18-500 Design Report - March 1, 2020

Page 1 of 14

2D23D

Authors: Alex Patel, Chakara Owarang, Jeremy Leung: Electrical and Computer Engineering, Carnegie Mellon
University

Abstract— It cannot be overstated how much tra-
ditional 2D camera technology has shaped our progress
and culture. However, 2D images do not effectively cap-
ture the details of an object when it is rotated around.
This information is potentially crucial to archaeological
archivists that want to preserve the object in its en-
tirety, with the potential to 3D print and recreate these
objects. Our goal is to be able to accurately map and
scan the physical object into a digital three-dimensional
representation for the purpose of archeological docu-
mentation. Our design goals are to design this device
to be able to be used by a non-technical audience: easy
to be set up, portable, and most of all, accurate in
scanning. Currently, manual 3D modeling by users is
time-ineffective, tedious, and costly, as well as prone to
errors. Our project will uniquely address these issues
in being cost-effective, user-friendly, portable, and ac-
curate.

Index Terms— Iterative Closest Point algorithm,
point cloud data, pairwise registration, laser stripe tri-
angulation, stepper motor

1 INTRODUCTION

The main application use case of our project is to be
able to scan archaeological objects for preservation in a 3D
format. The goal is to be able to accurately map these
objects into a widely usable 3D format for documentation
and reproduction via 3D printing. Thus, our requirements
will be focused around the accuracy of the scan. However,
the device should also be easily usable and portable, and
thus must require a reasonably fast scanning time. We thus
aim to have these two accuracy requirements: 90% of non-
occluded points must be within 2% of the longest axis to
the ground truth model, and 100% of non-occluded points
must be within 5% of the longest axis to the ground truth
model. Other requirements will be covered in the Design
Requirements section (2). Our basic approach will be to
use a projected laser stripe along with a high resolution
digital camera to scan the object atop a rotating platform.
Our approach will also allow for combinations of multiple
scans in case some angles of the object are hidden from the
scan.

There are currently several other competing technolo-
gies which mostly involve either digital cameras or depth
cameras. However, scans that combine multiple views from
a digital camera (multi view stereo reconstruction) tend to
have lower accuracy and are unable to detect concavities in
the object accurately, and also requires very strict lighting
setups to ensure the best scans. We also considered using

depth cameras to give a 2D depth map which would tell
us depth of each pixel scanned, but most depth cameras
do not give very precise accuracy information, and depth
cameras tend to be much less precise than using laser based
approaches. We will discuss more details of the many differ-
ent approaches we considered in depth in the Design Trade
Studies section (4).

2 DESIGN REQUIREMENTS

a. Accuracy

Our first requirement is that of accuracy. We aim to
satisfy this requirement: 90% of non-occluded points must
be within 2% of the longest axis to the ground truth model,
and 100% of non-occluded points must be within 5% of the
longest axis to the ground truth model. To be able to test
this, we will have two possible methods where we’ll try
both. The first method involves finding ground truth 3D
models of common objects such as a solo cup or a coke bot-
tle - however we may want to consider spray painting the
coke bottle so that the transparency of the sides don’t mess
up the laser. The second method will be 3D printing 3D
models that we find on the internet, then scanning these
3D printed models and comparing with the ground truth
model. For the 3D printed models we will allow for an extra
1mm buffer since there is a fair bit of inaccuracy induced
from 3D printing. We will compute the accuracy number
by computing mesh vertex distances from each point in our
constructed mesh to the surface of the ground truth mesh.
These distances will be computed using the same principles
as the Hausdorf distance, with the following method:

Algorithm: From every query point,

e the nearest vertex
e the nearest point on the edges and
e the nearest point on the triangle’s surfaces

is calculated and the minimum distance out of these
three is returned.

Algorithm 1 Definition of Ay

Execute A,

while Receive query for g € X from Ay do
Query Challengery with ¢ and receive response r re-
turn reverse(r) to A,

end

When A, outputs a guess b’, output b’ as the guess for Ay

These results must match our accuracy requirement as
stated above.

18-500 Design Report - March 1, 2020

Page 2 of 14

b. Usability and Portability

Our next requirements involves usability and portabil-
ity. The input object must be 5cm to 30cm along every
axis, and have a maximum weight of 7kg. Thus, our plat-
form will be tested with a 7Tkg load and we will see if the
platform is able to withstand that weight without warping,
as well as rotate the object without hindrance to rotational
velocity. We also have other usability requirements such as
the device being easy to setup and outputs a common 3D
format that we will be able to input to a 3D printer. These
requirements are easily evaluated and do not require any
special quantitative tests. We will also test usability by
doing user testing and evaluating survey responses.

c. Efficiency

We also have a requirement for efficiency. We will allow
one minute total time for the scan including the rotation
and the processing time. The rotation time should be well
under 30 seconds, which gives more than 30 seconds for
processing time, which will involve point cloud construc-
tion, filtering, and triangulation into a mesh. This will
simply be measured by timing the process from pressing
start to obtaining the 3D mesh. Note that the time for
calibration will not be included since this is a one-time op-
eration which will have amortized time cost across multiple
successive scans.

Related to efficiency, we will also test software com-
ponents we create against well-known open source library
functions. This is due to our goal of implementing several
components of the software pipeline to be optimized for the
Nvidia Jetson GPU. We will first start off with open source
code, but slowly replace components one by one with our
optimized code. Thus, we must unit test all software com-
ponents extensively, on real data and manufactured test
cases. This includes filter routines, computer vision rou-
tines, mesh generation, and CUDA kernels. We will be
testing for processing speed and correctness of these few
components.

d. Affordability

Our final requirement is affordability. The whole sys-
tem should cost less than $600. This is also to ensure that
we are bridging the gap since commercial 3D scanners cost
much more than $600.

3 ARCHITECTURE OVERVIEW

Allow us to start from the user story to link into our
architecture design.

The user first presses the start button, and if the de-
vice is not calibrated, the program will prompt the user to
insert the laser plane calibration object such as a checker-
board pattern and perform the calibration. Then, the user
will start the scan and a point cloud will be generated. If
additional scans are required, the user will rotate the object

in a way that provides more information about the bottom
or the concavities of the object, then these point clouds will
be coalesced with pairwise registration. After a final point
cloud is obtained, we will perform triangulation to output
the final mesh.

