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Abstract— It cannot be overstated how much tra-
ditional 2D camera technology has shaped our progress
and culture. However, 2D images do not effectively cap-
ture the details of an object when it is rotated around.
This information is potentially crucial to archaeological
archivists that want to preserve the object in its en-
tirety, with the potential to 3D print and recreate these
objects. Our goal is to be able to accurately map and
scan the physical object into a digital three-dimensional
representation for the purpose of archaeological docu-
mentation. Our design goals are to design this device
to be able to be used by a non-technical audience:
easy to use, time-efficient, and most of all, accurate in
scanning. Currently, manual 3D modeling by users is
time-ineffective, tedious, and costly, as well as prone to
errors. Our project will uniquely address these issues
in being user-friendly and accurate.

Index Terms— 3D scanning, laser depth triangu-
lation, point cloud generation, pairwise registration,
Iterative Closest Points, point cloud mesh triangula-
tion, stepper motor, motor controller, motor driver,
GPU-accelerated computation

1 INTRODUCTION

The main application use case of our project is to be
able to scan archaeological objects for preservation in a 3D
format. The goal is to be able to accurately map these
objects into a widely usable 3D format for documentation
and reproduction via 3D printing. Thus, our requirements
will be focused around the accuracy of the scan. However,
the device should also have a reasonably fast scanning time.
We thus aim to have these two accuracy requirements: 90%
of non-occluded points must be within 2% of the longest
axis to the ground truth model, and 100% of non-occluded
points must be within 5% of the longest axis to the ground
truth model. Other requirements will be covered in the De-
sign Requirements section (3). Our basic approach was be
to use a projected laser stripe along with a high resolution
digital camera to scan the object atop a rotating platform.
Our approach also allows for combinations of multiple scans
in case some angles of the object are hidden from the scan.

Because of the unfortunate current situation of the
Coronavirus Outbreak, our team members are scattered in
different places with different time zones. This means that
our project must be able to be completed remotely, which
would void any hardware or physical requirement for our
project. Since we are unable to create a physical device
to carry out 3D scanning, we have changed our project
to instead utilize a virtual simulation of a 3D scan. This

simulation is done by taking renders of a 3D scene using
Blender, a 3D animation software, which act as the camera
inputs from our original design. The remainder of our soft-
ware pipeline remains unchanged. This decision to simulate
data capture allows us to stay true to our original design
requirements, while adapting to a changing environment.
Our initial design which contains hardware and physical
components are still included in the Initial Design section
(2) and Appendix A.

There are currently several other competing technolo-
gies which mostly involve either digital cameras or depth
cameras. However, scans that combine multiple views from
a digital camera (multi view stereo reconstruction) tend to
have lower accuracy and are unable to detect concavities in
the object accurately, and also requires very strict lighting
setups to ensure the best scans. We also considered using
depth cameras to give a 2D depth map which would tell
us depth of each pixel scanned, but most depth cameras
do not give very precise accuracy information, and depth
cameras tend to be much less precise than using laser based
approaches. We will discuss more details of the many differ-
ent approaches we considered in depth in the Design Trade
Studies section (5).

2 INITIAL DESIGN

This section contains the general idea of our initial de-
sign. More information can be found in Appendix A.

2.1 Architecture Overview

Allow us to start from the user story to link into our
initial architecture design.

The user first presses the start button, and if the de-
vice is not calibrated, the program will prompt the user to
insert the laser plane calibration object such as a checker-
board pattern and perform the calibration. Then, the user
will start the scan and a point cloud will be generated. If
additional scans are required, the user will rotate the object
in a way that provides more information about the bottom
or the concavities of the object, then these point clouds will
be coalesced with pairwise registration. After a final point
cloud is obtained, we will perform triangulation to output
the final mesh.
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Figure 1: User Story Flowchart

This process leads into our software pipeline design,
which directly corresponds with the user story. Note that
the pipeline diagram above assumes the camera is already
calibrated. We will use the camera image to perform laser
detection, and for each image with the laser in it, we will
generate Cartesian coordinate values based on how the laser
warps around the object. We will also remove the back-
ground points and the points from the turntable. Com-
bining this with rotational information we have from the
stepper motor driver, we will be able to generate a point
cloud, which will be passed through some noise reduction
and outlier removal filtering. If multiple scans are required,
then we will use pairwise registration to combine the two
point clouds and output a final point cloud. Then, we will
use triangulation on the point cloud to produce an output
mesh. Triangulation basically involves forming triangles on
the surface using close neighboring points, which produces
a triangle mesh that can be easily 3D printed.

Figure 2: Software Pipeline

Based on this software pipeline, we can have a more
comprehensive system specification diagram now, which
includes components for the stepper motor, GPGPU, con-
trollers, and more. Please refer to Figure 37: Initial System
Specification Diagram in Appendix B for our initial system
specification diagram.

The proposed integrated hardware platform includes a
4-core embedded system with programmable GPGPU, in-
terfaces between the system and other components of our
design, as well as logical connections between software el-
ements. From the camera, data comes into the embedded

system by USB. This data is processed by our core system
controller process, which will either initiate the execution
of GPU kernels and subroutines for 3D scanning using the
image, or tell the motor controller to rotate a certain about
to capture additional images, depending on the state of the
controller within the process it is trying to accomplish. A
software state machine within the core system controller
process will match the behavior that can be found in Fig-
ure 1: User Story Flowchart based on user input and the
current executing operation.

A motor controller process will be responsible for setting
the GPIO pins to interface with the stepper motor through
the motor driver, setting the rotation to a specific angle. A
breadboard and wires will be used to interface between the
motor driver and the stepper motor. The stepper motor
angle will be communicated to the motor controller from
the core system controller based on the stage of the scan.
An additional process will be used to handle interrupts an
processing related directly to user input. Having this ad-
ditional indirection for user I/O helps enforce protection
boundaries between our system and the outside world (only
very specific types of input can make it through). Since we
have 3 processes and 4 cores on the embedded system, each
process can have a core dedicated to it to maximize perfor-
mance. For the motor controller, we can change the kernel
scheduling algorithm used to allow it to be prioritized for
real-time deadlines.

Besides the physical components and the software pro-
cesses, various GPGPU kernels and subroutines will exist
within the system to carry out optimized execution of our
required algorithms. A GPGPU kernel describes the exe-
cution of a single core in a many-core programming plat-
form. Launching a GPGPU kernel first copies data from
DRAM into the GPU’s memory, sets up the scheduling and
synchronization structures of the GPGPU to support the
provided kernel, and begins execution of each execution
core ”simultaneously”. The result is then copied back into
DRAM. We will implement a majority of our optimized al-
gorithms with compute kernels, including calibration, ray-
plane intersection, iterative closest points for pairwise reg-
istration (single object multiple scans), and other geometric
operations.

2.2 System Description

Our initial system consists of an integrated hardware
platform, a laser line diode, a digital camera, the rota-
tional platform, and the physical structure to hold up each
component. The integrated hardware platform can be fur-
ther broken down into a motor component (consisting of
the software motor controller, the motor driver board, and
the stepper motor itself), the algorithmic components (con-
sisting of the GPGPU kernel routines on the embedded
system), and the state control component (consisting of
processes executing on the 4 core embedded system, deter-
mining the control flow of the system). Figure 37: Initial
System Specification Diagram in Appendix B to see con-
nections between components.
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2.2.1 Sensor Setup

The sensor setup consists of a statically arranged laser
line diode and digital camera. The laser line diode provides
a red light at 650nm wavelength with ideally a consistent
Gaussian intensity distribution across the line for the entire
length of the line. The digital camera must have sufficient
resolution to meet our accuracy requirement. We chose an
8 megapixel (the highest commercially available for rea-
sonable price) camera to minimize the effective distance
between each pixel and maximize our accuracy.

2.2.2 Mechanical Setup

The mechanical setup consists of all the components of
the system, and determines how they are arranged in phys-
ical space with respect to each-other. Figure 3: Mechanical
Setup (Front View) and Figure 4: Mechanical Setup (Side
View) show how the components would be set up.

Figure 3: Mechanical Setup (Front View)

Figure 4: Mechanical Setup (Side View)

The rotational platform forms the physical basis of the
device, with the camera and laser line diode positioned at
a short distance (approximately 20cm) away pointing to-
wards the center of the rotational platform. The platform
would be mainly composed of a base, a motor, a gear on the
motor’s shaft, a lazy susan bearing to reduce friction, an
internal gear, the top platform, and a high-friction surface.
The high-friction surface here is to simply help reduce the
chance of the object slipping off-center while the platform
is rotating. The base here is to give the platform itself
enough height so that the motor can be put under. The
motor with a gear attached to the shaft will be inside the

platform. The lazy susan bearing will be on top of the
base, and the internal gear will be attached on top of the
lazy susan bearing, and the top platform will be attached
on the internal gear. The gear on the motor’s shaft will
be connected to the internal gear, and when the motor ro-
tates, the platform will rotate with it. Figure 5: Platform
Component Breakdown below shows a breakdown of how
the platform itself would look like.

Figure 5: Platform Component Breakdown

From the design trade studies, we are using the follow-
ing items for the components mentioned above [16]:

• Motor: NEMA 23 Stepper Motor

• Gear on motor’s shaft: 3D-printed to control the gear
ratio and dimensions

• Lazy Susan Bearing: 10” Swivel Lazy Susan Bearing

• Internal Gear: Laser-cut Acrylic Plexiglass Sheet to
control the gear ratio and dimensions

• Top Platform: Plywood 15” Circular Disc

• High-friction Surface: Neoprene Rubber Sheet

2.2.3 Hardware Setup

The integrated hardware platform consists of the
NVIDIA Jetson Nano embedded platform, the DM542T
motor driver, and USB/wires/breadboards to provide the
interface to our external sensor, motor, and user. The
NVIDIA Jetson Nano has the following notable specifica-
tions relating to our project:

• 128-core Maxwell GPU

• Quad-core ARM A57 @ 1.43 GHz CPU

• 4 GB 64-bit LPDDR4 25.6 GB/s Memory



18-500 2D23D Final Report - May 6, 2020 Page 4 of 31

• Video Encode/Decode at 30fps for 2x 4k
(H.264/H.265)

• 4x USB 3.0 external ports

• GPIO pins for motor control

2.2.4 State Control Subsystem

A 4-core embedded system with programmable GPGPU
will be the main computational platform for our device.
Specifically, the NVIDIA Jetson Nano embedded system.
This system will have 3 of our dedicated processes running
on it while the device in in action:

• User I/O Controller: Enforces protection boundary
between user behavior and device logic. Only rea-
sonable commands will be passed from this controller
to the other processes, and only intended output will
pass from other processes to the user. This indirec-
tion layer helps prevent the user from accidentally (or
intentionally) tampering with the device logic.

• Core System Controller: This process orchestrates
the order of total functionality of the system. A
software state machine is implemented to match the
behavior of our user story flow chart (See Figure 1:
User Story Flowchart). The Core System Controller
interfaces with the user via the User I/O Controller
(and indirectly USB), with the rotational platform
via the Motor Subsystem, with the GPGPU via ker-
nel launches (Algorithmic Subsystem), and with the
camera via a USB interface on the NVIDIA Jetson
Nano.

