
18-500 Final Report: 05/05/2020

1

Abstract

This document outlines the design of an autonomously

navigating robot that is capable of mapping the interior of a

given building. This system will be implemented in the Spring

2020 iteration of the ECE 18-500 course. The output of the

robotic system is a 2D floor plan of the given building,

suitable for human navigation. This document outlines the

system architecture, requirements, and implementation process

for the device. We also explore existing similar projects and

risk management we faced along the way.

Keywords: SLAM, Indoor Positioning, Rotating Lidar,

Navigation, Obstacle Avoidance, Multi-thread, Real Time

I. INTRODUCTION

Current mapping and navigation systems lack accurate and

comprehensive indoor positioning information. Accurate

indoor positioning information has applications benefiting

everyday consumers, facility administrators, and autonomous

systems. In order to show specific details on indoor locations,

current solutions such as Google Maps require businesses and

establishments to upload their own floor plans. However, most

buildings do not have this information available online,

making it difficult for visitors to navigate indoors. The

Robotic Indoor Plotting project will autonomously generate

indoor floor plans. When placed indoors, the robot will

explore the space, creating a 2D map using obstacle detection

sensors, SLAM, and a rotating LIDAR. After traversing the

indoor space, the robot will synthesize information into a

readable format for the user to view on a web application.

II. DESIGN REQUIREMENTS

Our methodology to determine system requirements included

taking into account ideal use case scenarios, technical

limitations of our components, and project feasibility. To

provide a good user experience, we require the device to

complete a full scan on one charge and generate a floorplan

accurate enough to allow for human navigation. We then

identified core requirement areas of the system to be the

mapping speed, floorplan accuracy, obstacle avoidance, and

power consumption. To create quantifiable target metrics, we

assume a mapping area of 2000 square feet, similar to that of

our final test cases of Tepper Quad 2nd floor and Wean 5th

floor.
For battery life, the iRobot Create 2 advertises a battery life of

2 hours with vacuum motors fully running. Since our project

does not require power from the vacuum motors which use

50% normal operation wattage, the robotic base should

realistically last us up to 4 hours per charge. The external

power bank for the Pi and sensors will be supplying at 5V/3A,

and we plan to acquire a 10Ah supply, which will last an

estimated 3 hours. However, in order to provide the best user

experience and reduce wait times, we created a tighter bound

of an operational time of up to 2 hours. Combining the

operational time requirement with our estimated map area of

2000 square feet then yields us a required mapping speed of

16 square ft/min. This total mapping time starts when the

robot starts and ends when the map is fully generated. This

speed requirement includes time taken for navigation

inefficiencies and processing cycles. In cases where there are

few obstacles, we expect this to be much faster.
The final floorplan output is required only to be

accurate enough for a human to navigate with. We estimated

that a human could still navigate to a mapped room effectively

when there is up to 10% error in the mapped dimensions.
Put all together, figure 1 summarizes the design

requirements our system will need to meet in order for build a

successful minimum viable product:

Figure 1.

Mapping Speed Generate map faster than 16

sqft/min

Floorplan Within 10% of true distance and

depth value

Obstacle Avoidance Zero collisions with active or

passive obstacles

Power Operational time of 120 minutes

per charge

III. ARCHITECTURE

 The system architecture of the hardware components of the

project consists of a Raspberry Pi, a spinning LIDAR, and an

iRobot Create 2 (Figure 3). The software component consists

of a server hosted on AWS running a React web application.

The Raspberry Pi is powered by an external power bank, and

in turn powers the rest of the system. The Roomba has a

separate independent battery. See figure 2 for a complete

system diagram of the project architecture.

Authors: Aditi Hebbar, Shanel Huang, and Alexander Bai

 Group B2: Robotic Indoor Plotting

Carnegie Mellon University Spring 2020 ECE Design Experience

18-500 Final Report: 05/05/2020

2

For the base of the robot, we will be using an iRobot

Create 2 for physical movement of the entire system. The

iRobot Create system provides an Open Interface API to

communicate with the robot case. This software interface is

used to control and manipulate the robot’s behavior, as well as

read in from its sensors through a series of commands. It has

multiple built-in ultrasonic sensors that can be used to detect

cliffs and obstacles at the same height of the robot. The

Roomba interfaces with the Raspberry Pi via a serial

connection through a ribbon cable.
To process information from the rest of the hardware,