J‘}—[Cutput Final Mesh Jc}—‘[Trizng 1 }C

ICP for Pairwise
Registration

User Starts

f
Scan? {>Gensrate Foint Cloud

Additicnal Scan
Required?

No

Figure 1: User Story Flowchart

This process leads into our software pipeline design,
which directly corresponds with the user story. Note that
the pipeline diagram above assumes the camera is already
calibrated. We will use the camera image to perform laser
detection, and for each image with the laser in it, we will
generate Cartesian coordinate values based on how the laser
warps around the object. We will also remove the back-
ground points and the points from the turntable. Com-
bining this with rotational information we have from the
stepper motor driver, we will be able to generate a point
cloud, which will be passed through some noise reduction
and outlier removal filtering. If multiple scans are required,
then we will use pairwise registration to combine the two
point clouds and output a final point cloud. Then, we will
use triangulation on the point cloud to produce an output
mesh. Triangulation basically involves forming triangles on
the surface using close neighboring points, which produces
a triangle mesh that can be easily 3D printed.

| camera l"l__ Image Laser | Point Cloud
I," Image Detection Generation
/

Fairwise q Background

Registration Filtering
L 1] ||/
iy ||/ Output [
‘ gl ‘ "l Mesh

Triangulation ‘ >

Figure 2: Software Pipeline

Based on this software pipeline, we can have a more
comprehensive system specification diagram now, which in-
cludes components for the stepper motor, GPGPU, con-
trollers, and more. Please refer to Figure 10: System Spec-
ification Diagram in Appendix A for our full system speci-

18-500 Design Report - March 1, 2020

Page 3 of 14

fication diagram.

The proposed integrated hardware platform includes a
4-core embedded system with programmable GPGPU, in-
terfaces between the system and other components of our
design, as well as logical connections between software el-
ements. From the camera, data comes into the embedded
system by USB. This data is processed by our core system
controller process, which will either initiate the execution
of GPU kernels and subroutines for 3D scanning using the
image, or tell the motor controller to rotate a certain about
to capture additional images, depending on the state of the
controller within the process it is trying to accomplish. A
software state machine within the core system controller
process will match the behavior that can be found in Fig-
ure 1: User Story Flowchart based on user input and the
current executing operation.

A motor controller process will be responsible for setting
the GPIO pins to interface with the stepper motor through
the motor driver, setting the rotation to a specific angle. A
breadboard and wires will be used to interface between the
motor driver and the stepper motor. The stepper motor
angle will be communicated to the motor controller from
the core system controller based on the stage of the scan.
An additional process will be used to handle interrupts an
processing related directly to user input. Having this ad-
ditional indirection for user I/O helps enforce protection
boundaries between our system and the outside world (only
very specific types of input can make it through). Since we
have 3 processes and 4 cores on the embedded system, each
process can have a core dedicated to it to maximize perfor-
mance. For the motor controller, we can change the kernel
scheduling algorithm used to allow it to be prioritized for
real-time deadlines.

Besides the physical components and the software pro-
cesses, various GPGPU kernels and subroutines will exist
within the system to carry out optimized execution of our
required algorithms. A GPGPU kernel describes the exe-
cution of a single core in a many-core programming plat-
form. Launching a GPGPU kernel first copies data from
DRAM into the GPU’s memory, sets up the scheduling and
synchronization structures of the GPGPU to support the
provided kernel, and begins execution of each execution
core ”simultaneously”. The result is then copied back into
DRAM. We will implement a majority of our optimized al-
gorithms with compute kernels, including calibration, ray-
plane intersection, iterative closest points for pairwise reg-
istration (single object multiple scans), and other geometric
operations.

4 DESIGN TRADE STUDIES

In this section, we will discuss some design trade-offs
and evaluation of different options for the design of several
components of the project.

4.1 Scanning Sensor

The specific sensor setup we will use for our project re-
quired the most research and evaluation to compare many
different possible methods. We started from our require-
ments to choose this sensor. In the most extreme case, to
accurately capture an object whose longest axis is 5bcm, in
order to meet the requirement that 90% of reconstructed
points are within 2% of that 5¢cm, we must have points
within Imm to the ground truth model. From this, if we
consider the number of samples we need across the surface,
we must have accurate samples within 1mm for each direc-
tion (X, Y along the surface). Since the surface itself is a
continuous signal we are sampling from, we can compute
the Nyquist sampling rate as being every 0.5mm along each
direction of the surface.

Now considering the rotational mechanism, the largest
radius of the object from the center of the rotating platform
will be within 15cm. We need then a single rotation per
data capture to be such that the amount of the surface ro-
tated passed the sensor is less than or equal to 0.5mm. This
gives us: ?5%7:1% = 0.0033 radians of rotation per sample.

There are five main types of sensors for 3D scanning
that we have extensively considered:

1. Contact sensors: These sensors are widely used
in manufacturing. A Coordinate Measuring Machine
(CMM) or similar may be used, which generally uti-
lizes a probing arm to touch the sensor, and through
angular rotations of the joints the coordinates of each
probed area can be computed. This is a non-option
for our application, both for price and the fact that
we should not allow a large machine to touch timeless
archeological artifacts.

2. Time-of-flight sensors: By recording the time be-
tween sending a beam of light and receiving a re-
flected signal, distance can be computed to a single
point. The disadvantage of this approach is that we
can only measure times so precisely, and the speed of
light is very fast. With a timer that has 3.3 picosec-
ond resolution, we are still not within sub-millimeter
depth resolution, which is not reasonable for this
project. Time-of-flight sensors in the domain of 3D
scanning are more applicable to scanning large out-
door environments.

3. Digital camera: By taking multiple digital pho-
tographs from many perspectives around the object,
computer vision techniques can be used to match fea-
tures between pairs of images, and linear transforms
can be computed to align such features. After feature
alignment, and depth calculation, point clouds can
be generated. Computer vision techniques to accom-
plish the above include Structure from Motion (SFM)
and Multi-View Stereo reconstruction (MVS). This
approach has a fundamental flaw: concavities in the
object to be scanned cannot be resolved, since cam-
eras do not capture raw depth data. Surface points

18-500 Design Report - March 1, 2020

Page 4 of 14

within the convex hull of an object cannot be easily
distinguished from points on the convex hull. The
digital camera methods also have very strict light-
ing requirements to produce accurate scans and will
definitely suffer from accuracy compared to more pre-
cise approaches like the laser-based ones. This is an
immediate elimination for our project, since archeo-
logical objects may have concavities, and we do not
want to limit the scope of what type of objects can
be captured, along with accuracy being our primary
focus of the requirements.