• Motor Controller: This process rotates the stepper
motor by angles determined and communicated by
the core system controller. The motor subsystem de-
scription will go deeper into its behavior.

We chose to divide the computation work across three in-
dependent cores to maximize performance. The User I/O
Controller rarely runs, but it should respond quickly to
user inputs, and therefore it is left idle so that we can max-
imize the response time between an I/O device interrupt
(new data from USB) and processing the I/O. The motor
controller process on the other hand is real-time deadline
driven, as it must continuously step the motor at specific
angles to coordinate with the camera via the core system
controller. Because of this, we plan on using a soft real-
time scheduling algorithm for this process. We will also
ask the kernel to separate these processes across the cores.
The remaining core can be used for background processes
for the OS.

2.2.5 Motor Subsystem

The motor subsystem is responsible for providing ac-
curate control of the stepper motor turning the rotating
platform during 3D scanning. This subsystem consists of

both hardware and software components. The stepper mo-
tor itself accepts PWM wave modulation to control how
many steps to take in which direction (or partial steps).
Since such signals are difficult to generate manually, we
are using a motor driver board DM542T to convert GPIO
signals from the Nvidia Jetson Nano into waveform com-
mands for the stepper motor. A breadboard with wires
attached to the pins on both the driver and the stepper
motor will transfer this signal to the motor. As noted be-
fore, the motor subsystem will have heavy communication
with the state control subsystem to coordinate camera im-
age captures. Both the camera latency and throughput, as
well as the step amount and speed, have an effect on the
details of this coordination.

2.2.6 Algorithmic Subsystem

The algorithmic subsystem is completely in software,
and is mostly data-driven. Wheras the state control sub-
system determines what happens across the system at any
point in time by using the CPU of the embedded system
with I/O and interrupts, the algorithmic subsystem utilizes
the GPGPU to massively parallelize data-driven algorith-
mic code, such as image processing and geometric transfor-
mations. The algorithmic subsystem generally consists of
GPGPU kernels which implement the required computa-
tions of our device, including calibration, computer vision,
point-cloud generation, pairwise registration, and mesh tri-
angulation, as well as accuracy computation for testing and
validation. Algorithms and descriptions of their implemen-
tations are described in detail in the remaining subsections
of the system description.

2.2.7 Camera and Scene Calibration

There are several components to calibration which must
be performed prior to any 3D scanning [12]. The general
method to convert between a pixel and a world space co-
ordinate is, for pixel u and coordinate p:

λu = K(Rp+ T )

where :

• λ is a scalar intrinsic to the camera and screen size
in pixels

• K is a distortion matrix intrinsic to the camera lens

• R is the rotation matrix between world space and
camera space coordinates.

• T is the translation matrix between world space and
camera space coordinates.

Then to calibrate each of these parameters:

• Intrinsic Camera Calibration: this calibration re-
solves constants related to the camera lens and poly-
nomial distortion that may have on the image verses
real world space. This can be done by the mapping
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between known world-space points and known pixels.
This calibration determines the K and λ parameters
above.

• Extrinsic Camera Calibration: this calibration solves
a system of linear equations to find the translation
and rotation matrices for the transformation between
camera space and world space. This system is made
non-singular by having sufficiently many known map-
pings between camera space and world space (specific
identifiable points on the turntable). Therefore, this
requires an object on the turntable to act as these
known points. We will use a CALTag checkerboard
pattern pasted on the turntable surface to help per-
form this calibration. The CALTag pattern is espe-
cially useful since position can be determined even
if some of the image is occluded. This calibration
determines the R and T parameters above.

We setup the linear equation as follows. Suppose

u =
[ ux
uy

1

]
, p =

[ px
py
0

]
Where u is in homogeneous pixel coordinates and p
is on the turntable plane (z = 0), and

ũ = K−1u, R =
[
r11 r12 r13
r21 r22 r23
r31 r32 r33

]
, T =

[ Tx

Ty

Tz

]
.

From this we get that[
0
0
0

]
= ũ× (λũ) = ũ× (Rp+ T ).

Then we solve for R and T from the following system:

ũ×
[ r11px+r12py+Tx

r21px+r22py+Ty

r31px+r32py+Tz

]
=
[
0
0
0

]
.

From this we group the unknowns in a single vector

X =
[
r11 r21 r31 r12 r22 r32 Tx Ty Tz

]T
from which we can derive that[

0 −px (̃u)ypx 0 −py (̃u)ypy 0 −1 (̃u)y

px 0 −(̃u)xpx py 0 −(̃u)xpy 1 0 −(̃u)x

]
X =

[
0
0

]
.

Here we are only considering a single point p. Dur-
ing calibration, we take multiple images, and so we
actually have a set of points {pi|i : 1...n}. We can
use all such points to form a single system of the
form AX = 0 where A ∈ R2n×9. Since vector X
has 8 degrees of freedom, matrix A must have rank
8, meaning we need at least 4 non-collinear points.
Finally we are left to solve the following optimization
problem to compute R and T :

X̂ = argmin
X
||AX||, s.t.||X|| = 1

• Axis of Rotation Calibration: this is computed in a
similar manner to extrinsic camera calibration. The
center position of the turntable is discovered, and the
axis of rotation is assumed to be in the positive z
direction. Note that this assumes that the ’up’ direc-
tion of our camera image is the same angle as the up
direction of the turntable.

• Plane of Laser Line Calibration: With laser line de-
tection, points along the laser in the digital image can
be identified. From this, a linear equation must be
solved to determine the A, B, C, and D parameters
of the plane of the laser line in world space, where
the plane is Ax + By + Cz + D = 0. An additional
calibration object is required here to completely de-
fine the laser plane, instead of simply defining a pen-
cil of planes (all planes rotated around the axis of
the turntable). The known object, which will be a
checkerboard pattern, allows us to know where on
the object the laser points are detected, and from
that collect a set of non-collinear points, which allow
us to solve the linear system.

The Camera and Scene Calibration subsystem is re-
placed by simulation in our final design and will be dis-
cussed in the System Description section (6)

2.2.8 Outlier removal/noise reduction

We will first do outlier removal, and may or may not
do noise reduction depending how bad the point cloud ob-
tained is - we do not want to over-smooth the object since
many archaeological objects tend to have weird shapes and
contours and jagged edges. Point clouds obtained from
3D scanners with any methods, including laser projection,
would regularly be contaminated with some level of noise
and outliers. The first step for dealing with raw point
cloud data obtained after conversion from laser projection
to depth would be to discard outlier samples. Note that
this step would come after removing the points in the back-
ground and the foreground points on the turntable. There
are generally three types of outliers: sparse, isolated, and
nonisolated. Sparse outliers have low local point density
that are obvious erroneous measurements i.e. points that
float outside of the rest of the data. Isolated outliers have
high local point density but are separated from the rest of
the point cloud, i.e. outlier clumps. Nonisolated outliers
are the most tricky – they are outliers that are very close
to the main point cloud and cannot be easily separated,
akin to noise. We will focus on sparse and isolated outliers,
and we can use a method that looks at average distance
to k-nearest neighbors, then removes that point based on a
threshold defined in practice. Let the average distance of
point pi be defined as:

di = 1/k ·
k∑
j=1

dist(pi, qj) (1)
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where qj is the jth nearest neighbor to point pi. Then,
the local density function of pi is defined as follows:

LD(pi) =
1

k
·

∑
qj∈kNN(pi)

exp

(
−dist(pi, qj)

di

)
(2)

with di defined earlier in equation (1). Now we can
define the probability that a point belongs to an outlier as:

Poutlier(pi) = 1–LD(pi)

We can then take this probability and if it is above a
certain threshold, that point will be removed from the point
cloud data (PCD). One reference paper uses Poutlier(pi) >
0.1·di as their threshold in practice which is dynamic based
on di, we can determine this threshold through empirical
testing by seeing accuracy numbers based on threshold val-
ues on multiple test samples.

2.2.9 Global Parameter Optimization

Calibration parameters will be solved for in the least-
squared error sense, to match our recorded points. Global
optimization will then be applied to all the parameters to
reduce reconstruction error. Our implementation of opti-
mization will consist of linear regression. Global Parameter
Optimization is not required in our final design due to the
simulation calibration procedure.

2.2.10 Subsystems that Remain in our Final De-
sign

The following subsystems are still in our final design
and will be discussed in the the System Description section
(6).

• Image Laser Detection

• Point Cloud Generation

• Point Cloud Processing

3 DESIGN REQUIREMENTS

Below are our final design requirements. These require-
ments are updated from our initial requirements which can
be found under Appendix A.

a. Accuracy

Our first requirement is that of accuracy. We aim to
satisfy this requirement: 90% of non-occluded points must
be within 2% of the longest axis to the ground truth model,
and 100% of non-occluded points must be within 5% of the
longest axis to the ground truth model. Previously, to be
able to test this, we would have had to find ground truth
3D models and 3D print them to input into our scanning
pipeline, then compare with the original mesh to get the
accuracy score. However, since we are simulating the scans

with Blender, we can directly compare the ground truth
mesh with the one we generate without having to 3D print
anything - this allows for a more precise accuracy compu-
tation, since previously 3D printing would have caused a
level of error unless we perfectly smooth out all the objects
we test. We will compute the accuracy number by com-
puting distances from each vertex in our constructed mesh
to the surface of the ground truth mesh. The distance
of a vertex to a mesh is the minimum distance between
that vertex’s position and the closest triangle on the other
mesh. These results must match our accuracy requirement
as stated above.

Our accuracy metric that we use in our report is thus
driven by this requirement. We take the percentage of ver-
tex distances from our generated mesh to the ground truth
mesh that is within 2% of the longest axis, as well as the
percentage going the other way around, from the vertices
of the ground truth mesh to the surface of our generated
mesh, and average out these two scores for a final accuracy
score. Additionally, if any of the points are outside of 5%
of the longest axis, the generated mesh immediately fails
our accuracy requirements.

b. Usability

Our next requirements involves usability. We have re-
moved the input object size and maximum weight require-
ments since our input data is now simulated data and we
can adjust these parameters on Blender. However, we are
still requiring our program to output a common 3D format
such as OBJ or STL for ease of 3D printing and storage.
This requirement can be easily evaluated and doesn’t re-
quire any special quantitative tests. Since the program is
now a script, we are not running any user experience sur-
veys anymore.

c. Efficiency

Since we are now simulating sensor data and we would
not be using NVIDIA Jetson GPU as our processor any-
more (which means we cannot write GPU optimized code
which would run a lot faster than Python, which we are cur-
rently using) and due to uncertainties, we are relaxing our
efficiency requirement to 10 minutes which only includes
the time from inputting the scan images to getting the
output mesh, which does not include time to render images
from Blender or time taken by our verification pipeline. We
would be using an i7-2600K processor with clock rate 3.40
GHz, and had access to 8.00 GB DDR3 RAM to test our
benchmarks.

4 ARCHITECTURE OVERVIEW

Allow us to start from the user story to link into our
final architecture design.

