THAT'S SO FETCH

Team B4 (Luca Amblard, Daniel Barychev, Hana Frluckaj)

APPLICATION AREA

- Motorized Device
 - Anticipates user's throw using motion sensors on user's hand
 - Moves to projected landing location
 - \circ Catches ball
 - \circ $\;$ Returns it to the user
- Geared towards customers who:
 - Are allergic to dogs and want to simulate Fetch
 - Want to throw balls for practice

SOLUTION APPROACH (USER)

- IMUs: MPU-9250
 - 3 axis Accelerometers
 - \circ 3 axis Gyroscopes
- One IMU placed on user's knuckles and another IMU placed above user's wrist
- Trajectory prediction from data produced on pre-throw
 - Velocity
 - Angle
- IMUs wired to Particle Photon
- Photon intakes data and will transmit to robot's Jetson

SOLUTION APPROACH (DOG)

- Data from Photon sent over Wifi to Jetson on motorized base
- Jetson runs Kalman filters that get ball position/angle upon release
 - Computes estimated movement needed to anticipate final position
- Jetson controls motors through PID system
- Once caught, base brings ball back to user's position
- Starting position is always 2m in the direction of the prethrow

SOFTWARE DESIGN

Kalman Filter

Ball Position Prediction

Horizontal distance, $x = V_x t$ Horizontal Velocity, $V_x = V_{x_o}$ Vertical distance, $y = V_{yo}t - \frac{1}{2}gt^2$ Vertical Velocity, $V_y = V_{yo} - gt$ Estimated Ball Position (X, Y, Z)

HARDWARE BLOCK DIAGRAM

HARDWARE DETAILS

- Moebius Metal Mecanum Omni Wheel Robot Car Kit
 - Four 12v 330 rpm omnidirectional motors
 - \circ Motor encoder outputs 360 pulses per each rotation cycle

Note: The majority of lateral movement will take place during the pre throw. The goal of omnidirectional motors is to always have the robot face the user

IMPLEMENTATION PLAN: PHOTON-IMU I2C INTERFACE

IMPLEMENTATION: JETSON NANO COMPUTATION

METRICS / REQUIREMENTS

Process	Specs		
Success Rate (#balls thrown v. #balls caught)	> 50%		
User throw range (distance between user and dog)	2m radius		
Device retrieval range	1m radius		
Device basket diameter	25cm		
Projected (prethrow) angle vs. actual angle	< 5%		
Estimated ball landing position - actual landing position	< 12.5cm		
IMU-Motor communication latency	< 200 ms		
Position error after reset	< 12.5cm		

VALIDATION

- The pre throw accurately predicts the thrown angle so robot can perform minimal lateral movement for the actual throw
 - 5% allowed error measured by lateral variation of the prethrow predicted release position from actual release prediction and computing how these angles relate
- Actual landing position within 12.5cm of predicted landing position
 - \circ $\,$ Measure from the actual landing position v. estimated using a ruler $\,$
- When resetting for another throw, the error computed in our position computation should be within 12.5cm for rethrow assuming the same starting points.
 - If this fails, we will implement a physical reset system to determine a new set of throw parameters

SCHEDULE

Tasks:	24 Feb	2 Mar	9 Mar	16 Mar	23 Mar	30 Mar	6 Apr	13 Apr	20 Apr	27 Apr	4 May
Motion Sensing											
Analyze process and planning	DONE										
Ordering parts	DONE										
Reading data through I2C											
IMU data transmission (wifi)											
IMU-position mapping											
Dog Simulator											
Analyze process and planning	DONE										
Projectile prediction - physics									7		
Order parts for Dog	DONE										
IMU data transmission (wifi)											
Build mobile base for dog											
Controls mobile base (wheels and motors)											
Catching/retrieval			BREAK								
Returning the ball											
Integration & Testing								CARNIVAL			
Slack Time											
	Key:										
		Daniel	Luca	Hana	All						