. Structured/coded light depth sensor (RGB-D
Camera): The idea of such a sensor is to project
light in specific patterns on the object, and compute
depth by the distortion of the patterns. Such sensing
devices have become incredibly popular in the 3D re-
construction research community with the consumer
availability of the Microsoft Kinect. The original Mi-
crosoft Kinect only has 320 pixels wide of depth in-
formation for a single depth image. With the upper
bound of 30cm across the surface of the object, this
results in 30cm/320px = 0.094cm between each pixel,
which does not meet our sensor requirement of being
able to detect differences within 0.5mm (0.05 cm).
The newer Microsoft Kinect v2 actually uses a time-
of-flight sensor, and thus does not get measurements
more accurate than Imm depth resolution. Intel Re-
alSense has recently released new product lines for
consumer and developer structured light depth sen-
sors that are very affordable. Most notably, for short
range coded light depth sensing, the Intel RealSense
SR305 offers 640480 pixel depth maps, which corre-
lates to 30cm/640px = 0.047cm, which is within our
requirements. However, Intel does not advertise any
specific depth resolution for the device, and we can-
not guarantee sub-millimeter depth accuracy - these
depth cameras are more commonly used to scan a
whole room or scan objects from a meter distance.
Perhaps we can obtain a better accuracy figure af-
ter some extensive testing but it may not be valuable
considering we can just build our own laser stripe
triangulation sensor. Since this method only relies
on the camera, lighting environment and material of
the object can have much greater influence compared
with laser triangulation. It also requires a significant
algorithmic effort after data collection to reduce noise
and correlate the views.

. Laser point triangulation: The principle of the
single point laser sensor is that an emitting diode and
corresponding CMOS sensor are located at slightly
different angles of the device in comparison to the ob-
ject, so depth can be computed by the location on the
sensor the laser reflects to. Generally the position of
the laser on the surface is controlled by a rotating (or
pair of rotating) mirrors. We can assume that such a
sensor is affordable, can easily measure with resolu-

tion of less than 0.5mm, and that we will not likely
encounter any mechanical issues. However, the total
number of distance measurements we are required to
record is:

2T 300mm

: — 1142398 point
0.0033rad 0.5mm pomts

Assuming the sensor has a sampling rate of about
10kHz (common for such a sensor), 1142398 points
divided by 10000 points per second gives us 114.23
seconds theoretical minimum capture time with one
sensor. From our timing requirement, assume that
half of our time can be attributed to data collection
(30 seconds). Then, with perfect parallelization, we
could achieve our goals with 114.23s/30s = 3.80 ~ 4
sensors collecting concurrently. However, with our
budget, this is not achievable. Even if we had the
budget, it is possible for systematic errors in, for ex-
ample, the mounted angle of a sensor, to propagate
throughout our data with no course for resolution.
To add another set of sensors to mitigate this error,
we would be even farther out of our budget. 8 sensors
x $300 per sensor (low-end price) gives us $2400 for
this sort of setup. Note these calculations are unre-
lated to any mechanical components, but are directly
derived from required data points.

To make budget not an issue for the single point
laser triangulation method, we could choose to adopt
cheaper sensors, such as those with under 1kHz sam-
pling rate. Performing the same calculations as above
with 1kHz sampling rate shows us that we would
require 39 sensors to meet our timing requirement,
which is well out of the realm of possibility (and this
is not accounting for error-reduction, which may re-
quire 78 sensors). If we did not purchase this amount
of sensors, we would drastically under-perform for our
timing requirement.

. Laser stripe triangulation: Fortunately, there is

an alternative to single-point laser triangulation. We
may use a laser stripe depth sensor, which gets the
depth for points along a fixed width stripe. This
would improve our ability to meet our timing require-
ments significantly. Such devices are not easily avail-
able with high accuracy to consumers, but are usually
intended for industry and manufacturing. Because of
this, we would have the responsibility of construct-
ing such a device ourselves. We have considered the
risk of building our own sensor since none of us are
experts in sensors and electronics. However, as long
as we can find an affordable laser stripe with suffi-
cient brightness, our laser stripe sensor should not
suffer in accuracy. A laser stripe sensor consists of
a projected linear laser source and a digital camera.
Many laser stripe sensors use a CCD camera instead
to avoid the projection brightness issue completely,
but these CCD cameras tend to be too expensive and

18-500 Design Report - March 1, 2020

Page 5 of 14

would put an unnecessary strain on our budget, and
we can do just as well with a digital camera.

After a calibration process to determine the intrin-
sic camera parameters as well as the exact angle and
distance between the camera and the laser projector,
linear transformations may be applied to map each
point from screen space to world space coordinates.
Because of the ease of achieving sub-millimeter accu-
racy, and the relative independence on lighting condi-
tions and materials that photogrammetry is harmed
by, we plan on constructing a laser stripe depth sensor
with a digital camera.

After extensively considering the many available sensor
options, we can see that contact, time-of-flight, and digital
cameras are clearly not options for us to explore, and depth
cameras cannot guarantee as much accuracy as laser stripe
triangulation. Given that the main focus of our project is
the accuracy of the scans, our sensor setup should be able
to provide as much accuracy as possible so as to not cascade
errors down the pipeline.

4.2 Platform Material

To fit our Usability requirement, the platform must be
able to withstand an object with dimensions from 5cm to
30cm and weighing up to 7kg. The platform itself will be
a circular disc with a diameter of approximately 38.1cm.
We performed a rough estimation to compute the stress
that the platform needs to be able to handle. From our
maximum input object’s mass of 7Tkg, the maximum grav-
itational force that it can exert on the platform is around
68.67N. The lazy susan bearing our team might end up
using has an inner diameter of around 19.5cm (or 0.0975m
radius). This would give us an area of around 0.03m? that
would not have any support. We simplified the stress anal-
ysis of this design down but it should still give a good es-
timation of the stress the object would apply.

F
St =—
ress = —

_ 68.67TN
©0.03m2

which is around 2300%.