Users first run our main script driver.py with an input
directory containing one or more directories of the scanned
images. Users can choose other parameters to adjust our
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script to their specific use case or to analyze different pa-
rameters or algorithms. This will be discussed in more
detail in the System Description section (6) under Algo-
rithmic Subsystem. The program then goes through all
the directories within the main directory and leads into
our software pipeline design. We use the camera image to
perform laser detection, and for each image with the laser
in it, we generate Cartesian coordinate values based on how
the laser warps around the object. We will also remove the
background points and the points from the turntable. From
this and the angle from each simulated scanned image, we
can then generate a point cloud, which is passed through
some noise reduction and outlier removal filtering. If mul-
tiple scans are required, then we use pairwise registration
through Iterative Closest Point algorithm (ICP) to combine
these point clouds and output a final point cloud. Then,
we use triangulation on the final point cloud to produce an
output mesh. Triangulation basically involves forming tri-
angles on the surface using close neighboring points, which
produces a triangle mesh that can be easily 3D printed.

Figure 6: Final Software Pipeline

Based on this software pipeline, we can have a more
comprehensive system specification diagram now, which in-
cludes components for blender, software subroutines, and
verification subsystem. Please refer to Figure 38: Final
System Specification Diagram in Appendix B for our full
system specification diagram.

All code is now run on the CPU of the computational
platform that executes the python code. Our benchmark
system utilized an i7-2600K processor with clock rate 3.40
GHz, and had access to 8.00 GB DDR3 RAM.

Users would only need a computer with Python 3 and
required python libraries installed to be able to run our
program. The required libraries are

• scikit-image: our system uses scikit-image to effi-
ciently load in scanned images from blender simula-
tion to our program

• NumPy: our system uses NumPy as an efficient multi-
dimensional container of our input image data and to
perform matrix operations to for point cloud genera-
tion

• Open3D: our system uses Open3D to read and write
both point clouds and triangular meshes. We also use
Open3D for some triangulation methods to perform
tradeoff analysis. Open3D library provides many use-
ful functions such as estimating normals and perform-
ing triangulation (constructing a triangle mesh from
XYZ points and normals)

• Pyvista: our system uses pyvista to run our main
triangulation algorithm, Delaunay triangulation.

We used Blender to simulate the scanned images.
Blender allows us to control many different parameters.
The main parameter with accuracy-time trade-offs is num-
ber of frames, which we will discuss in Design Trade Studies
section (5) under Number of Frames subsection. We also
set our render settings to be at 60% quality of 1080p which
imitates our original USB camera as closely as possible,
which had 8 megapixels but not the clearest quality. The
60% number was determined by rendering at various ren-
der qualities then comparing them with an image output of
our original camera. We also use the Eevee render engine
in Blender, which runs much faster than the Cycles engine
since it does not perform raytracing, and is realistic enough
to be sufficient for our purposes. To animate a mesh for
scanning custom meshes in Blender, the user would set up
a light to project a laser line in Blender at the center of the
object, as well as set the camera to point at the mesh, and
set the animation keyframes to be 0 degrees of Z-rotation
at the 0th frame, and 360 degrees of Z-rotation at the nth
frame, with n being the number of frames the user wants
to render. The user would then need to run our Blender
script to obtain the camera and laser intrinsic parameters.
We have a Blender file in our repository that already sets
all this up and all the user needs to do is input a mesh
and set up the animation keyframes properly. It is recom-
mended that the user nests the mesh under an ”Empty”
object in Blender and rotate the ”Empty” instead in case
the user wants to move the mesh around but still have it
rotate around the center.

5 DESIGN TRADE STUDIES

5.1 Scanning Sensor

Although we do not have any physical sensors in our fi-
nal design, the blender simulation setup is still based off of
our design trade studies on the scanning sensor used. This
subsection discusses how we came up with this setup.

The specific sensor setup we will use for our project re-
quired the most research and evaluation to compare many
different possible methods. We started from our require-
ments to choose this sensor. In the most extreme case, to
accurately capture an object whose longest axis is 5cm, in
order to meet the requirement that 90% of reconstructed
points are within 2% of that 5cm, we must have points
within 1mm to the ground truth model. From this, if we
consider the number of samples we need across the surface,



18-500 2D23D Final Report - May 6, 2020 Page 8 of 31

we must have accurate samples within 1mm for each direc-
tion (X, Y along the surface). Since the surface itself is a
continuous signal we are sampling from, we can compute
the Nyquist sampling rate as being every 0.5mm along each
direction of the surface.

Now considering the rotational mechanism, the largest
radius of the object from the center of the rotating platform
will be within 15cm. We need then a single rotation per
data capture to be such that the amount of the surface ro-
tated passed the sensor is less than or equal to 0.5mm. This
gives us: 0.5mm

150mm = 0.0033 radians of rotation per sample.
There are five main types of sensors for 3D scanning

that we have extensively considered:

1. Contact sensors: These sensors are widely used
in manufacturing. A Coordinate Measuring Machine
(CMM) or similar may be used, which generally uti-
lizes a probing arm to touch the sensor, and through
angular rotations of the joints the coordinates of each
probed area can be computed. This is a non-option
for our application, both for price and the fact that
we should not allow a large machine to touch timeless
archeological artifacts.

2. Time-of-flight sensors: By recording the time be-
tween sending a beam of light and receiving a re-
flected signal, distance can be computed to a single
point. The disadvantage of this approach is that we
can only measure times so precisely, and the speed of
light is very fast. With a timer that has 3.3 picosec-
ond resolution, we are still not within sub-millimeter
depth resolution, which is not reasonable for this
project. Time-of-flight sensors in the domain of 3D
scanning are more applicable to scanning large out-
door environments [2].

3. Digital camera: By taking multiple digital pho-
tographs from many perspectives around the object,
computer vision techniques can be used to match fea-
tures between pairs of images, and linear transforms
can be computed to align such features. After feature
alignment, and depth calculation, point clouds can
be generated. Computer vision techniques to accom-
plish the above include Structure from Motion (SFM)
and Multi-View Stereo reconstruction (MVS). This
approach has a fundamental flaw: concavities in the
object to be scanned cannot be resolved, since cam-
eras do not capture raw depth data. Surface points
within the convex hull of an object cannot be easily
distinguished from points on the convex hull. The
digital camera methods also have very strict light-
ing requirements to produce accurate scans and will
definitely suffer from accuracy compared to more pre-
cise approaches like the laser-based ones. This is an
immediate elimination for our project, since archeo-
logical objects may have concavities, and we do not
want to limit the scope of what type of objects can
be captured, along with accuracy being our primary
focus of the requirements [10].

4. Structured/coded light depth sensor (RGB-D
Camera): The idea of such a sensor is to project
light in specific patterns on the object, and compute
depth by the distortion of the patterns. Such sensing
devices have become incredibly popular in the 3D re-
construction research community with the consumer
availability of the Microsoft Kinect. The original Mi-
crosoft Kinect only has 320 pixels wide of depth in-
formation for a single depth image. With the upper
bound of 30cm across the surface of the object, this
results in 30cm/320px = 0.094cm between each pixel,
which does not meet our sensor requirement of being
able to detect differences within 0.5mm (0.05 cm).
The newer Microsoft Kinect v2 actually uses a time-
of-flight sensor, and thus does not get measurements
more accurate than 1mm depth resolution. Intel Re-
alSense has recently released new product lines for
consumer and developer structured light depth sen-
sors that are very affordable. Most notably, for short
range coded light depth sensing, the Intel RealSense
SR305 offers 640480 pixel depth maps, which corre-
lates to 30cm/640px = 0.047cm, which is within our
requirements. However, Intel does not advertise any
specific depth resolution for the device, and we can-
not guarantee sub-millimeter depth accuracy - these
depth cameras are more commonly used to scan a
whole room or scan objects from a meter distance.
Perhaps we can obtain a better accuracy figure af-
ter some extensive testing but it may not be valuable
considering we can just build our own laser stripe
triangulation sensor. Since this method only relies
on the camera, lighting environment and material of
the object can have much greater influence compared
with laser triangulation. It also requires a significant
algorithmic effort after data collection to reduce noise
and correlate the views [17].

5. Laser point triangulation: The principle of the
single point laser sensor is that an emitting diode and
corresponding CMOS sensor are located at slightly
different angles of the device in comparison to the
object, so depth can be computed by the location on
the sensor the laser reflects to [14]. Generally the
position of the laser on the surface is controlled by a
rotating (or pair of rotating) mirrors. We can assume
that such a sensor is affordable, can easily measure
with resolution of less than 0.5mm, and that we will
not likely encounter any mechanical issues. However,
the total number of distance measurements we are
required to record is:

2π

0.0033rad
· 300mm

0.5mm
= 1142398 points

Assuming the sensor has a sampling rate of about
10kHz (common for such a sensor), 1142398 points
divided by 10000 points per second gives us 114.23
seconds theoretical minimum capture time with one
sensor. From our timing requirement, assume that
half of our time can be attributed to data collection
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(30 seconds). Then, with perfect parallelization, we
could achieve our goals with 114.23s/30s = 3.80 ≈ 4
sensors collecting concurrently. However, with our
budget, this is not achievable. Even if we had the
budget, it is possible for systematic errors in, for ex-
ample, the mounted angle of a sensor, to propagate
throughout our data with no course for resolution.
To add another set of sensors to mitigate this error,
we would be even farther out of our budget. 8 sensors
x $300 per sensor (low-end price) gives us $2400 for
this sort of setup. Note these calculations are unre-
lated to any mechanical components, but are directly
derived from required data points.

To make budget not an issue for the single point
laser triangulation method, we could choose to adopt
cheaper sensors, such as those with under 1kHz sam-
pling rate. Performing the same calculations as above
with 1kHz sampling rate shows us that we would
require 39 sensors to meet our timing requirement,
which is well out of the realm of possibility (and this
is not accounting for error-reduction, which may re-
quire 78 sensors). If we did not purchase this amount
of sensors, we would drastically under-perform for our
timing requirement.

6. Laser stripe triangulation: Fortunately, there is
an alternative to single-point laser triangulation. We
may use a laser stripe depth sensor, which gets the
depth for points along a fixed width stripe. This
would improve our ability to meet our timing require-
ments significantly. Such devices are not easily avail-
able with high accuracy to consumers, but are usually
intended for industry and manufacturing. Because of
this, we would have the responsibility of construct-
ing such a device ourselves. We have considered the
risk of building our own sensor since none of us are
experts in sensors and electronics. However, as long
as we can find an affordable laser stripe with suffi-
cient brightness, our laser stripe sensor should not
suffer in accuracy. A laser stripe sensor consists of
a projected linear laser source and a digital camera.
Many laser stripe sensors use a CCD camera instead
to avoid the projection brightness issue completely,
but these CCD cameras tend to be too expensive and
would put an unnecessary strain on our budget, and
we can do just as well with a digital camera.

After a calibration process to determine the intrin-
sic camera parameters as well as the exact angle and
distance between the camera and the laser projector,
linear transformations may be applied to map each
point from screen space to world space coordinates.
Because of the ease of achieving sub-millimeter accu-
racy, and the relative independence on lighting condi-
tions and materials that photogrammetry is harmed
by, we plan on constructing a laser stripe depth sensor
with a digital camera.