we will use a Raspberry Pi 4 microcontroller. This version

contains 4GB of RAM and includes all the necessary ports to

connect our system gracefully. The Pi runs all of the control

code, taking in data from the LIDAR and Roomba and turning

it into commands for movement. The majority of the software

packages we plan to use are compatible with the Raspberry Pi

4, and the extra processing power allows for extension and

scaling of this project in the future.
The spinning LIDAR will be used to detect

dimensions of objects and walls surrounding the robot. The

RPLidar A1 model we’re using allows for detection of objects

360 degrees around the robot, and up to 6m. Since it outputs a

2D point cloud on a horizontal plane, it does not give us any

vertical data. For the initial prototype of this project, the Lidar
sensor will be placed at a height directly above the robotic

vacuum to reduce noise scan obstacles close to the floor.

Figure 2. System level block diagram

=

IV. DESIGN TRADE STUDIES

A. Robot Base

The robotic base is responsible for physical movement of the

entire system. Based on our target metrics, we need a

hardware system large and strong enough to support the rest of

the equipment in the system. One option that would allow for

flexibility and customization is building and wiring our own

chassis. However, with the limited time and tools available,

we decided it would not be wise to spend most of our efforts

Figure 3: Robot system structure

on a large mechanical undertaking. We found a few existing

hobbyist bases such as the DirtDog or Smartibot, but they

lacked a great deal of connectivity, stability, and battery life.

With this in mind, we chose to use the iRobot Create 2. It is

well-documented with an Open Interface software tool,

developer-friendly, and designed specifically for robotics

projects. There are several built-in sensors that are easily

interfaceable, and the base is large enough to support our

18-500 Final Report: 05/05/2020

3

frame and other components. for robotics projects. There are

several built-in sensors that are easily interfaceable, and the

base is large enough to support our frame and other

components. We later found that depending on the firmware

version of the iRobot Create 2 model, the odometry data may

be corrupted. This was the case in our project, and we had to

periodically check and reset our robot base if the sensor

readings were wrong.

B. Depth Detection Sensor

The depth detection sensor will be used to data for map

generation. Initially, we considered a few custom-built

sensors, such as an IR Dot Matrix, a multi camera CV system,

or a stereo LIDAR, but each of these came with their own

challenges with accuracy, tolerances, and manufacturing

quality. To circumvent these issues, we decided to purchase an

existing manufactured sensor.
Our first choice was the Intel RealSense d415, a

stereo LIDAR system. It is well-documented, accurate, and

integrates well with the rest of our system. However, this

sensor requires excessive processing power to create the 3D

point-cloud output. The specs of this sensor overshoot our

requirements by a lot, while hindering our computational

speed. We also considered the Microsoft Kinect 2 which

processes more efficiently but is not very compatible with the

rest of our components. The Kinect 2 requires additional cable
connections to interface with the rest of the system, and has

deprecated software support. In the end, we decided to use the

RPLIDAR A1M8, a rotating lidar that generates a 2D point

cloud output that is leaner. The output scans are customizable

and accurate enough to support our use case.

C. Microcontroller

When considering which microcontroller to use, we settled on

the Raspberry Pi 4 because of our team’s experience with the

device, as well as the compatibility with the other components

of our system. This is the newest version of the Raspberry Pi,

and gives us increased processing power and more ports to

interface with. In order to reduce ramp-up time required to

learn a new system and unique configuration for integration,

we found that the Raspberry Pi’s universal compatibility,

detailed documentation, and developer-friendly environment

is the best choice. We did consider using two Raspberry Pi’s

(one for receiving information, one for transmitting

information), but the benefits of separating the system did not

outweigh the integration efforts it would require.

D. Power

Originally, we had planned to use the Roomba’s vacuum

motor drivers to supply power to our Pi and sensors. The

drivers had ample power, but with two drawbacks. The first is

that the power came in at 12-16V/500-1500mA instead of the

5V/3A required by the Pi, meaning we would need to build a

custom transformer circuit. The second drawback is that in

order to draw power from these motor drives, we must send a

signal to the Roomba, but we cannot do that without first

powering the Pi, which means we would still need an external

power jumpstart. In the end we decided on simply buying an

external power bank for the Pi. Among the many options, we

chose one that fulfilled our 5V/3A USB-C requirement, while

also having 10Ah capacity to last our required 2 hours.