After getting the stress, we did more research on the
material that would be able to handle this much stress, be
cost-efficient, easily accessible, and easy to use (cut, coat,
etc). We did some optimization based on cost and mass-
to-stiffness ratio to narrow down the number of materials
we had to do research on. Below is an image of the opti-
mization graph. Note that we only looked into plastic and
natural materials as they are easier to use and more easily
accessible. The line in the second image is the optimization
line.

(] s Ty,
Price par unit volume (USDIm=S)

Figure 3: Material Optimization Graph

Figure 4: Optimized Material

After that, we narrowed the materials down more to
3 materials: plywood, Epoxy/hs carbon fiber, and balsa.
Table 2: Material Tradeoffs Analysis in Appendix A shows
the tradeoffs between different main properties that would
affect our decision. Young’s modulus, specific stiffness, and
yield strength are mainly to see if the material would be
able to handle the amount of stress the object would ex-
ert on it or not. The price per unit volume is to keep this
within our project’s constraint. The density is used to com-
pute the mass of the platform (for computing the torque
required and to stay within our Portability requirement).

From the table, we can see that carbon fiber is the
strongest but is relatively expensive and might not suit our
project well. Balsa is very light but is not as strong (even
if the values here are still higher than the stress we com-
puted, it might be because of the simplified stress analysis
we did). Thus, our group decided to use plywood which is
strong, inexpensive, easy-to-cut, and not too heavy. With
plywood, the maximum mass our of platform would just be
around 0.6kg (computed using density and dimensions of
the platform).

18-500 Design Report - March 1, 2020

Page 6 of 14

4.3 Motor

The final part of the main platform design is to choose
the right motor for the project. The main 2 motors we
looked into to rotate the platform are the servo motor and
the stepper motor. A servo motor is a motor coupled with
a feedback sensor to facilitate with positioning for precise
velocity and acceleration. A stepper motor, on the other
hand, is a motor that divides a full rotation into a number
of equal steps.

To figure out the motor used, we computed the torque
required to rotate the platform with the maximum object
size. From the density and dimensions of the platform, we
computed that the plywood platform would weight around
0.64kg and carbon fiber would be around 1.2kg (We still ac-
counted for the heaviest material and strongest material in
case of a change in the future). From that we computed the
moments of inertia which is around 0.024kgm?. For the in-
put object, we used maximum size and different dimensions
and shapes to cover most cases, the maximum moments of
inertia computed is around 0.1575kgm?. Thus, the total
maximum moments of inertia is less than 0.2kgm?2. Refer
to Table 3: Input Object Moments of Inertia in Appendix
A for the full calculations. To get the torque, We also es-
timated the angular acceleration needed. We need at least
a rotation of 0.0033 rad per step to capture enough data
to meet our accuracy requirement. Assuming that 10% of
the time requirement, which is 6s, can be used for data
capturing (so that we have more buffer for the algorithmic
part even if we anticipate 30s for data capturing), we would
get that the angular velocity is around 3%. Assuming we
want our motor to be able to reach that velocity fast enough
(0.5s), we have an estimated acceleration of 2.094%‘1. From
here, the estimated torque needed to rotate the platform is
around

7=1%a=0.4188Nm.

Since we need a high torque and from our algorithm we
would need an accurate step, the stepper motor is preferred.
The two stepper motor we looked into are the NEMA 17
and NEMA 23. NEMA 17 has a holding torque of 0.45Nm,
and NEMA 23 has a holding torque of 1.26Nm. Even
though NEMA 17 seems like it might be enough, in the
computation, I neglected the friction which would drasti-
cally affect the torque the motor has to supply. Moreover, 1
also neglected the energy that would be lost through using
the internal gear to rotate the platform. Since NEMA 23
is not that much more expensive, we believed NEMA 23
would fit our project best.

For the step driver, we just need one that can provide
required current for NEMA 23. We decided to go with
DMb542T step driver since it could go up to 4.2A which is
enough for NEMA 23. Moreover, it is relatively inexpensive
and has 1/128 Micro-step Resolutions. This means that we
can have more rotations per revolution and could achieve a
smaller step angle (much smaller than the required 0.0033
rad if needed).

5 SYSTEM DESCRIPTION

The system consists of an integrated hardware platform,
a laser line diode, a digital camera, the rotational platform,
and the physical structure to hold up each component. The
integrated hardware platform can be further broken down
into a motor component (consisting of the software motor
controller, the motor driver board, and the stepper mo-
tor itself), the algorithmic components (consisting of the
GPGPU kernel routines on the embedded system), and the
state control component (consisting of processes executing
on the 4 core embedded system, determining the control
flow of the system). Please see Figure 10: System Specifi-
cation Diagram in Appendix A to see connections between
components.

5.1 Sensor Setup

The sensor setup consists of a statically arranged laser
line diode and digital camera. The laser line diode provides
a red light at 650nm wavelength with ideally a consistent
Gaussian intensity distribution across the line for the entire
length of the line. The digital camera must have sufficient
resolution to meet our accuracy requirement. We chose an
8 megapixel (the highest commercially available for rea-
sonable price) camera to minimize the effective distance
between each pixel and maximize our accuracy.

5.2 Mechanical Setup

The mechanical setup consists of all the components of
the system, and determines how they are arranged in phys-
ical space with respect to each-other. Figure 5: Mechanical
Setup (Front View) and Figure 6: Mechanical Setup (Side
View) show how the components would be set up.

Figure 5: Mechanical Setup (Front View)

18-500 Design Report - March 1, 2020

Page 7 of 14

Figure 6: Mechanical Setup (Side View)

The rotational platform forms the physical basis of the
device, with the camera and laser line diode positioned at
a short distance (approximately 20cm) away pointing to-
wards the center of the rotational platform. The platform
would be mainly composed of a base, a motor, a gear on the
motor’s shaft, a lazy susan bearing to reduce friction, an
internal gear, the top platform, and a high-friction surface.
The high-friction surface here is to simply help reduce the
chance of the object slipping off-center while the platform
is rotating. The base here is to give the platform itself
enough height so that the motor can be put under. The
motor with a gear attached to the shaft will be inside the
platform. The lazy susan bearing will be on top of the
base, and the internal gear will be attached on top of the
lazy susan bearing, and the top platform will be attached
on the internal gear. The gear on the motor’s shaft will
be connected to the internal gear, and when the motor ro-
tates, the platform will rotate with it. Figure 7: Platform
Component Breakdown below shows a breakdown of how
the platform itself would look like.