After extensively considering the many available sensor

options, we can see that contact, time-of-flight, and digital
cameras are clearly not options for us to explore, and depth
cameras cannot guarantee as much accuracy as laser stripe
triangulation. Given that the main focus of our project is
the accuracy of the scans, our sensor setup should be able
to provide as much accuracy as possible so as to not cascade
errors down the pipeline.

5.2 Number of Frames

The greatest limiting factor Blender has on our project
is the number of frames. The number of frames di-
rectly controls the granularity of the rotation in our scans.
Clearly, more frames means more minute rotations of the
object, which leads to a higher accuracy number. However,
this accuracy comes at a massive time cost, which multi-
plies at about 2.2x when the number of frames are doubled.
We have ran tests with the monkey mesh to determine the
optimal number of frames to scan at.

Figure 7: Graph of accuracy vs. number of frames

Figure 8: Graph of time vs. number of frames

Looking at the accuracy and time graphs in Figure 7:
Graph of accuracy vs. number of frames and Figure 8:
Graph of time vs. number of frames, we can see that after
400 frames the accuracy gains are very marginal, while the
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time cost still increases at a quadratic rate. Thus, we deter-
mined the optimal number of frames to be 400. This can be
adjusted in Blender by changing the animation keyframes
and the total number of frames rendered.

5.3 Pixel Skip

Depending on the number of frames generated by the
simulation, it may not be required to analyze all of the
pixels in each of the scan images. This is because with a
smaller number of frames, the angle is larger between two
scan images, but if the spacing of samples does not change
along the laser line, the point cloud distribution becomes
uneven. This topology issue should not directly harm the
correctness of our reconstruction, but it results in signifi-
cant computation which may not be necessary. To vary the
behavior of how many samples are taken for a single image
along the laser line, the pixel skip parameter is introduced.
A pixel skip of n means only every n’th row of each image
is sampled for laser pixels.

Figure 9: Graph of accuracy vs. pixel skip

Figure 10: Graph of time vs. pixel skip

Analyzing the tradeoff between accuracy and time in
Figure 9: Graph of accuracy vs. pixel skip and Figure 10:
Graph of time vs. pixel skip, after a pixel skip of 4, we

begin to introduce a significant drop in accuracy. However,
after this point the time efficiency does not improve signif-
icantly. Thus, we have determined that a pixel skip of 4 is
optimal as a default parameter for our project.

5.4 Laser Threshold

To determine if a pixel is part of the laser line, we ensure
its intensity in the 650nm spectrum meets a certain thresh-
old and is a local maximum of its row of pixels. Specifi-
cally, the intensity of an 8-bit channel RGB(A) pixel is
determined by:

intensity = max(red− 0.5 ∗ green− 0.5 ∗ blue, 0) (3)

Note that red,green,blue are the 3 8-bit channels of the
RGB color, and that 650nm corresponds well to the color
RGB(255,0,0).

The threshold value that is used to determine if a pixel
is part of the laser line changes overall accuracy: if it is too
low, reddish points on the object not related to the laser
may be seen as being part of the laser line, and if it is too
high, some laser points may not be included in the point
cloud.

Figure 11: Graph of accuracy vs. laser threshold

Figure 12: Graph of time vs. laser threshold
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Analyzing the tradeoff between accuracy and time in
Figure 11: Graph of accuracy vs. laser threshold and Fig-
ure 12: Graph of time vs. laser threshold, after laser thresh-
old of 140 we begin to introduce a significant drop in ac-
curacy. However, after this point the time efficiency does
not improve significantly. Thus, we have determined that
a laser threshold of 140 is optimal as a default parameter
for our project. Note that all these parameters may be
modified by the user as desired.

5.5 Iterative Closest Point Algorithm
(ICP)

As mentioned, ICP is the algorithm that allows us to
combine multiple scan angles of an object. Specifically, it
takes two similar point clouds aligned differently and finds
an alignment that reduces the Root Mean Squared Error
between the point clouds the most. This RMSE number
is given by Open3D and is related to the average distance
between corresponding points on the two point clouds. We
ran tests on the monkey mesh to determine the effectiveness
of ICP.

Figure 13: Graph of accuracy vs. number of ICP scans

Looking at the graph in Figure 13: Graph of accuracy
vs. number of ICP scans, we can see that accuracy dras-
tically increases up to 3 point clouds or angles used, af-
ter which accuracy gains are marginal. This is because
for the monkey mesh, the bottom and ears of the monkey
were occluded in the original scan, thus adding an angle
which allowed the laser and camera to both see the bot-
tom of the monkey, as well as another angle for the ears,
improved our accuracy by quite a bit. However, the main
tradeoff with adding scan angles is time - both time to
convert the scanned images into point clouds and time to
run ICP. The number of point clouds needed to achieve
good accuracy with ICP also depends on the object. With
many of the objects we tested, they had few concavities
and two scan angles was enough to achieve reasonable ac-
curacy. For some other objects, perhaps 4 or 5 scan angles
were required since those objects had many obscured parts
or weird shapes. Thus, the graph shown is a specific case

meant to prove the effectiveness of combining multiple scan
angles with ICP. In all cases, however, the minimum of scan
angles required would be 2 because the bottom of the ob-
ject is always obscured in the first scan.

We capped our maximum number of ICP iterations at
2000. This is because a large majority of our scans run at
150 to 400 iterations, but 2000 for max iterations means
that the ICP part of the scanning process will never run
more than 2 minutes (400 iterations takes less than 30 sec-
onds). This number allows us to not obstruct the accuracy
of a majority of our scans, while capping the total maxi-
mum time at a reasonable amount. Note that the fewer it-
erations that ICP has, the more randomness occurs as well.
Initially, one challenge we faced was where we ran ICP at 30
maximum iterations, not realizing that most objects take
more than a hundred to reach convergence for the algo-
rithm, which caused our verification pipeline to spew out
accuracy numbers that differed drastically between each
run. Thus, our main objective is to cap the maximum ICP
iterations such that it does not reduce the number of iter-
ations most objects take to reach convergence.

5.6 Triangulation Algorithms

We have tested out multiple triangulation algorithms to
see which one meets our requirements best. However, the
general flow of all the triangulation is roughly the same.

Algorithm 1 Generic Triangulation Flow

Input: in filename - point cloud as PCD format
Output: out filename - output mesh as STL or OBJ

format

pcd← Open3D reads in filename

cloud← process pcd to necessary format

Estimate normals from cloud if necessary

volume← perform triangulation from cloud

mesh← process volume to necessary format and remove
irrelevant data;

Store mesh as STL or OBJ file format as specified by
user

5.6.1 Screened Poisson Reconstruction

The Screened Poisson reconstruction algorithm takes
in input data which consists of a set of points and inward-
facing normals of those points. The goal of this recon-
struction algorithm is to reconstruct a watertight triangu-
lated mesh by approximating the indicator function and
extracting the isosurface This algorithm derives a relation-
ship between the gradient of the indicator function and an
integral of the surface normal field. It then approximates
this surface integral by a summation over the given ori-
ented point samples. Finally, it reconstruct the indicator
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function from this gradient field as a Poisson problem. The
algorithm then solves the poisson problem from the vector
field (Kazhdan, Bolitho, Hoppe, 2013) [8].

In our program, we used Open3D library function to
generate the mesh. This function computes a triangle
mesh from an oriented point cloud and it implements the
Screened Poisson Reconstruction proposed in Kazhdan and
Hoppe [4].

Open3D allows for multiple paramaters for us to test and
analyze:

• depth: maximum depth of the tree that will be used
for surface reconstruction

• scale: specifies the ratio between the diameter of the
cube used for reconstruction and the diameter of the
samples’ bounding cube.

• linear fit: whether or not to use linear interpola-
tion to estimate the positions of the iso-vertices.

Screened Poisson is one of the faster algorithms and
works really well for watertight meshes. However, since
our user story is mainly for archaeological documentation,
a lot of archaeological objects are not in their full shapes
and have cracks. Additionally, Screened Poisson requires
an accurate estimation of normals of the points in the point
cloud, which is difficult to do efficiently when the mesh ob-
ject has holes or cracks.

Figure 14: Monkey Mesh Triangulation using Screened
Poisson Reconstruction

We have tried to optimize the algorithm by better ap-
proximating the normals. We used Open3D library to esti-
mate the normals. The program uses a KDTree and search
the neighbors around each point and tries to estimate the
normal for each point. We tried to increase the number
of neighbors looked at each point and avoid using non-
interative method to extract the eigenvector from the co-
variance matrix to get a more stable numerical values, but
the normals were still not well estimated for objects with
cracks. We also can’t just simply point the normals inward.
Thus, our program couldn’t really use this algorithm as it
only works well for watertight meshes.

5.6.2 Ball Pivoting Reconstruction

The Ball Pivoting reconstruction algorithm computes a
triangle mesh interpolating a given point cloud by a simple
concept, three points form a triangle if a ball of a specified
radius touches them without containing any other point.
Starting with a seed triangle, the ball pivots around an
edge until it touches another point, forming another trian-
gle. The process continues until all reachable edges have
been tried, and then starts from another seed triangle, until
all points have been considered. The process can then be
repeated with a ball of larger radius to handle uneven sam-
pling densities (Bernardini, Mittleman, Rushmeier, Silva,
Taubin, 1999) [1]. This algorithm is very accurate and can
satisfy our accuracy requirements if we specify the ball with
an appropriate radius and allows the algorithm enough time
to consider all the points and repeats with a ball of larger
radius.

In our program, we used Open3D library function to im-
plement this algorithm. This function computes a triangle
mesh from an oriented point cloud. This implements the
Ball Pivoting algorithm proposed in F. Bernardini et al.,
“The ball-pivoting algorithm for surface reconstruction”,
1999. The implementation is also based on the algorithms
outlined in Digne, “An Analysis and Implementation of a
Parallel Ball Pivoting Algorithm”, 2014 [4].

Open3D allows for the radii of the ball that are used for
surface reconstruction.

Figure 15: Monkey Mesh Triangulation using Ball Pivoting
Reconstruction

In our program, we computed the base radii by comput-
ing the mean of the distances from the nearest neighbors
for each point. We then multiply this base radii by different
constants to achieve the accuracy we require. However, as
the accuracy increases, the time it takes to triangulate the
mesh also increases. We are unable to achieve the accuracy
required within the time constraint.
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5.6.3 Delaunay Triangulation Reconstruction

Delaunay triangulation is a triangulation of the convex
hull of the points in the diagram in which every circumcircle
of a triangle is an empty circle [3]. Note that a convex hull
of a set of points is defined as the smallest convex polygon,
that encloses all of the points in the set. In our case, since
we are performing 3D triangulation, the 3-D set of points
is composed of tetrahedra instead of just triangles. A 3-
D Delaunay triangulation produces tetrahedra that satisfy
the empty circumsphere criterion instead of the 2D empty
circle circumcircle criterion, ensuring that the circumsphere
associated with each tetrahedron contains no other point in
its interior [15]. Delaunay triangulation tries to maximize
the minimum angle within the triangles generated while
connecting points to their nearest neighbors.

In our program, we used Pyvista library function to
implement this algorithm. Pyvista implementation of De-
launay 3D triangulation also helps smooth out a rugged
mesh. In this function, we can customize multiple param-
eters [5].