 Upon completion of our project, we found that all

necessary power requirements to run the system at a

reasonable speed were met. We experienced no problems with

real-time processing, and think that it more advanced software

such as computer vision and extra peripherals could be easily

added in the future.

E. SLAM

Since SLAM is a popular field of study, there are many

existing SLAM packages available for free. Most notably,

Google Cartographer is an open-source codebase along with

some documentation for installation and usage. We were

initially set on using Cartographer for its sophisticated

algorithm and reputable developers, but decided against it for

several reasons. Primarily, installation and setup of

Cartographer was extremely problematic with our hardware.

The most recent ROS compatible version had many

dependency and environment bugs in just the installation

process.. Additionally, we realized that we would need to

hook into SLAM and modify some of the internal behaviors,
which would be difficult for a complex system like

Cartographer. Similarly, we found many compatibility issues

when trying to install ROS’ Gmapping module. Finally, we

decided to forgo ROS packages and decided to use

BreezySLAM. BreezySLAM is a well maintained Python

SLAM package that does not require ROS. While simpler and

less granular, BreezySLAM allows for an optimal balance of

customization and ease of use. With this in mind, we tried

several simpler SLAM packages and settled on BreezySLAM

for its acceptable accuracy, ease of use, and ease of

modification.

F. Navigation

Similar to SLAM, there are many open-source options

available for navigation packages. Existing navigation

packages are able to take in odometry and movement data to

generate path planning and positioning. However, since the

accuracy of our raw data is subject to error and tuning, we

opted to write our own navigation algorithms instead

alongside our control code for greater flexibility and testing

options.

V. SYSTEM DESCRIPTION

To use the Robotic Indoor Plotting robot, a user will set it

down on the ground. Whichever way the robot is facing will

be represented as ‘North’ on the orientation of the final user

map. The robot will navigate until it has determined that all

the explorable area has been explored and logged in a map.

When finished, it’ll automatically stop and send the final user

18-500 Final Report: 05/05/2020

4

map as an image to display on a web application. Finally, the

user can navigate to the web application and use the generated

image with any other application for their specific use case.

This is a breakdown of each system component:

A. Base

The base itself is a nearly self-contained system. We will not

be modifying the base except to remove the vacuum modules

and install a mount on top for our other components. Power

supply and sensor wiring are all handled inside the Roomba. If

needed, the robot can dock wirelessly into a charging station

to recharge the battery. The only connection to the base is in

the form of a serial cable that directly connects into the Pi to

send and receive data. Four of the DIN pins are for Roomba

power, and one is used to change the baud rate, which we do

not need since both Roomba and Pi default to 115200. The

only data we will be transmitting through the input pin is

movement commands. The base will handle no processing or

navigation on its own.

B. Sensing

Our sensing system consists of two parts: Roomba’s internal

sensors and the rotating LIDAR.
 The RPLIDAR A1M8 is adhered directly on top of

the Roomba at the center. Both power and data are transmitted

through a provided USB 3.0 adapter from the Pi. We will be

sending the LIDAR commands to activate the spinning motor
and laser, with variable rotation speed and sampling rate for

both. The sensor will output a 2D point cloud representing all

the distances sampled by the laser, to be processed by the Pi

for navigation and mapping.
 Through the iRobot Interface, we can retrieve data

packets containing the measurements from the robot’s internal

sensors. Of the 58 sensor packets available, we were

particularly interested in the frontal ultrasounds, frontal push

bumpers, and frontal cliff ultrasounds. Theoretically, these

sensors alone should be able to provide enough data for

obstacle detection. However, due to inherent firmware bugs,

these sensors would permanently get stuck at certain values,

rendering them faulty until restart. As a result, we had to

incorporate intermediate LIDAR data for obstacle avoidance.
 Though the robot does provide data on distance

traveled and angle turned, another inherent firmware bug

rendered these data packets completely unreliable. In place of

this data, we implemented our own dead-reckoning odometry

system.

C. Control

All processing in our system will be handled by the Raspberry

Pi 4, and all components will physically interface directly with

the Pi. In total, we expect to use one USB port for the Lidar,

and a serial connection with the Roomba robotic base, which

leaves us plenty of extra connections if necessary. The Pi also

will handle all the software computation within the system.