Top platfarm
iplywood overlaid by

neoprene rubber sheet)
Acrylic with
gear teeth

Lazy Susan
Bearing

Gear piece
rotates acrylic

Stepper motor
attached to base

Figure 7: Platform Component Breakdown

From the design trade studies, we are using the follow-

ing items for the components mentioned above:
e Motor: NEMA 23 Stepper Motor

e Gear on motor’s shaft: 3D-printed to control the gear
ratio and dimensions

e Lazy Susan Bearing: 10” Swivel Lazy Susan Bearing

e Internal Gear: Laser-cut Acrylic Plexiglass Sheet to
control the gear ratio and dimensions

e Top Platform: Plywood 15” Circular Disc
e High-friction Surface: Neoprene Rubber Sheet

5.3 Hardware Setup

The integrated hardware platform consists of the
NVIDIA Jetson Nano embedded platform, the DM542T
motor driver, and USB/wires/breadboards to provide the
interface to our external sensor, motor, and user. The
NVIDIA Jetson Nano has the following notable specifica-
tions relating to our project:

e 128-core Maxwell GPU
Quad-core ARM A57 @ 1.43 GHz CPU
4 GB 64-bit LPDDRA4 25.6 GB/s Memory

Video Encode/Decode at 30fps
(H.264/H.265)

4x USB 3.0 external ports

for 2x 4k

GPIO pins for motor control

5.4 State Control Subsystem

A 4-core embedded system with programmable GPGPU
will be the main computational platform for our device.
Specifically, the NVIDIA Jetson Nano embedded system.
This system will have 3 of our dedicated processes running
on it while the device in in action:

e User I/O Controller: Enforces protection boundary
between user behavior and device logic. Only rea-
sonable commands will be passed from this controller
to the other processes, and only intended output will
pass from other processes to the user. This indirec-
tion layer helps prevent the user from accidentally (or
intentionally) tampering with the device logic.

e Core System Controller: This process orchestrates
the order of total functionality of the system. A
software state machine is implemented to match the
behavior of our user story flow chart (See Figure 1:
User Story Flowchart). The Core System Controller
interfaces with the user via the User I/O Controller
(and indirectly USB), with the rotational platform
via the Motor Subsystem, with the GPGPU via ker-
nel launches (Algorithmic Subsystem), and with the
camera via a USB interface on the NVIDIA Jetson
Nano.

18-500 Design Report - March 1, 2020

Page 8 of 14

e Motor Controller: This process rotates the stepper
motor by angles determined and communicated by
the core system controller. The motor subsystem de-
scription will go deeper into its behavior.

We chose to divide the computation work across three in-
dependent cores to maximize performance. The User I/O
Controller rarely runs, but it should respond quickly to
user inputs, and therefore it is left idle so that we can max-
imize the response time between an I/O device interrupt
(new data from USB) and processing the I/0O. The motor
controller process on the other hand is real-time deadline
driven, as it must continuously step the motor at specific
angles to coordinate with the camera via the core system
controller. Because of this, we plan on using a soft real-
time scheduling algorithm for this process. We will also
ask the kernel to separate these processes across the cores.
The remaining core can be used for background processes
for the OS.

5.5 Motor Subsystem

The motor subsystem is responsible for providing ac-
curate control of the stepper motor turning the rotating
platform during 3D scanning. This subsystem consists of
both hardware and software components. The stepper mo-
tor itself accepts PWM wave modulation to control how
many steps to take in which direction (or partial steps).
Since such signals are difficult to generate manually, we
are using a motor driver board DM542T to convert GPIO
signals from the Nvidia Jetson Nano into waveform com-
mands for the stepper motor. A breadboard with wires
attached to the pins on both the driver and the stepper
motor will transfer this signal to the motor. As noted be-
fore, the motor subsystem will have heavy communication
with the state control subsystem to coordinate camera im-
age captures. Both the camera latency and throughput, as
well as the step amount and speed, have an effect on the
details of this coordination.

5.6 Algorithmic Subsystem

The algorithmic subsystem is completely in software,
and is mostly data-driven. Wheras the state control sub-
system determines what happens across the system at any
point in time by using the CPU of the embedded system
with I/O and interrupts, the algorithmic subsystem utilizes
the GPGPU to massively parallelize data-driven algorith-
mic code, such as image processing and geometric transfor-
mations. The algorithmic subsystem generally consists of
GPGPU kernels which implement the required computa-
tions of our device, including calibration, computer vision,
point-cloud generation, pairwise registration, and mesh tri-
angulation, as well as accuracy computation for testing and
validation. Algorithms and descriptions of their implemen-
tations are described in detail in the remaining subsections
of the system description.

5.7 Image Laser Detection

This component of the algorithmic subsystem is respon-
sible for detecting points on the laser line in a camera im-
age. The basic idea is assume a model of the distribution
of the laser line across its width as being a Gaussian dis-
tribution, such as in Figure 8: Laser Line Light Intensity
Distribution.

—

= = =
- o L==]

Relative Intensity

(=]
]

0.135

Radial Position
Figure 8: Laser Line Light Intensity Distribution

First we apply an intensity filter to extract higher val-
ues at pixels with color close to the wavelength of the laser
light (650nm). Then we apply a horizontal Gaussian filter
to enhance the Gaussian distribution of the laser intensity
(since the laser line will be close to vertical in the camera
image). For each row, the center of this Gaussian distribu-
tion is the horizontal location of the laser. Note that this
suffers from the problem that only one point can be found
for each row of the image. However, the case that a single
row of the image has multiple parts of the laser line is a
case of occlusion already, and these holes in the scan can
be resolved by merging the results with an additional scan
(single object multiple scans).

5.8 Camera and Scene Calibration

There are several components to calibration which must
be performed prior to any 3D scanning. The general
method to convert between a pixel and a world space co-
ordinate is, for pixel v and coordinate p:

Au=K(Rp+T)

18-500 Design Report - March 1, 2020

Page 9 of 14

where :

e)\ is a scalar intrinsic to the camera and screen size
in pixels

e K is a distortion matrix intrinsic to the camera lens

e R is the rotation matrix between world space and
camera space coordinates.

e T is the translation matrix between world space and
camera space coordinates.