• alpha: distance value where for a non-zero alpha
value, only verts, edges, faces, or tetra contained
within the circumsphere (of radius alpha) will be out-
put.

• tol: tolerance to control discarding of closely spaced
points

• offset: multiplier to control the size of the initial,
bounding Delaunay triangulation

Figure 16: Monkey Mesh Triangulation using Delaunay
Triangulation

For our input data, the tolerance doesn’t really matter
since all the points in the point cloud are relevant points
on the laser line created from our point cloud generation
subsystem. The only main parameter to consider is the
alpha value. By decreasing the alpha value, the tetrahe-
dron sizes get smaller and thus more representative of the
ground truth mesh. However, if the alpha value gets too
small, the algorithm fails to connect some points which are
further apart to each other.

Analysis

Figure 17: Comparison between triangulation algorithms

Note that the time in this graph is only triangulation
time ran on a MacOS and not the benchmark computer.

Algorithm Object Result
Delaunay Monkey Pass
Delaunay Bowl Pass
Delaunay Beaker Pass

Screened Poisson Monkey Pass
Screened Poisson Bowl Fail
Screened Poisson Beaker Fail

Ball Pivoting Monkey Fail
Ball Pivoting Bowl Fail
Ball Pivoting Beaker Pass

Table 1: Accuracy Results Triangulation Algorithms

Note that we only look at comparing the output mesh
to the ground truth mesh and not from ground truth mesh
to output mesh here in Table 1: Accuracy Results Trian-
gulation Algorithms above.

From the graph above in Figure 17: Comparison be-
tween triangulation algorithms, we can see that Screened
Poisson is generally faster than the other two algorithms
but has lower accuracy values. The overall hurdle of the
Screened Poisson algorithm is that the algorithm generates
additional points to match the vector field generated from
the point cloud. Assuming our point cloud has high accu-
racy but our normal estimation is inaccurate, the Screened
Poisson mesh will generate additional geometry where there
are no points in the point cloud. This additional generation
of vertices is the main cause of error for Screened Poisson,
and its main source is the difficulty to accurately estimate
point normals. The good time efficiency of Screened Pois-
son does not make up for its significantly poorer reconstruc-
tion accuracy.

The ball pivoting algorithm is slightly more time-
efficient than Delaunay triangulation and has a slightly
lower accuracy results. This may seem sufficient for our
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project requirements; however, we also have another ac-
curacy that requires all the distances between the ground
truth mesh and the output mesh to be within 5% of the
longest axis to take care of any outliers. The fundamental
technique of the ball pivoting algorithm is to iteratively
build the mesh outward from a starting set of vertices,
much like a graph traversal algorithm. This procedure is
carried out multiple times for multiple radii of ball size, to
be able to generate triangles for both fine and course grain
geometry. Our experiments only utilized a single radius
to perform ball pivoting, since adding additional radii no
longer meets our timing requirements. However, we suspect
that with sufficient experimentation with the parameters
of ball pivoting radii, we may meet the accuracy require-
ments, however the mesh triangulation would take signif-
icantly longer that our time efficiency requirement. With
two radii, the algorithm takes upwards of 15 minutes to
execute.

Figure 18: Mesh Outputs from Different Triangulation Al-
gorithms

Although Delaunay triangulation takes a decent
amount of time, it still passes our timing requirement and
passes both of our accuracy requirements. Thus, Delaunay
triangulation is the final algorithm we are using in our de-
fault pipeline. The main reason Delaunay is a great choice
for our requirement is that it both uses the original points
of the point cloud as vertices, and executes within our time
efficiency requirement. Methods such as Screened Poisson
generate new points as vertices based on a computed vec-
tor field from the point normals. Even if our point cloud
is extremely accurate, if our normals are not, these gen-
erated vertices will harm the accuracy significantly. Ball
pivoting, however, does use the original point cloud points
as vertices, but in order for the triangles to cover the en-
tire surface of the mesh, multiple ball radii must be used,
which does not meet our timing requirement. Delaunay is
a much faster algorithm to execute, and simply creates tri-
angles between point cloud points greedily where there are
no intersections. Because of this, Delaunay both meets our
time efficiency requirement, and is accurate to the point
cloud geometry.

6 SYSTEM DESCRIPTION

The final system is now solely software. As shown
in Figure 38: Final System Specification Diagram in Ap-
pendix B, the system contains multiple subsystems with
the algorithmic and control subsystem integrating other
subsystems together. Other subsystems include Image
Laser Detection, Point Cloud Generation, Background and
Turntable Point Filtering, Iterative Closest Point Algo-
rithm, Triangulation, Visualization and Debug System, and
Verification.

6.1 Algorithmic and Control Subsystem

The algorithmic and control subsystem consists of our
driver script which integrates and runs other subsystems
including image-laser detection, point-cloud generation,
background and turntable point filtering, iterative closest
point algorithm, and mesh triangulation, as well as accu-
racy computation for testing and validation and visualiza-
tion and debug system. Algorithms and descriptions of
their implementations are described in detail in the remain-
ing subsections of the system description.

Figure 19: Driver Usage

This driver script that takes in a directory containing
directories of the scanned images and produces an output
mesh with either an OBJ or an STL format. The script
allows for multiple optional parameters to allow users to
customize their program and to allow us to be able to test
and perform a thorough tradeoff analysis.

Users can choose between 3 different modes: full
pipeline, just generating point clouds as pcd files, or gen-
erating a triangular mesh from input pcd files. Users can
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also choose to display point clouds and meshes when the
program runs or to print out debugging messages.

For the point cloud generation of our pipeline, users
can specify the laser threshold, window length, how many
pixels to skip per scan, and how many images to skip per
directory. If not specified, the program would run with our
default parameters (laser threshold = 140, window length
= 5, pixel skip = 4, and image skip = 1).

For the triangulation argument of our pipeline, users
can choose between multiple triangulation algorithms to
test out such as Delaunay (both faster and slower version),
Screened Poisson, and Ball Pivoting algorithm. However,
our program is default to Delaunay triangulation which
works best for our requirements.

For verification purposes, users can specify the ground
truth mesh filename and can provide the number of itera-
tions and csv filename to output verification results. Users
can also adjust other parameters such as number of kd tree
neighbors and number of ipc points to speed up the verifi-
cation process.

6.2 Image Laser Detection

This component of the algorithmic subsystem is respon-
sible for detecting points on the laser line in a camera im-
age. The basic idea is assume a model of the distribution
of the laser line across its width as being a Gaussian dis-
tribution, such as in Figure 20: Laser Line Light Intensity
Distribution.

Figure 20: Laser Line Light Intensity Distribution

First we apply an intensity filter to extract higher val-

ues at pixels with color close to the wavelength of the laser
light (650nm). Then we apply a horizontal Gaussian filter
to enhance the Gaussian distribution of the laser intensity
(since the laser line will be close to vertical in the camera
image). For each row, the center of this Gaussian distribu-
tion is the horizontal location of the laser. Note that this
suffers from the problem that only one point can be found
for each row of the image. However, the case that a single
row of the image has multiple parts of the laser line is a
case of occlusion already, and these holes in the scan can
be resolved by merging the results with an additional scan
(single object multiple scans).

6.3 Camera and Scene Calibration

Blender provides a python interface to control and ac-
cess its internal data. This functionality can be used to
write a script which extracts properties of objects in the
Blender scene. Specifically, we are able to search the
Blender internal data for the Camera, Laser, and Turntable
objects, and extract their parameters. Because we are able
to extract this information, no calibration procedure is nec-
essary, since the true values are given to us by the simula-
tion.

6.4 Point Cloud Generation

A single Blender simulated scan consists of two inde-
pendent components:

1. A directory of N scan images, ordered in the direc-
tory by alphabetical/numeric order. This ordering is
done automatically by default blender output render
animation settings.

2. A collection of scene parameters, including the trans-
formation matrices of the camera, laser source, and
turntable. These transformation matrices are vital
to performing the many basis change computations
required to generate the point cloud. The scene pa-
rameters also include the aspect ratio of the camera
sensor (cw, ch), the aspect ratio of the rendered im-
ages (pw, ph), and the focal depth of the camera sen-
sor (f).

From these components, we can derive the following
scan constants for point cloud generation:

1. The angle between two subsequent scan images is
2π
N . From this we can tag the i’th scan image as

having been rotated about the turntable by i·2π
N , as-

suming linear interpolation was chosen to generate
the scan animation. Linear interpolation is a good
choice, since it does not prioritize any angle of the
scan.

2. The origin points of the camera, laser source, and
turntable as follows:

• c0 = C
[ 0
0
0
1

]
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• l0 = L
[ 0
0
0
1

]

• t0 = T
[ 0
0
0
1

]

Where C,L, T is the camera, laser source, turntable
transformation matrices appropriately, and c0, l0, t0
are the origin coordinates of the camera, laser source,
and turntable. Note that the transformation matrices
represent affine functions in the 3-dimensional space,
and thus must be 4-dimensional to offer both rotation
and translation.

3. The axis of rotation, which is defined as:

a = T
[ 0

0
−1
1

]
We enforce that -Z is always the upward direction in
the local coordinate space of the turntable.

4. The laser plane of rotation, whose normal is defined
as:

ln = L
[−1

0
0
1

]
− l0

We enforce that the Y and Z axes of the laser source’s
coordinate space correspond to points on the laser
plane, so points only on -X must directly perpendic-
ular. Similarly, we get the point on the laser plane
closest to the origin by:
lp = ln ∗ (ln · l0)

Once all of these parameters is determined, we can be-
gin performing point cloud generation. The first step is to
identify pixels in each image corresponding to the laser line,
utilizing the formulation discussed in the previous section.

Below is a current diagram of all the components in-
volved in point cloud generation:

Figure 21: Ray-Plane Intersection

Here the point (u, v) is the pixel coordinate of a point in
the on the laser line. A ray is cast from c0 in the direction
of normalized [9]:

dir = C
[ ( u

pw−0.5)∗cw
−( v

ph−0.5)∗ch
−f
1

]
− c0 (4)

This direction corresponds to the direction from the origin
of the camera through the center of the pixel’s position in
the global coordinate space. Note the importance of the
focal distance to computing this ray’s direction.

The ray is then cast until it collides with the laser plane.
The point of intersection is a point on the surface of the
object, where the laser line is in the image. The ”time” the
ray needs to travel in the direction is given by the following
formulation:

time =
(lp − c0) · ln
ln · dir

(5)

And simply, the collision point is:

intersection = c0 + time ∗ dir (6)

This intersection point is in world space coordinates, so
it must be rotated around the rotational axis by the re-
verse angle of the turntable rotation about the turntable
axis a to get the corresponding point in object space. All
such points are computed and aggregated together for each
image to form the point cloud for a scan.
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6.5 Background and Turntable Point Fil-
tering

All points on or below the turntable must be removed
from being considered part of the point cloud. We know the
axis of rotation and a position a the center of the turntable
form our blender scene parameters. From this, we remove
all points p where:

(p− t0) · a <= ε (7)

With a small ε to correctly capture points on the actual
surface of turntable.

Then, points in background geometry are removed by
limiting the time during ray-plane intersection to be less
than the distance from the camera to the edge of the bound-
ing box of the reasonable capture scene. This is limited as
a bounding cylinder around the turntable by our maximum
object size.