This includes running SLAM, navigation and path planning,

odometry sensor readings from the Lidar and Roomba,

obstacle detection, and movement. Upon completing the

operation, the Pi will transmit the captured data over to our

server through Wi-Fi using basic FTP. Although a lot of

different processes will be running on the Pi at the same time,

we have planned accordingly in the case the Pi cannot handle

the load. If needed, we are able to modify software processing

requirements and power drawn from hardware components to

an optimal solution.

D. Multithreaded Program Flow

We separated our code into multiple concurrent threads for

modularity and efficiency. The parent Main thread spawns a

Movement, Obstacle, and SLAM thread, each of which

persists until program shutdown. Most of the control flow is

handled within the Main thread, along with navigation

(explained below). Through a shared object, navigation

instructions are passed to the Movement thread, which

independently handles all robot movement and odometry. The

SLAM thread is constantly monitoring the LIDAR data,

feeding it into the BreezySLAM package, and maintaining a

shared map object which the Main thread uses to navigate.

The Obstacle thread runs as an event handler. When an

obstacle is detected either through the Roomba data packets or

the LIDAR hook, this thread will assume control of the entire

system to prevent collision and update the map with new

knowledge of the obstacle. All threads are running together in
real-time, continuously updating the set of program and map

information.

The end condition for the system program is when

the robot completes full loop closure of an indoor space. The

robot continuously takes 2D scans from the lidar and compiles

historical information using SLAM. The robot continues until

it recognizes that it is in a space fully enclosed by walls, and

has mapped everywhere within the walls. This means that the

robot recognizes it has explored all unknown frontiers, and

stops the program. See figure 5 for navigation algorithm flow

diagram.

All together, each thread in the program contributes

to creating successive iterations of different representations of

the mapped space. This starts with raw scans from the lidar

sensor, represented as individual points of distance and

direction in an array. Individually, this picture and 2D point

cloud does not give us much information of what the room

actually looks like. This collection of points is then given to

BreezySLAM to generate a map of the current state of the

surroundings. BreezySLAM will stitch together point clouds

in an attempt to construct a global view. Our internal program

then uses this map from BreezySLAM to create an internal

data map with which we represent with data labeling each

section of the map. Red is the robot’s current position, green is

the destination position, yellow is the proposed path the robot

will take, blue are identified walls, and orange are caution

buffers around known obstacles and walls. This map is

updated by the program and the obstacle thread during each

move sequence. Lastly, we strip the most updated data map of

compression and labelled data to produce the final user map.

The user map is a simple black and white representation of

known walls and obstacles in the room, and includes a 1 meter

18-500 Final Report: 05/05/2020

5

marker for scale. See this flow of information between the

different maps in figure 6.

Figure 5. Navigation algorithm flow

Figure 6. Program Data flow

E. Navigation

In order for the robot to generate a map of the unexplored

environment, we built our own autonomous navigation

system. Using the information collected from BreezySLAM,

the lidar sensors, Roomba odometry data, and obstacle

avoidance, we construct an internal data map that represents

the current state of the program. This map keeps track of

walls, known obstacles, current position, destination position,

and paths (see Figure 7). With each cycle of movement and

scanning during our program, this internal data map is

updated. This system uses the map to do two things: choose a

destination and find a path from the robot’s current position to

the selected destination.

To choose a destination, the robot uses the current

map representation to pick an unexplored area to navigate to.

Because the internal data map keeps track of where obstacles,

walls, and unexplored areas are, the program is able to spirally

pick from a range of radii until there is a destination that is

unexplored and navigable.

To determine whether a selected destination is able to be

navigated to, the program plans a path from the current robot

position to the given destination. The path planning algorithm

takes in the grid representation of the current map, the start

and end positions, and returns back its determined best path (if

possible) using the A* search algorithm. We use the

Manhattan distance heuristic for possible directions on the

path, as keeping our robot’s turns two the four cardinal

directions will minimize error. Using the A* algorithm for

path planning has the advantage of distance heuristics that find

the “best” path, not just any path. This allows for heuristic

tuning to avoid known obstacles, navigate through unexplored

areas, and watch out for walls.

F. Server and Web App

Since the processing has already been completed by the time

data is passed to the server, our web application is a very

simple UI to display the resultant maps. It contains some basic

information about the project and a page with the most

recently generated maps in chronological order. The final set

of maps to display to the user are saved onto the Raspberry Pi,

then transmitted to the EC2 instance the web application is

hosted on. This UI is written in React and uses NodeJS and

Webpack packages. This web application is where additional

features of user correction, labeling, and real-time generation

visualization could be in the future.