Then to calibrate each of these parameters:

e Intrinsic Camera Calibration: this calibration re-
solves constants related to the camera lens and poly-
nomial distortion that may have on the image verses
real world space. This can be done by the mapping
between known world-space points and known pixels.
This calibration determines the K and A\ parameters
above.

e Extrinsic Camera Calibration: this calibration solves
a system of linear equations to find the translation
and rotation matrices for the transformation between
camera space and world space. This system is made
non-singular by having sufficiently many known map-
pings between camera space and world space (specific
identifiable points on the turntable). Therefore, this
requires an object on the turntable to act as these
known points. We will use a CALTag checkerboard
pattern pasted on the turntable surface to help per-
form this calibration. The CALTag pattern is espe-
cially useful since position can be determined even
if some of the image is occluded. This calibration
determines the R and T" parameters above.

We setup the linear equation as follows. Suppose

Uy Pz
u=[%] =[]
Where u is in homogeneous pixel coordinates and p
is on the turntable plane (z = 0), and

T11 T12 T T,
=K 'u, R= [r; r2s Tég} T = [Ty}
731 T32 T33 Tz
From this we get that
[%} —dx (\a)=ax (Rp+T).

Then we solve for R and T from the following system:

B T11Pz+7r12Py +1% 0
u X {T21px+7’22py+Ty } = [0} .
731Dz +7320y+ 1% 0

From this we group the unknowns in a single vector

T
X = |:7"11 r21 T31 T12 T22 T32 1o Ty Tz:|

from which we can derive that

|:0 —Pzx Zu)yl)z

0 —py Eu)ypy 0-1 (“)y :|
pz O

_ o
—(Wepe Py 0 —(Wepy 1 0 —(w)e ™ {O]
Here we are only considering a single point p. Dur-
ing calibration, we take multiple images, and so we
actually have a set of points {p;|i : 1..n}. We can
use all such points to form a single system of the
form AX = 0 where A € R?"*9. Since vector X
has 8 degrees of freedom, matrix A must have rank
8, meaning we need at least 4 non-collinear points.
Finally we are left to solve the following optimization
problem to compute R and T

X:argng}nHAXH, st X =1

e Axis of Rotation Calibration: this is computed in a
similar manner to extrinsic camera calibration. The
center position of the turntable is discovered, and the
axis of rotation is assumed to be in the positive z
direction. Note that this assumes that the *up’ direc-
tion of our camera image is the same angle as the up
direction of the turntable.

e Plane of Laser Line Calibration: With laser line de-
tection, points along the laser in the digital image can
be identified. From this, a linear equation must be
solved to determine the A, B, C, and D parameters
of the plane of the laser line in world space, where
the plane is Az + By + Cz+ D = 0. An additional
calibration object is required here to completely de-
fine the laser plane, instead of simply defining a pen-
cil of planes (all planes rotated around the axis of
the turntable). The known object, which will be a
checkerboard pattern, allows us to know where on
the object the laser points are detected, and from
that collect a set of non-collinear points, which allow
us to solve the linear system.

5.9 Global Parameter Optimization

Calibration parameters will be solved for in the least-
squared error sense, to match our recorded points. Global
optimization will then be applied to all the parameters to
reduce reconstruction error. Our implementation of opti-
mization will consist of linear regression.

5.10 Point Cloud Generation

With all of the parameters calibrated, to generate the
3D point cloud of a scan we simply perform ray-plane in-
tersection between the ray originating at the world space
coordinate of the pixel with the laser line, whose direction
is away from the camera world position and towards the
laser plane in world space. This intersection point is in
world space coordinates, so it must be rotated around the
rotational axis by the reverse angle of the stepper motor
rotation to get the corresponding point in object space.

18-500 Design Report - March 1, 2020

Page 10 of 14

All such points are computed and aggregated together to
form the point cloud for a scan. See Figure 9: Ray-Plane
Intersection for intuition.

(‘,-_:‘_:-TJ
]
,.‘,—.-7 ~ i _-\H\\
ru - [-"‘/
(xy.2)? :) 2
€ - - - W— = Ll K?
fi)
y /i__ o e

Figure 9: Ray-Plane Intersection

5.11 Point Cloud Processing

There are several components to processing the point
cloud obtained after mapping the sensor data into world
coordinates to generate the point cloud.

a. Outlier removal/noise reduction

We will first do outlier removal, and may or may not
do noise reduction depending how bad the point cloud ob-
tained is - we do not want to over-smooth the object since
many archaeological objects tend to have weird shapes and
contours and jagged edges. Point clouds obtained from
3D scanners with any methods, including laser projection,
would regularly be contaminated with some level of noise
and outliers. The first step for dealing with raw point
cloud data obtained after conversion from laser projection
to depth would be to discard outlier samples. Note that
this step would come after removing the points in the back-
ground and the foreground points on the turntable. There
are generally three types of outliers: sparse, isolated, and
nonisolated. Sparse outliers have low local point density
that are obvious erroneous measurements i.e. points that
float outside of the rest of the data. Isolated outliers have
high local point density but are separated from the rest of

the point cloud, i.e. outlier clumps. Nonisolated outliers
are the most tricky — they are outliers that are very close
to the main point cloud and cannot be easily separated,
akin to noise. We will focus on sparse and isolated outliers,
and we can use a method that looks at average distance
to k-nearest neighbors, then removes that point based on a
threshold defined in practice. Let the average distance of
point p; be defined as:

k

di =1/k- Zdist(pia%‘)

Jj=1

(1)

where ¢; is the jth nearest neighbor to point p;. Then,
the local density function of p; is defined as follows:

exp (_diStCEI_?i’ Qj)> 2)

(2

D=7 Y

q; EKNN(p;)

with d; defined earlier in equation (1). Now we can
define the probability that a point belongs to an outlier as:

Poutlicr (Pz) = I*LD(Z%)

We can then take this probability and if it is above a
certain threshold, that point will be removed from the point
cloud data (PCD). One reference paper uses Poytiier(pi) >
0.1-d; as their threshold in practice which is dynamic based
on d;, we can determine this threshold through empirical
testing by seeing accuracy numbers based on threshold val-
ues on multiple test samples.

b. Iterative Closest Point Algorithm (ICP)

We will use an ICP (Iterative Closest Point) algorithm
to combine different scans. This is needed in the use case
where the user wants to combine a scan from another angle
since some part of the object was occluded in the original
scan. The ICP algorithm determines the transformation
between two point clouds from different angles of the ob-
ject by using least squares to match duplicate points — these
point clouds would be constructed by mapping the scanned
pixel and depth to their corresponding 3D cartesian coor-
dinates. Similar to gradient descent, ICP works best when
starting at a good starting point to avoid being stuck at
local minima and also save computation time.