6.6 Iterative Closest Point Algorithm
(ICP)

We will use an ICP (Iterative Closest Point) algorithm
to combine different scans. This is needed in the use case
where the user wants to combine a scan from another an-
gle since some part of the object was occluded in the orig-
inal scan. See Figure 22 for an example of the monkey
mesh which had holes on the bottom and ears since it was
occluded from the camera and laser in the original scan
angle. The ICP algorithm determines the transformation
between two point clouds from different angles of the ob-
ject by matching similar or duplicate points. Similar to
gradient descent, ICP works best when starting at a good
starting point to avoid being stuck at local minima and also
save computation time. This leads the ICP algorithm to
have two steps - global and local registration. We can see
the initial misaligned point clouds in Figure 23.

Figure 22: Original monkey point cloud with holes since
only one scan angle is used

Figure 23: Original alignment before ICP is run

6.6.1 ICP - Global Registration

In both registration steps (registration referring to
aligning the two point clouds), ICP tries to minimize the
root mean squared error (provided by Open3D) between
the two point clouds. However, initially, the meshes are
extremely misaligned, which is why global registration is
necessary. Global registration first downsamples the point
clouds with a specified voxel size - we use 0.05 in Open3D

which corresponds to 5mm (our input objects are gener-
ally 1 to 2m in Blender, but all the numbers can easily be
scaled down by a factor of 10, it is just that we set up our
render parameters and everything with that initial size).
We also estimate normals for the downsampled point cloud
and compute the FPFH feature for each point, which de-
scribes local geometry of a point. The downsampled point
cloud and FPFH features are then used in RANSAC regis-
tration using Open3D. This gives us a rough alignment on
the downsampled point cloud, the results of which can be
seen in Figure 24.

Figure 24: Result of global registration step in ICP
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6.6.2 ICP - Local Registration

Now that we have a rough alignment of the point clouds,
we can run local registration, which finds a much tighter
alignment with the assumption of having a reasonable
starting point. Again, this step works similar to gradient
descent, finding a local minimum by minimizing the root
mean squared error between the two point clouds. How-
ever, the distance threshold allowed between the two point
clouds is much tighter for this step. The result can be seen
in Figure 25.

Figure 25: Result of local registration step in ICP

6.6.3 Results and caveats

The final result after ICP can be seen in Figure 26. We
can see that the bottom and ears of the monkey are filled in
after adding scan angles that specifically target these areas.
Refer to the previous section of design tradeoffs to see our
graph showing the effectiveness of adding additional ICP
scans up to a certain degree.

The caveat of ICP is that it tries to match as many
points as possible between the two point clouds. This
means that if we are scanning something like a perfect
sphere where the bottom is slightly obscured, since the
sphere is uniform on all sides, a second scan angle would
output the exact same point cloud as the first, and it would
align the holes on these two point clouds. However, most
objects, especially archaeological ones, have minimally dis-
tinct shapes which works with ICP almost all the time. In
the case that this specific edge case comes up, a workaround
would be for the user to know roughly the alignment be-
tween the two different scans, then input that was the ini-
tialization for local registration and only run the local regis-
tration step. For example, I can scan my sphere at 0 degrees
of x-rotation, then rotate it by roughly 90 degrees on the
x-axis to get the bottom of the sphere, then input that 90
degrees as initialization for local registration which would
find the more precise alignment matrix.

Figure 26: Result of running ICP on the monkey model
with 3 scan angles

6.7 Triangulation from Point Cloud to
Mesh

The final point cloud is stored in a PCD (Point Cloud
Data) file format. PCD files provide more flexibility and
speed than other formats like STL/OBJ/PLY, and we use
Open3D [4] and Pyvista [5] libraries to process this point
cloud. Open3D library provides many useful functions such
as estimating normals and performing triangulation (con-
structing a triangle mesh from XYZ points and normals).
In our final design, we also use Pyvista library to perform
triangulation. We think that implementing triangulation
ourselves completely from scratch will be out of scope for
this project and also unnecessary, since Pyvista library is
efficient enough and results meet our project requirements.
Since our data is just be a list of XYZ coordinates, we
convert this to the PCD format in our point cloud gener-
ation subroutine to be used with the Open3D and Pyvista

libraries (the PCD format is a list of XYZ coordinates with
a few header lines in the beginning).

The triangulation algorithm works by maintaining a
fringe list of points from which the mesh can be grown and
slowly extending the mesh out until it covers all the points.
More information was discussed in the Design Trade Stud-
ies section under Triangulation subsection. Our final trian-
gulation algorithm has many parameters such as distance
value to control output of the filter, tolerance to control
discarding of closely spaced points, and multiplier to con-
trol the size of the initial, bounding Delaunay triangulation.
We then store the output mesh as either an OBJ or STL
file format as specified by the user. The flow of our final
triangulation algorithm is as follows:
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Algorithm 2 Delaunay Triangulation Flow

Input: in filename - point cloud as PCD format
Output: out filename - output mesh as STL or OBJ

format

pcd← Open3D reads in filename

cloud← Convert pcd to Pyvista Polydata for processing

volume← Construct Delaunay Triangulation from cloud

mesh← Extract outer surface of volume

Store mesh as STL or OBJ file format as specified by
user

6.8 Visualization and Debug System

Our visualization, and debug system help us to easily
pinpoint the cause of any errors our program has and help
us understand which part of the process the program is
at. Users can choose to visualize each step of the program:
from point cloud generation, to ICP, to mesh triangulation.
In addition to our own logging procedure, our system uti-
lizes Open3D visualization modules and its Debug mode to
output relevant information.

6.9 Verification

The verification engine takes as input two meshes, the
original ground truth mesh and the reconstructed mesh
from the simulated scan. Accuracy metrics are broken
down into two numbers: forward accuracy and backward
accuracy. Forward accuracy is how close the vertices of our
reconstructed mesh are to the surface of the ground truth
mesh. Backward accuracy is how close the vertices of the
ground truth mesh are to our reconstructed mesh. Each
type of accuracy is computed in the following way where
src mesh is being compared to target mesh.

Algorithm 3 Accuracy Computation

Input: src mesh, target mesh
Input: two percent dist, five percent dist

centroid tree = construct kd-tree of triangles of tar-
get mesh by centroid ;
p0 tree = construct kd-tree of triangles of target mesh
by p0 of triangle ;
p1 tree = construct kd-tree of triangles of target mesh
by p1 of triangle ;
p2 tree = construct kd-tree of triangles of target mesh
by p2 of triangle ;

closest triangles is an array of lists of the closest trian-
gles from all kd-trees for each vertex id of the src mesh.

src vertices = get vertices(src mesh) ;
closest triangles = get nearest(centroid tree,
src vertices) @ get nearest(p0 tree, src vertices) @
get nearest(p1 tree, src vertices) @ get nearest(p2 tree,
src vertices) ;

num two percent = 0 ;
num five percent = 0 ;
for v in src vertices do

min dist = inf
for t in closest triangles[v] do

dist = point triangle distance(v, t) ;
if dist < min dist then

min dist = dist ;
end if

end for
if min dist > two percent dist then

num two percent ++ ;
end if
if min dist > five percent dist then

num five percent ++ ;
end if

end for

Now will all the distances computed, we determine the
final accuracy result.

src num vertices = len(src vertices) ;
accuracy = 100 * (1 - 0.9 *
num two percent/src num vertices -
num five percent/src num vertices) ;

Point to triangle distance is a vital component of de-
termining the distance from a vertex to a mesh [11]. The
procedure to do this is to project the point onto the plane
of the triangle, then determine which region of the trian-
gle the point is in on the plane, and finally based on that
region perform the correct computation. The regions are
illustrated below for the 2D case [6] in Figure 27.
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Figure 27: Regions of the triangle a point can be, 2D case

The computation is as follows for each of these cases in
the 3D problem:

• Inside the triangle, the point distance is the distance
from the point to the plane.

• To the line segment, the distance is the hypotenuse of
the distance to the plane and the distance from the
point on the plane to the line segment. This distance
is computed by subtracting the portion of the vector
from the projected point to a vertex that is parallel
to the segment.

• To a point of the triangle, the distance is the hy-
potenuse of the distance to the plane and the dis-
tance from the point on the plane to the point of the
triangle.

Finally, the accuracy for each direction, forward and
backward, is averaged to obtain our final accuracy result
for a mesh reconstruction. Note that the use of kd-trees
is to reduce the overall computation necessary to perform
the verification. Although this is not part of our timing
requirement, it is very difficult to verify without this due
to the time it takes (around 15 mins without the kd-tree
optimization to 1 min with the kd-tree optimization).

Analysis of our accuracy and results is performed later
later under the System Validation and Results section.

7 SYSTEM VALIDATION AND
RESULTS

7.1 Validation

The final validation of metrics for our requirements was
conducted as system-wide tests of ground truth archae-
ological 3D meshes. Free meshes were taken from The
Royal Museums of Art and History [13] and Global Dig-
ital Heritage [7], whose 3D recordings are publicly hosted
on Sketchfab.

Meshes from each of these sources were aggregated and
we have narrowed our focus in a specifically few set of
meshes:

1. beaker.obj - an ancient ceramic beaker

2. bowl.obj - an ancient ceramic bowl

3. broken.obj - a broken ceramic object

4. carving.obj - a carving on a tablet

5. greek.obj - an ancient greek vase

6. mould.obj - a stone mould for metal working

7. pendant.obj - an engraved pendant

8. plaque.obj - a metal plaque

9. monkey.obj - a monkey head provided by blender

For all of the tests, we used our full pipeline (simu-
lated scans to meshes), with default parameters (frame
skip, pixel skip, laser threshold, delaunay triangulation).
To measure timing efficiency, the clock is started as soon
as point cloud generation begins, and is stopped as soon as
the mesh is ready in file format. To measure accuracy, the
reconstructed mesh is compared against the ground truth
mesh and two metrics are analysed: does the accuracy meet
the requirement, and what is the accuracy numeric metric.

The dataset we have chosen includes challenging ob-
jects, such as broken, which has significant holes in it, and
pendant, which is flat and does not have much surface for
the laser and camera to be aligned in the scan. Delaunay
triangulation aims to solve the hole issue, and ICP aims to
solve the occluded points issue.

