: 2 Mar 2020
7

Accelerometer:

Full Scale Range (​g​) Sensitivity S.F. (​g​-1​)

± 2 16384

± 4 8192

± 6 4096

± 8 2048

Kalman Filters
The key to deciphering the position across

our catch system will be the Kalman filter. This
mathematical concept allows us to determine
approximate position, velocity, and angle by using
successive measurements of acceleration and angular
velocity from our IMUs. The key to the Kalman
filter’s functionality is a continuous loop between
predicting the upcoming state and updating the error
covariance calculations we use to create that
prediction. As a result, we receive a relatively
accurate representation of our position by taking into
account the error that occurs due to the IMUs
constant motion.

We will use a Kalman filter to determine the

3D position, velocity, and angle of the ball upon its
release point. The wrist IMU’s acceleration readings
will be used to predict both velocity and position. The
IMU’s angular velocity readings, on the other hand,
will be used to determine the release angle.

The Kalman filter will also be used to track

the positional movement of the simulator from its
IMU. These readings will be essential to maintaining
the correct relative position between the user and
simulator.

[12]

Parabolic Landing Estimation

Once we receive the 3D coordinates, speed,
and angle from the Kalman filters, we must perform
landing estimation using common parabolic
equations. The necessary definitions are shown in the
diagram below

We will derive ​t from the equation for

vertical distance and then apply it to the equation for
horizontal distance. Since we are defining the robot’s
movement in terms of vertical distance and angle
(similar to polar coordinates), we don’t need to
project the horizontal distance equation onto another
plane.

Displacement Update and Motor Rotation
Mapping

The robot’s projected travel distance and
direction are updated at a regular frequency, which
we will determine, using data read from the IMU on
the robot. Once the final landing place is anticipated,
the robot now has a fixed direction to move in. This
direction determines in which manner the
omnidirectional wheels will spin, albeit all in a
uniform manner. The mapping from direction and

18-500 Design Report: 2 Mar 2020
8

distance to travel to motor rotation will be determined
once we receive the robot car chassis. From the IMU
data received at a regular interval, we may obtain
how close the robot is to the fixed landing location,
and as a result, control acceleration/ deceleration.

Motors

The NVIDIA Jetson Nano will also be used
to control the motors on the Moebius omnidirectional
wheel base. The motors within the Moebius base are
servo motors. Our goal is to control the servo motors
over an I2C-controlled PWM/servo driver. PWM is a
common method used for controlling motors because
of fast digital pulses instead of a continuous analog
signal. ​The Jetson has the capability of generating
two PWM pulses on the J41 Header. However, we
need to reconfigure the device tree to make these
signals available on Pins 32 and 33. We will be using
the PCA9685 breakout board, which uses 3.3V
supply from J21 Pin 1, and GND from J21 Pin 6.

We will be using the Adafruit ServoKit

Library because it is a ​CircuitPython helper library
for the PWM built on top of the Jetson Library,

which also has a C++ version. We’re going to be
using the version that supports C++ as our other
devices, the Photon and Jetson, also use C++. ​A 5V
and 4A power supply is connected to the breakout
board. ​From the library, we will be using the
‘​throttle​’ command function, which is useful for
controlling continuous servos and the similar
electronic speed controllers for motors.

The rotation of the servos will be controlled

using a PID control system. The procedure for each
servo is as follows. The target speed is input into the
control system as shown in the diagram. The error is
calculated by subtracting the target speed from the
actual measured speed and it is input into the PID
controller which gives a value between -1 and 1. This
value is input into the servo.throttle function
mentioned above and this causes the servo to rotate.
The actual speed of rotation of the servo is measured
by the servo encoder and is fed back to calculate the
new error. The proportional, derivative and integral
parameters will be tuned to minimize steady-state
error, rise time and settling time. [13]

Project Management

Schedule ​(see last page)

Team Member Responsibilities
Currently, Dan is detailing the Kalman filter

design to map raw IMU data to coordinates in 3D
space, Luca is focused on the intricacies of the I2C

communication between the Particle Photon and
several IMUs, and Hana is dealing with the
networking between the Particle Photon and the
Jetson Nano and also the motor drivers on the Jetson
Nano. In future steps, Dan will be largely responsible
for projectile prediction, Dan and Luca will be
responsible for the controls aspect of the base, Luca
will be primarily responsible for IMU data analysis
and system architecture, Hana and Luca will work
together on interfacing the Photon with IMU data and
sending that to the Jetson, and Hana will be

18-500 Design Report: 2 Mar 2020
9

responsible for motor control and base construction.
All team members will convene towards the end of
the project for ensuring proper retrieval and returning
of the device.