c. Triangulation from Point Cloud to Mesh

The point cloud would likely be stored in a PCD (Point
Cloud Data) file format. PCD files provide more flexibility
and speed than other formats like STL/OBJ/PLY, and we
can use the PCL (Point Cloud Library) in C++ to pro-
cess this point cloud format as fast as possible (this library
should be able to be run on the Jetson). The PCL library
provides many useful functions such as estimating normals
and performing triangulation (constructing a triangle mesh
from XYZ points and normals). We think that implement-
ing triangulation ourselves completely from scratch will be

18-500 Design Report - March 1, 2020

Page 11 of 14

out of scope for this project and also unnecessary, unless
the PCL implementation is grossly inefficient. Since our
data will just be a list of XYZ coordinates, we can easily
convert this to the PCD format to be used with the PCL
library (the PCD format is a list of XYZ coordinates with
a few header lines in the beginning).

The triangulation algorithm works by maintaining a
fringe list of points from which the mesh can be grown
and slowly extending the mesh out until it covers all the
points. There are many tunable parameters such as size
of the neighborhood for searching points to connect, max-
imum edge length of the triangles, as well as maximum
allowed difference between normals to connect that point,
which helps deal with sharp edges and outlier points. The
flow of the triangulation algorithm involves estimating the
normals, combining that data with the XYZ point data,
initializing the search tree and other objects, then using
PCL’s reconstruction method to obtain the triangle mesh
object. The algorithm will output a PolygonMesh object
which can be saved as an OBJ file using PCL, which is
a common format for 3d printing (and tends to perform
better than STL format).

6 PROJECT MANAGEMENT

6.1 Schedule

Our schedule has slightly changed since we decided to
use the laser stripe triangulation sensor setup. Please re-
fer to Figure 11: Gantt Chart (updated 03/02/2020) in
Appendix A for the full Gantt Chart. Our original sched-
ule was built around using the depth camera, but now the
Gantt Chart is structured around using the laser stripe
sensor.

We will aim to start writing some of the testing code
and filtering code while we wait for parts, and assemble the
platform and the whole setup either before or right after
spring break depending when the parts arrive. Then, we
will be able to write code to process the sensor data and
convert it to point clouds, as well as code for triangulation
and pairwise registration. We aim to be able to make a
decent reconstruction by late March for the lab demo, and
optimize our code and make necessary fixes for the final
presentation in April.

6.2 Team Member Responsibilities

Our team divides work among each team member
equally. The team deals with logistics, integration, and
decision-making together but each member still has his
main tasks assigned as follows:

Jeremy:

e Testing database construction
e Outlier removal and noise reduction

e Point cloud triangulation

e ICP for combining multiple scans
Chakara:

e Rotational mechanism

e Motor controller/driver

e Platform construction

e Optimization of software components for GPU

Alex:

Laser stripe detection and mapping to world coordi-
nates

Point cloud generation from sensor data

Camera calibration code

Testing benchmark code

6.3 Risk Management

Our design still consists of some potential risks. We
have several plans to mitigate these risks, which would re-
quire more implementation complexity on our part.

e Part of the input object is obscured:
We plan on dealing with this issue by merging multi-
ple scans of multiple angles of the objects to get more
perspectives. We will be using pairwise registration
to merge the point clouds generated from these scans.

e Vibrational noise:
We can add an additional laser stripe for triangula-
tion to correct for the noise. We can also modify the
sensor setup to be disjoint from the platform if there
is too much vibration induced from the stepper motor
mechanism.

e The stepper motor angle data is inaccurate:
There is a very low possibility this would happen but
if it does, we can combine the computed angle from
the motor with computer vision to get a more accu-
rate angle. However, this may require placing some
sort of calibration mat underneath the object to be
able to track the angle rotated throughout the pro-
cess.

e The laser stripe doesn’t have enough intensity:
We can buy a stronger laser since we have a buffer in
our budget that amounts to around $200.

e Potential holes in the point cloud:
We can merge multiple scans of the object, again us-
ing pairwise registration. We can also perform hole-
filling mesh triangulation.

18-500 Design Report - March 1, 2020

Page 12 of 14

Item Price Total Price Description
(3) | Includes Shipping ($)
Nema 23 Stepper Motor 23.99 23.99 Motor for rotational mechanism
15 Inch Wooden Circle by Woodpeckers 14.99 14.99 Plywood for platform
Lazy Susan Bearing 27.19 27.19 Reduce friction in rotational mechanism
Acrylic Plexiglass Sheet, Clear 9.98 9.98 To create internal gear
DM542T Step Driver 38.99 38.99 Step Driver for NEMA 23
Neoprene Rubber Sheet Rolls 14.80 14.80 To add friction to the platform
Adafruit Line Laser Diode (1057) 8.95 17.94 Projected Laser Stripe
Webcamera usb 8MP 5-50mm Varifocal Lens | 76.00 76.00 Camera
Nvidia Jetson Nano Developer Kit 99.00 117.00 Embedded Systems
256GB EVO Select Memory Card 42.96 42.96 MicroSD card for NVIDIA Jetson
MicroUSB Cable (1995) 9.00 17.99 MicroUSB cable for NVIDIA Jetson

Table 1: Project Components (Purchase)

e NVIDIA Jetson Nano and motor driver inte-
gration:
Although using NVIDIA Jetson Nano to control the
motor step driver is possible, there is a possibility that
it would not work since we have not found an article
supporting the use of NVIDIA Jetson to control the
DM542T motor driver model. If they can’t integrate,
then we plan on borrowing an Arduino from the Cap-
stone course to control the motor driver instead.

6.4 Budget

Table 1: Project Components (Purchase) shows the
project components that would be purchased. Note that
some of the item names are shortened for readability.

This comes up with a total price of $401.83. We would
have $198.17 left in our budget which would still need to
be used to purchase wood for supporting our platform and
for risk management.

We could potentially borrow an Arduino from the Cap-
stone course in case our NVIDIA Jetson can’t integrate
with our motor step driver (refer to the risk management
section). We could also potentially reuse one of our bread-
boards from previous classes if we need one to conenct the
motor with the driver.