Figure 7. Internal Data Map

VI. PROJECT MANAGEMENT

A. Project Schedule and Gantt Chart

The Gantt chart (see Appendix B) outlines the proposed

project timeline until completion. This timeline was created

with the highest priority being to finish the minimum viable

product before the end of the course. Although this Gantt chart

18-500 Final Report: 05/05/2020

6

has been continuously updated throughout the course, there

was one major shift in division of labor after converting to

remote work. In order for this schedule to be as useful as

possible, we’ve constructed it with practicality and feasibility

in mind. With each component of the project, we’ve built in

slack time in addition to integration time to cover unexpected

issues that may arise. We’ve also identified and scheduled

around known non-work days for school breaks and

holidays. Additionally, we’ve scheduled in time for

continuous documentation and presentation preparation.

B. Division of Labor

The implementation of our project is divided into three main

areas: robotic programming, navigation, and the web

application. Our origin division of labor was to each lead one

area while assisting with another. Due to logistical issues, the

division of labor was affected, as we started to work in remote

locations in different time zones. We identified several

modular parts of the project that can be worked on

independently, and split them thusly:

1. Hardware Interfacing: Aditi.

2. Navigation/Movement: Alex, Shanel

3. Obstacle Avoidance: Aditi

4. Web Application: Shanel, Alex

Since time was of the essence during this project, we

made the decision to keep all the hardware in one place,

delegated to one person. This would eliminate shipping and

transportation of the parts, and allow us to continue testing in

the same. location. Aditi had all the parts with her, and led the

majority of the testing and hardware interfacing changes.

Otherwise, Shanel and Alex worked on software

components including navigation, path planning, the web

application, and program representation and control flow.

After the transition to remote work, the majority of

progress was done together in scheduled Zoom calls with all

three members present. This turned out to be a beneficial

because it ensured that nearly every part was completed with

input from every member. Since we had to make decisions

quickly and quite often throughout the process, it was helpful

to have input from other team members who have context

right away.

C. Budget and Bill of Materials

This project is scoped to fit within the limits of a

$600 budget, not including borrowed materials from the

Carnegie Mellon University Electrical and Computer

Engineering Department. In order to fulfill the minimum

viable product, the total cost of materials was estimated to be

$356.59. However, due to unforeseen logistical limitations due

to COVID-19, there were additional costs to buy monitors,

keyboards, and other workstation setup materials. We also did

not end up using the ultrasound sensors and Raspberry Pi

Camera purchased for the original scope of the project. The

final cost including those, is $515.68. For the full parts list and

bill of materials, see Appendix C.

D. Testing Plan

For the robot module, we’ll be testing the accuracy of

the resulting dimensioned map with a series of rooms with

varied sizes, shapes and clutter density. In addition to the

accuracy of the final product, we’ll be monitoring the total

processing time and the success of obstacle detection. The

planned idea test cases for the robotic module included:

1. Rectangular room - empty

2. Rectangular room - furnished

3. Irregular shaped room - empty

4. Irregular shaped room - furnished

5. Irregular shaped room - furnished with dynamic

components

Specific identified test cases include Wean 5th floor (big,

standardized building), and Tepper Quad (furnished with high

traffic).

Quarantine measures greatly limited our testing

capabilities. We originally planned not only to test in many of

the large, structured buildings around campus, but also to

build our own custom test courses out of cardboard or

styrofoam. In the end, our only viable test cases were the

bathroom, bedroom, and hallway of the apartment building

where our team member with the hardware lived.
The bathroom is intended to function as a base test.

This space is about. 129 square feet, and contains a couple of
key obstacles along the walls including a sink, trashcan, and

toilet. Since the room is so small, the program completes

nearly instantly, with no movement. Little complex processing

is done, and no navigation is performed. Our system was able

to get 96% accuracy of the total mapped area.However, there

are some signs of feature loss as result of SLAM processing

and compression algorithms.
With a larger size and more obstacles, the bedroom

functions as a more complete test. Scanning, processing,

navigation, movement, and obstacle avoidance are all tested as

the robot moves around the room. The bedroom that we set as

our test case contains a cardboard box in the middle of the

room, as well as a chair and desk. Our robot was able to

navigate the room safely and generate a final user map

representative of the room to an acceptable degree of accuracy

(86.5%). Despite being a more comprehensive test, the

relatively small size of the room limits operational time to

about one minute.
We tried several times to test our system in the

hallway, but kept running into some issues with the LIDAR

that we were unable to debug without live monitoring of the

data. Although the test ultimately was incomplete, we did

confirm that in areas closer to our projected use case (large

open areas with little furniture), our obstacle avoidance was

much more robust

E. Risk Management

A. Power consumption and battery life

Theoretical calculations of power consumption result in a

projected system battery life of ~3 hours. This meets our

requirements, though we have no way to verify this metric,

since the program never takes longer than a couple minutes to

map out the use cases available to use at this time.