7.2 Results

Figure 28: Monkey Mesh Result
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Input Forward Backward Total Accuracy Total Time Time
Object Accuracy Accuracy Accuracy Result (s) Result

beaker.obj 99.93% 85.28% 92.65% Pass 87.00 Pass
bowl.obj 100.00% 89.94% 94.97% Pass 76.14 Pass

broken.obj 100.00% 69.17% 75.88% Pass 66.54 Pass
carving.obj 100.00% 65.85% 81.35% Pass 36.54 Pass
greek.obj 99.87% 96.95% 98.52% Pass 89.68 Pass
mould.obj 99.45% 82.43% 90.94% Pass 54.10 Pass

pendant.obj 99.16% 73.81% 86.49% Pass 31.33 Pass
plaque.obj 97.13% 71.54% 84.34% Pass 29.13 Pass
monkey.obj 100.00% 97.74% 98.87% Pass 101.02 Pass

Table 2: Accuracy Results

Figure 29: Bowl Mesh Result

Figure 30: Greek Mesh Result

As mentioned in the Design Requirements section (3)
under Accuracy subsection, the accuracy number that we
use is computed by looking at the distance between the
vertices of the mesh we generate and the surface of the
ground truth mesh, getting a percentage that is within 2%
of the longest axis of the ground truth mesh. This process
is repeated the other way around, comparing vertices of the
ground truth mesh to the surface of our generated mesh,
and the average of these two numbers is our final accuracy
number. Note that the accuracy number is a measure of
how well the reconstructed mesh is both accurate to and
completely covers the ground truth mesh. Our requirement
only requires it to be accurate to the ground truth mesh.
Because of this, forward accuracy is the relevant metric
to our accuracy requirement, and total accuracy is a more

general measurement that would be nice to achieve. (Back-
ward accuracy identifies how well the reconstruction covers
the entire ground truth mesh, and is not a measure of how
well the points of the reconstruction are accurate to the
ground truth mesh.)

See Table 2: Accuracy Results for data.

8 PROJECT MANAGEMENT

8.1 Schedule

Our schedule has slightly changed since we decided to
remove the hardware components due to the Coronavirus
situation. Please refer to Figure 39: Gantt Chart in Ap-
pendix B for the full Gantt Chart. Our original schedule
was built around the platform and sensor assembly. We
know converted the time allocated for that portion to ac-
curately simulating scanned images instead and still contin-
ued to work on the software pipeline as planned. However,
we also allocated more time to simulate noises and edge
cases to test our project as closely to the real world as
possible.

8.2 Team Member Responsibilities

Our team divides work among each team member
equally. The team deals with logistics, integration, and
decision-making together but each member still has his
main tasks assigned as follows:

Jeremy:

• Blender simulation

• ICP for combining multiple scans

• Demo video animation and editing

Chakara:

• Original Hardware Design

• Triangulation

• Driver script
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• Output validation code

Alex:

• Laser stripe detection and mapping to world coordi-
nates

• Point cloud generation from sensor data

• Driver script

• Testing benchmark code and verification script

8.3 Software Interfaces

The interfaces between the various software components
of our pipeline is an important aspect to the overall func-
tionality of the system. Generally, since all of the software
components are running with the CPU on a single machine,
the stages of the pipeline are executed as in-order code.
This means the output from one state is passed in as the
input to the next stage. However, some of the interfaces
require the prior generation of files in storage to use for the
next stage. Below is an overview of the various interfaces
between pipeline stages:

1. Blender to Point Cloud Generation: For this inter-
face, the Point Cloud Generation script takes as in-
put a directory of scan images from blender, and a
file constants.py containing the Blender scene param-
eters. Thus, this interface utilizes file storage to com-
municate information.

2. Point Cloud Generation to ICP: For this interface,
ICP takes in a directory of point cloud files (PCD)
to merge. Thus, this interface utilizes file storage to
communicate information.

3. ICP to Mesh Triangulation: This interface also uti-
lizes file storage for communication, via a single
stored merged point cloud file.

4. Mesh Triangulation to Verification Engine: This in-
terface also utilizes file storage for communication,
via a single stored reconstructed mesh file (either OBJ
or STL).

5. Driver Application to each pipeline stage: This inter-
face consists of function calls to activate each driver
stage with specific file arguments. The data flow be-
tween pipeline stages, even when orchestrated by the
driver application, is via files in storage.

6. Pipeline Stages to Open3D/PyVista Libraries: Ma-
trix data in Numpy format is passed in to library calls
when needed throughout the stages to perform com-
putation. Numpy is a popular library in python to
perform data computation, and is supported by all of
the utilized libraries in our project.

As a summary, data within a pipeline stage is a Numpy

object, data passed between stages is in stored files, and
control of the pipeline operation is done by function calls.
This describes all of the interfaces in our software system
and we do not feel that these details are pertinent to the
general block diagram of our system, so they are not in-
cluded there in the logical connections.

All code not in the libraries we are using
(Open3D/PyVista) is hand-written by us. All code on
the other side of that interface is open-source python code
which implements some of the functionality that we re-
quire, so we use it instead of reinventing the wheel. As a
summary of which code was developed and which code was
borrowed/modified, please see Table 3: Software Break-
down.

8.4 Challenges

Throughout our design and implementation process, we
have faced multiple challenges.

Part of the input object is obscured and potential
holes in the point cloud

Figure 31: Bowl Mesh Output without ICP
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Subroutine Development Description
Blender Simulation Self-developed -

Driver Module Self-developed -
Image Laser Detection Self-developed -
Ray-Plane Intersection Self-developed -

Iterative Closest Point (ICP) Modified Combines many Open3D functions for ICP
and downsampling and FPFH generation

ICP Scaling Between Point Clouds Self-developed Handles edge case of point clouds
scaled slightly off

Image Gaussian Filtering Self-developed -
Mesh Triangulation Modified Combines multiple Open3D and Pyvista functions

Visualization, and Debug System Self-developed Combines multiple Open3D features
Verification - KD-Tree Construction Self-developed -

Verification - Closest Points Querying Self-developed -
Verification - Data Processing Self-developed -

Table 3: Software Breakdown

Figure 32: Bowl Mesh Output with ICP

In some cases, a part of the object is obscured, such as
the bottom of a bowl or a vase. Thus, we have implemented
ICP and created our scanning our pipeline to allow users to
place objects at different angles and combine the generated
point clouds.

Our algorithm does still struggle with certain objects
that have many obscured parts or very deep concavities,
since the camera cannot see the laser line in those parts of
the object.

Figure 33: Obscured Object with Poor Result

Consider this example of a video game figure in Figure
33: Obscured Object with Poor Result, the camera cannot
see the laser lines behind the wings and can’t capture that
data. We could potentially combine 10 different angles with
ICP to get every single concavity of the object, but that
would also increase our time cost tenfold. Our team comes
different approaches that could potentially solve this issue
which will be discussed later in the Summary section under
Future Work subsection.

ICP Ordering

The order the point clouds are merged with ICP affects
the final accuracy of the reconstructed mesh. It is difficult
to know which ordering will result in the best accuracy, so
as of now, our process merges in alphabetical order of point
cloud file name. This is an area where we could improve
our overall system slightly if we used a heuristic to decide
which point cloud we should merge with next. However,
the improvements to be gained are marginal and we did
not want to waste resources dedicated to the small prob-
lem.

General Implementation Challenges

We have also encountered many challenges that we have
resolved. For example, code never works the first time, and
we have learned to develop logging and debugging mecha-
nisms to fix issues early on. Next, we have had to itera-
tively redesign some of our software block diagram as we
learned that some of the components were unnecessary. Fi-
nally, there was the logistical challenge of merging all the
components into a single package via the driver application
(integration), which was only able to be done with all of
us working together using our expertise in each individual
part we worked on.
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Item Price Total Price Description
($) With Shipping ($)

Nema 23 Stepper Motor 23.99 23.99 Motor for rotational mechanism
15 Inch Wooden Circle by Woodpeckers 14.99 14.99 Plywood for platform

Lazy Susan Bearing 27.19 27.19 Reduce friction in rotational mechanism
Acrylic Plexiglass Sheet, Clear 9.98 9.98 To create internal gear

DM542T Step Driver 38.99 38.99 Step Driver for NEMA 23
Neoprene Rubber Sheet Rolls 14.80 14.80 To add friction to the platform

Adafruit Line Laser Diode (1057) 8.95 17.94 Projected Laser Stripe
Webcamera usb 8MP 5-50mm Varifocal Lens 76.00 76.00 Camera

Nvidia Jetson Nano Developer Kit 99.00 117.00 Embedded Systems
256GB EVO Select Memory Card 42.96 42.96 MicroSD card for NVIDIA Jetson

MicroUSB Cable (1995) 9.00 17.99 MicroUSB cable for NVIDIA Jetson

Table 4: Project Components (Purchase)

8.5 Budget

Table 4: Project Components (Purchase) shows the
project components that would be purchased. Note that
some of the item names are shortened for readability.

This comes up with a total price of $401.83. However,
we no longer use any of the components except for us to
model them in our Blender setup. If we were to actually
build the physical components, we would have $198.17 left
in our budget which would still need to be used to purchase
wood for supporting our platform and for risk management.

9 RELATED WORK

Figure 34: Eva Lite from Artec 3D

We are aware of other commercial 3D scanners that ex-
ist in the market. These scanners take in relatively similar
input sizes as our initial design. However, most of the 3D
scanners have much higher prices than our initial target
cost of producing our 3D scanner with the hardware com-
ponent (which is $600). Moreover, a lot of these models
do not provide accuracy and timing data. Below are some
examples in Table 5: Related Work Comparison.

There are a few reasons why our approach is more suit-
able for specific demographics than many of the 3D scan-
ners on the market:

• Many commercial 3D scanners are much more expen-
sive than our product.

• Many commercial 3D scanners do not advertise their
accuracy guarantees and thus are not especially use-
ful in high-accuracy requirement scenarios.

• Many commercial 3D scanners require a lot more
from the user, such as setting up the scene with spe-
cific lighting conditions or the use of a hand-held ob-
ject to perform the scan carefully. Our approach is
completely hands-free and user-friendly.

For these reasons we see the potential of a strong de-
mographic for our specific solution to the problem at hand,
since it meets certain requirements that no commercial 3D
scanners do (namely: affordability, accuracy guarantees,
and ease of use).

10 SUMMARY

10.1 Future Work

If we have the opportunity to continue working on this
project. There are a few things we would like to try.

Building the Hardware

We would like build the initial design including assem-
bling all the hardware components to test if our software
pipeline actually works with real camera, laser, rotational
mechanism, and real-world environment settings.

Improving on Obscured Parts

We would like to try allowing position of the camera and
the laser to be changing with the time. This should allow
us to get inside objects such as vases and bowls. We might
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Item Price Approx. Max Input Size Average Time Accuracy
($) (cm) (s) (mm)

V2 from Matter & Form 750 18 x 18 x 25 N/A 0.1
EINSCAN-SE from Shining 3D 1,399 20 x 20 x 20 120 N/A

RangeVision Smart 1,399 100 x 100 x 100 12 0.1
SLS Pro S3 from HP 3,995 50 x 50 x 50 N/A 0.05

Eva Lite from Artec 3D 9,800 N/A N/A 0.5

Table 5: Related Work Comparison

also try using goose-neck cameras instead of our static cam-
era that just stays outside the surface of the input object.
The issue with the goose-neck camera approach is proxim-
ity of the mechanism to the ancient object, which should
not be touched or damaged in any way. This is one of the
reasons we did not go with a contact-based approach to
reconstruction. Another potential idea is to add a reflec-
tor to be able to capture other obscured parts. Both these
approaches would require us to adjust our laser detection
and ray-plane intersection subroutines.