References

[1] Yan Cui et al. “3D shape scanning with a time-of-flight
camera’”. In: 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition. IEEE.
2010, pp. 1173-1180.

[2] Steven M Seitz et al. “A comparison and evaluation of
multi-view stereo reconstruction algorithms”. In: 2006
IEEE computer society conference on computer vi-
sion and pattern recognition (CVPR’06). Vol. 1. IEEE.
2006, pp. 519-528.

[3] Gabriel Taubin, Daniel Moreno, and Douglas Lanman.
“3d scanning for personal 3d printing: build your own
desktop 3d scanner”. In: ACM SIGGRAPH 201/ Stu-
dio. 2014, pp. 1-66.

[4] Klaus Thoeni et al. “A Comparison of Multi-view 3D
Reconstruction of a Rock Wall using Several Cam-
eras and a Laser Scanner”. In: ISPRS - Interna-
tional Archives of the Photogrammetry, Remote Sens-
ing and Spatial Information Sciences XL-5 (June
2014), pp. 573-580. DOL: 10.5194/isprsarchives-
XL-5-573-2014.

[5] DroneBot Workshop. Stepper Motors with Arduino —
Bipolar € Unipolar. https : / / dronebotworkshop .
com/stepper-motors-with-arduino/. Feb. 2018.

[6] Michael Zollhofer et al. “State of the Art on 3D Re-
construction with RGB-D Cameras”. In: Computer
graphics forum. Vol. 37. 2. Wiley Online Library. 2018,
pp. 625-652.

Acknowledgement

We would like to thank the ECE department for pro-
viding the opportunity for us to work on this project. We
would like to thank Professor Tamal Mukherjee, Professor
Bill Nace, and Joe Zhao for giving us great feedback and
advice and helping us mitigating our risks in our design de-
cisions. We would also like to thank Maxwell Van Buskirk,
Kevin Riordan, and Ian Suzuki for helping with software to
choose materials and suggestions on the platform design.

18-500 Design Report - March 1, 2020 Page 13 of 14

Appendix A

Integrated 4 Core Embedded System with Programmable GPGPU
Hardware
Platform Core System Controller
A A
UsB T v 1
Camera
GPU kernels and subroutines B
- | lcenter of Rotati i~
™ | | Bemsan® | s anc posion
User /O g User
Controller @ Computer
Global '
SrEn Back d and
; o ion” || "esane | | Tumiaie ant
— Parameters dietiy
Bread
Board o Laser Light Plane| | Ray-Pl Iterative Closest
MotorDriver | | 5| Motor | | o very || intersecion | | Poinis Algoritum
Stepper
Motor -
T f8nsial Coofdinata Space | Point Cloud Triangulation
Transformations | 2
Power 3 ('.;Pa(g:rr%sént;[r:;;edicated to each process:
2. User /0 Controller
3. Core System Controller
Figure 10: System Specification Diagram
Material Young’s Modulus | Specific Stiffness | Yield Strength | Density | Price per Unit Volume
(GPa) (M) (MPa) (k) ()
Plywood 3-4.5 3.98-6.06 8.1-9.9 700-800 385-488
Carbon Fiber 58-64 38.2-42.4 533-774 1490-1540 26200-31400
Balsa 0.23-0.28 0.817-1.09 0.8-1.5 240-300 1610-3230
Table 2: Material Tradeoffs Analysis
Shape Dimensions Formula Moments of Inertia
(m) (kgm?)
Cube 0.3%0.3%0.3 | 5m(w? + d?) 0.105
Solid Sphere r=20.3 %mr2 0.063
Hollow Sphere r=0.3 §m7'2 0.105
Solid Cone r=20.3 Emr2 0.04725
Hollow Cone r=03 %er 0.07875
Solid Cylinder r=20.3 5m7’2 0.07875
Hollow Cylinder r=20.3 mr? 0.105
Rod L=03 %mL2 0.0525

Table 3: Input Object Moments of Inertia

18-500 Design Report - March 1, 2020 Page 14 of 14

i 2 3 4 6 6 7 8 9 10 11 12 13

Task Name Start Date End Date Team Member Status

Design I

Research algorithms 2/5 2/20 AP Complete ~

Determine model components for algorithm 2/8 2/17 ALL Complete ~

Design scanning platform layout 2/9 2/19 Ifco Complete ~

Design rotational mechanism 2/12 2/19 co Complete ~

Determine sensor setup 2/12 2/19 ILfco Complete ~

Determine risk factors and evaluation methods 2/15 2/19 ALL Complete ~

Find specific parts for purchase and determine total cost 2/17 2/20 ILfco Complete ~

Create (and present) Design Review presentation 2/19 2/21 AP Complete ~

Slack before Design Presentation 2/20 2/23 ALL Complete ~ :

Design Document 2/26 3/1 ALL Active b .

Implementation :

Order components 2/26 2/29 co Complete ~ :

Find/generate database of ground-truth models we can test on 2/26 3/3 i Active - -

‘Write testing benchmark code to determine accuracy of a generated model 2/26 3/5 AP Active v

Implement filtering of sensor data 3/5 3/16 I Upcoming ~ -

Assemble scanning capsule 3/5 3/16 co Upcoming ~ -

Wire up motor control circuit 3/5 3/16 co Upcoming ~ -

Implement rotational controller 3/5 3/20 co Upcoming ~ z _

Spring break 3/7 3/14 ALL Upcoming ~ -

Assemble the whole platform setup 3/16 3/20 ALL Upcoming ~ .

Implement algorithm to construct global point cloud from sensor data 3/16 3/23 AP/IL Upcoming ~ :

Early testing and analysis of sensor data 3/17 3/22 co Upcoming ~ -

Implement triangulation to form output mesh 3/22 3/27 AP/IL Upcoming ~

Test and verify across many samples 3/25 3/27 ALL Upcoming ~ : I

Prepare an example reconstruction for in-lab demo 3/25 3/29 ALL Upcoming ~ 1 .

Make necessary fixes after in lab demo 3/30 4/10 ALL Upcoming ~ : -
Spring carnival 4/16 4/19 ALL Upcoming ~ 1 .
Create (and present) Final Presentation 4/20 4/24 ALL Upcoming ~ .
Write final report 4/26 4/29 ALL Upcoming ~ .
Slack before Final Report 4/29 5/3 ALL Upcoming ~ .
Overall Progress _

Figure 11: Gantt Chart (Updated 03/02/2020)