Budget

Date Item Cost Total Left

1 Feb NA $600

8 Feb 6 IMUs and
shipping
(SparkFun)

$89.30 $510.70

10 Feb 1 Photon and
shipping

$27.81 $482.89

17 Feb Moebius Chassis $63.99 $418.90

Risk Management

Currently, we are still waiting on the arrival
of the Moebius omnidirectional wheel base. It was
estimated to arrive this past week, but recent issues
indicate that our package is lost. We are not sure
when it will arrive, so we are adapting to this by
working on all other aspects.

There are several aspects of our project

which are dependent on communication between
different modules (i.e. IMUs to Photon, Photon to
Jetson, Jetson to servo motors). We will do
preliminary tests to just send a few bits of data from
each, get acknowledgements, and send some data
back. This will ensure that communication is possible
and does not hinder further work that depends on
communication as a foundation.

Related Work
There are two existing similar projects:

Smart Trashbox from Minoru Kurata and Smart
Trash Can from F19 Team B4. The success rate for
both projects were relatively low, with Kurata’s
device at about 20% and Team B4’s at about 50%.

Clearly, we hope to accomplish a success rate over
50%.

Kurata’s device is a much faster and

mobilized version than Team B4’s, and so it could
cover greater distances. This probably contributed to
the low success rate there was a lot of distance to
cover. From Team B4’s project demo, it appears that
their trash can could not move very far (~30cm), and
so the team had a high success rate from aiming the
object thrown very close to the device’s rim. We
hope to make our device much more receptive.

Summary
Our goal is to create a motorized device that

is able to play the game of Fetch, hence the infamous
title of ‘That’s so Fetch.’ Our project starts with an
initial calibration with the user where the IMU on the
user’s hand is close to the the device’s IMUs for a
starting point. Then, the device will be able to move
away at a distance about 2m from the user, anticipate
the trajectory of the object thrown using data from
the user’s pre-throw, catch the object thrown, and
move back to the user to return the object. Moving
back to the user is possible by reversing the
difference from the initial calibration.
Communication from user to device is made through
wireless connection between a Particle Photon and a
NVIDIA Jetson Nano. The Jetson will then control
the servo motors, which guide the omnidirectional
wheels, and move them in a way where our 3D
printed net atop the base will catch the object.

References
[1] Velasquez, Juan. “​MPU9250PhotonLibrary​.”
GitHub​, 9 Oct. 2018,
https://github.com/jdvr1994/MPU9250PhotonLibrary
[2] InvenSense, “MPU-9250 Register Map and
Descriptions Revision 1.4,” RM-MPU-9250A-00
datasheet, September 2013
[3] InvenSense, “MPU-9250 Product Specification
Revision 1.1,” PS-MPU-9250A-01 datasheet, June
2016
[4] Free Tutorials. "Understanding MPU6050 ACC
full scale range," ​YouTube, Oct. 8, 2019 [Video file].
Available:

https://github.com/jdvr1994/MPU9250PhotonLibrary
https://github.com/jdvr1994/MPU9250PhotonLibrary

18-500 Design Report: 2 Mar 2020
10

https://www.youtube.com/watch?v=e28SHRiJBQY.
[Accessed: Feb. 28, 2020].
[5] ​Laukkonen, Jeremy. "Bluetooth vs. Wi-Fi: What's
the Difference?," Lifewire,
Feb. 2020. Accessed on: Feb. 26, 2020. [Online]
[6] ​On, Amlendra. "Difference between I2C and SPI
(I2C vs SPI), you should know.," Aticleworld,
Accessed on: March 1, 2020. [Online]
[7] ​SFUPTOWNMAKER. "I2C at the Hardware
Level," SparkFun, Accessed on: Feb. 28, 2020.
[Online]
[8] AddOhms. "Picking Pull-Up Resistor Values | AO
#25," ​YouTube, May. 3, 2018 [Video file]. Available:
https://www.youtube.com/watch?v=u3Xiy2DVnI4.
[Accessed: March 2, 2020].
[9] ​Hoffman, Chris. "What’s the Difference Between
TCP and UDP?," HowToGeek,
Jul. 2017. Accessed on: Feb. 28, 2020. [Online]
[10] Particle, “Photon Datasheet” V016 datasheet
[11] ​rocksetta. "TCP Server and Client Example
Socket Programs “D7-ON” please," Particle,
Accessed on: Feb. 28, 2020. [Online]
[12] Balzer82. “Kalman.” ​GitHub​, 12 March 2018,
https://github.com/balzer82/Kalman
[13] ​kangalow. "Jetson Nano – Using I2C"
Wordpress, Jul. 2019. Accessed on: Feb. 28, 2020.
[Online]

https://github.com/balzer82/Kalman

18-500 Design Report: 2 Mar 2020
11