10.2 Lessons Learned

From working on this project, we learn that we should
make clear and specific requirements that can be validated.
We also learn that our designs, requirements, and testing
must always be driven by the user-story, as exemplified in
the selection of models we used during development and
testing. This helps us make decisions that would poten-
tially lead us to satisfying our requirements and thus reach
our project goals and solve the problem we aim to. More-
over, we also learn that everything is unpredictable and our
plans need to be adjustable. Because of the coronavirus
sitaution, we had to adapt our project to still be able to
achieve most of our goals. We adapted our plan as best as
we could and since our requirements and user story were
well-designed, we were able to still complete our project.
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Appendix A

This section includes additional information regarding
our initial design. The general idea of our initial design
was discussed in the Initial Design section (2). However,
our testing methods differ from the current ones. To be
able to test this, we will have two possible methods where
we would have tried both. The first method involves find-
ing ground truth 3D models of common objects such as a
solo cup or a coke bottle - however we may want to consider
spray painting the coke bottle so that the transparency of
the sides don’t mess up the laser. The second method will
be 3D printing 3D models that we find on the internet, then
scanning these 3D printed models and comparing with the
ground truth model. For the 3D printed models we will
allow for an extra 1mm buffer since there is a fair bit of
inaccuracy induced from 3D printing. We will compute
the accuracy number by computing mesh vertex distances
from each point in our constructed mesh to the surface of
the ground truth mesh

Initial Design Requirements

a. Accuracy

Our accuracy requirement remains unchanged and was
be discussed in the Design Requirements section (3).

b. Usability and Portability

Our next requirements involves usability and portabil-
ity. The input object must be 5cm to 30cm along every
axis, and have a maximum weight of 7kg. Thus, our plat-
form will be tested with a 7kg load and we will see if the
platform is able to withstand that weight without warping,
as well as rotate the object without hindrance to rotational
velocity. We also have other usability requirements such as
the device being easy to setup and outputs a common 3D
format that we will be able to input to a 3D printer. These
requirements are easily evaluated and do not require any
special quantitative tests. We will also test usability by
doing user testing and evaluating survey responses.

c. Efficiency

We also have a requirement for efficiency. We will allow
one minute total time for the scan including the rotation
and the processing time. The rotation time should be well
under 30 seconds, which gives more than 30 seconds for
processing time, which will involve point cloud construc-
tion, filtering, and triangulation into a mesh. This will
simply be measured by timing the process from pressing
start to obtaining the 3D mesh. Note that the time for
calibration will not be included since this is a one-time op-
eration which will have amortized time cost across multiple
successive scans.

Related to efficiency, we will also test software com-
ponents we create against well-known open source library
functions. This is due to our goal of implementing several
components of the software pipeline to be optimized for the
Nvidia Jetson GPU. We will first start off with open source
code, but slowly replace components one by one with our
optimized code. Thus, we must unit test all software com-
ponents extensively, on real data and manufactured test
cases. This includes filter routines, computer vision rou-
tines, mesh generation, and CUDA kernels. We will be
testing for processing speed and correctness of these few
components.

d. Affordability

Our final requirement is affordability. The whole sys-
tem should cost less than $600. This is also to ensure that
we are bridging the gap since commercial 3D scanners cost
much more than $600.

Initial Design Trade Studies

In this section, we will discuss some design trade-offs
and evaluation of different options for the design of several
components of the project.

Scanning Sensor

Our final design for blender simulation setup still uses
the scanning lasor setup we designed. The design tradeoff
was discussed in the Design Trade Studies section (5).

Platform Material

To fit our Usability requirement, the platform must be
able to withstand an object with dimensions from 5cm to
30cm and weighing up to 7kg. The platform itself will be
a circular disc with a diameter of approximately 38.1cm.
We performed a rough estimation to compute the stress
that the platform needs to be able to handle. From our
maximum input object’s mass of 7kg, the maximum grav-
itational force that it can exert on the platform is around
68.67N . The lazy susan bearing our team might end up
using has an inner diameter of around 19.5cm (or 0.0975m
radius). This would give us an area of around 0.03m2 that
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would not have any support. We simplified the stress anal-
ysis of this design down but it should still give a good es-
timation of the stress the object would apply.

Stress =
F

A
=

68.67N

0.03m2

which is around 2300 N
m2 .

After getting the stress, we did more research on the
material that would be able to handle this much stress, be
cost-efficient, easily accessible, and easy to use (cut, coat,
etc). We did some optimization based on cost and mass-
to-stiffness ratio to narrow down the number of materials
we had to do research on. Below is an image of the opti-
mization graph. Note that we only looked into plastic and
natural materials as they are easier to use and more easily
accessible. The line in the second image is the optimization
line.

Figure 35: Material Optimization Graph

Figure 36: Optimized Material

After that, we narrowed the materials down more to
3 materials: plywood, Epoxy/hs carbon fiber, and balsa.
Table 6: Material Tradeoffs Analysis in Appendix A shows
the tradeoffs between different main properties that would
affect our decision. Young’s modulus, specific stiffness, and
yield strength are mainly to see if the material would be
able to handle the amount of stress the object would ex-
ert on it or not. The price per unit volume is to keep this
within our project’s constraint. The density is used to com-
pute the mass of the platform (for computing the torque
required and to stay within our Portability requirement).

From the table, we can see that carbon fiber is the
strongest but is relatively expensive and might not suit our
project well. Balsa is very light but is not as strong (even
if the values here are still higher than the stress we com-
puted, it might be because of the simplified stress analysis
we did). Thus, our group decided to use plywood which is
strong, inexpensive, easy-to-cut, and not too heavy. With
plywood, the maximum mass our of platform would just be
around 0.6kg (computed using density and dimensions of
the platform).

Motor

The final part of the main platform design is to choose
the right motor for the project. The main 2 motors we
looked into to rotate the platform are the servo motor and
the stepper motor. A servo motor is a motor coupled with
a feedback sensor to facilitate with positioning for precise
velocity and acceleration. A stepper motor, on the other
hand, is a motor that divides a full rotation into a number
of equal steps.

To figure out the motor used, we computed the torque
required to rotate the platform with the maximum object
size. From the density and dimensions of the platform, we
computed that the plywood platform would weight around
0.64kg and carbon fiber would be around 1.2kg (We still ac-
counted for the heaviest material and strongest material in
case of a change in the future). From that we computed the
moments of inertia which is around 0.024kgm2. For the in-
put object, we used maximum size and different dimensions
and shapes to cover most cases, the maximum moments of
inertia computed is around 0.1575kgm2. Thus, the total
maximum moments of inertia is less than 0.2kgm2. Refer
to Table 7: Input Object Moments of Inertia in Appendix
A for the full calculations. To get the torque, We also es-
timated the angular acceleration needed. We need at least
a rotation of 0.0033 rad per step to capture enough data
to meet our accuracy requirement. Assuming that 10% of
the time requirement, which is 6s, can be used for data
capturing (so that we have more buffer for the algorithmic
part even if we anticipate 30s for data capturing), we would
get that the angular velocity is around 3 rads . Assuming we
want our motor to be able to reach that velocity fast enough
(0.5s), we have an estimated acceleration of 2.094 rads2 . From
here, the estimated torque needed to rotate the platform is
around

τ = I ∗ α = 0.4188Nm.

Since we need a high torque and from our algorithm we
would need an accurate step, the stepper motor is preferred.
The two stepper motor we looked into are the NEMA 17
and NEMA 23. NEMA 17 has a holding torque of 0.45Nm,
and NEMA 23 has a holding torque of 1.26Nm. Even
though NEMA 17 seems like it might be enough, in the
computation, I neglected the friction which would drasti-
cally affect the torque the motor has to supply. Moreover, I
also neglected the energy that would be lost through using
the internal gear to rotate the platform. Since NEMA 23



18-500 2D23D Final Report - May 6, 2020 Page 28 of 31

is not that much more expensive, we believed NEMA 23
would fit our project best.

For the step driver, we just need one that can provide
required current for NEMA 23. We decided to go with
DM542T step driver since it could go up to 4.2A which is
enough for NEMA 23. Moreover, it is relatively inexpensive
and has 1/128 Micro-step Resolutions. This means that we
can have more rotations per revolution and could achieve a
smaller step angle (much smaller than the required 0.0033
rad if needed).

Initial Project Management

Initial Team Member Responsibilities

Our team divides work among each team member
equally. The team deals with logistics, integration, and
decision-making together. Initially, each member has his
main tasks as follows

Jeremy:

• Testing database construction

• Outlier removal and noise reduction

• Point cloud triangulation

• ICP for combining multiple scans

Chakara:

• Rotational mechanism

• Motor controller/driver

• Platform construction

• Optimization of software components for GPU

Alex:

• Laser stripe detection and mapping to world coordi-
nates

• Point cloud generation from sensor data

• Camera calibration code

• Testing benchmark code

Initial Risk Management

Our design still consists of some potential risks. We
have several plans to mitigate these risks, which would re-
quire more implementation complexity on our part.

• Part of the input object is obscured:
We plan on dealing with this issue by merging multi-
ple scans of multiple angles of the objects to get more
perspectives. We will be using pairwise registration
to merge the point clouds generated from these scans.

• Vibrational noise:
We can add an additional laser stripe for triangula-
tion to correct for the noise. We can also modify the
sensor setup to be disjoint from the platform if there
is too much vibration induced from the stepper motor
mechanism.

• The stepper motor angle data is inaccurate:
There is a very low possibility this would happen but
if it does, we can combine the computed angle from
the motor with computer vision to get a more accu-
rate angle. However, this may require placing some
sort of calibration mat underneath the object to be
able to track the angle rotated throughout the pro-
cess.

• The laser stripe doesn’t have enough intensity:
We can buy a stronger laser since we have a buffer in
our budget that amounts to around $200.

• Potential holes in the point cloud:
We can merge multiple scans of the object, again us-
ing pairwise registration. We can also perform hole-
filling mesh triangulation.

• NVIDIA Jetson Nano and motor driver inte-
gration:
Although using NVIDIA Jetson Nano to control the
motor step driver is possible, there is a possibility that
it would not work since we have not found an article
supporting the use of NVIDIA Jetson to control the
DM542T motor driver model. If they can’t integrate,
then we plan on borrowing an Arduino from the Cap-
stone course to control the motor driver instead.
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Appendix B

Figure 37: Initial System Specification Diagram
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Figure 38: Final System Specification Diagram
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Figure 39: Gantt Chart

Material Young’s Modulus Specific Stiffness Yield Strength Density Price per Unit Volume

(GPa) (MN.m
kg ) (MPa) ( kgm3 ) ( $

m3 )

Plywood 3-4.5 3.98-6.06 8.1-9.9 700-800 385-488
Carbon Fiber 58-64 38.2-42.4 533-774 1490-1540 26200-31400

Balsa 0.23-0.28 0.817-1.09 0.8-1.5 240-300 1610-3230

Table 6: Material Tradeoffs Analysis

Shape Dimensions Formula Moments of Inertia
(m) (kgm2)

Cube 0.3*0.3*0.3 1
12m(w2 + d2) 0.105

Solid Sphere r = 0.3 2
5mr

2 0.063
Hollow Sphere r = 0.3 2

3mr
2 0.105

Solid Cone r = 0.3 3
10mr

2 0.04725
Hollow Cone r = 0.3 1

2mr
2 0.07875

Solid Cylinder r = 0.3 1
2mr

2 0.07875
Hollow Cylinder r = 0.3 mr2 0.105

Rod L = 0.3 1
2mL

2 0.0525

Table 7: Input Object Moments of Inertia
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