18-500 Final Report: 05/05/2020

7

B. Logistics

Campus lockdown incurred the loss of access to important

services, such as fabrication labs, soldering irons, workspaces,

and hardware peripherals. These components were either

scrapped or replaced with purchases through Amazon. Lack of

testing capability and the necessity of testing through video

call greatly hampered our test capabilities, resulting in slow

development cycles.

C. Hardware bugs

The iRobot Create 2 turned out to be extremely unreliable for

sensor data. Persistent hardware and firmware bugs resulted in

fatal data corruption, garbage sensor readings, and regular

system freezes which could only be resolved through a factory

reset. A large amount of effort was spent poring through

online documentation or support threads, of which there were

thankfully many.

D. SLAM

Using BreezySLAM over Cartographer was a calculated

choice, but it still came with many of its own risks. The

relatively simple algorithm may have been easier to pick up

and modify, but was also less sophisticated, resulting in less

accuracy. Few customization options were available, again
due to the simplicity of the package. Furthermore, when we

compress the map for internal data processing, even more

accuracy is lost.

VII. RELATED WORK

As indoor positioning and navigation is a highly researched

topic, similar iterations of our project have been carried out by

Google and other university teams. However, the identified

similar projects focus on optimizing SLAM and indoor map

generation. We have yet to find another project attempting to

add door detection and labeling on top of a produced map. We

believe incorporating CV to add this information to the map is

a unique and substantial addition to existing projects.

A. RPLidar A1 with RPi3

This is a simple project that uses a raspberry Pi, RPLidar, and

an Adafruit PiTFT display to display data from an RPLidar

onto a screen. It is a useful resource for learning how to read

and process data from the same spinning lidar model we will

be using.

B. Google Mapper

Cartographers is a project by Google that creates maps in real-

time using a broad range of sensor configurations common in

academia and industry. Although it is mainly used for 3D

point cloud projects, we will still be using the same

fundamental navigation algorithms for our 2D use case. The

project also provides software that can be integrated with

ROS, among other useful library functions for lidar

navigation.

C. Capstone S19 Team BC (AutoMapper)

This is a Capstone project from 2019 that similarly uses a

Roomba and RPLidar to create an autonomous mapping

system and detects the presence of humans using a thermal

camera. It’s pretty similar to our own project in its basic

movement and mapping functionality and uses a lot of similar

parts.

VIII. AWS CREDIT USAGE

We obtained a total of $100 in AWS credits at the start of the

course. The sole use of the credits was to spin up an EC2

Micro instance to host our web application. Since we made

sure to stop the instance when not in use, we ended up using

only $9 worth of credits, leaving $91 remaining.
We would like to thank Amazon for providing these credits

for educational purposes, and also CMU ECE for connecting

us to these resources

IX. APPENDIX

A. References

Project Research

1. https://learn.adafruit.com/slamtec-rplidar-on-pi?view=all

Specifications and data sheet for the RPLidar A1 part we

used in our project.

2. https://opensource.googleblog.com/2016/10/introducing-

cartographer.html Google’s Open Source Cartographer
ROS package used for research. We did not use this in the

final project.

3. http://course.ece.cmu.edu/~ece500/projects/s19-teambc/

Previous Capstone AutoMapper project referenced in

‘Related Works’ section.

4. https://static.googleusercontent.com/media/research.googl

e.com/en//pubs/archive/45466.pdf Documentation on loop

closure using 2D lidar slam. This information was useful

when we were planning to write our own closure and end

conditions for our program.

5. https://link.springer.com/article/10.1007/s10514-012-

9298-8 Comparison of a couple known path planning

strategies for exploration using SLAM. Some of these

concepts related to conceptual search algorithms were

used when constructing our own algorithm.

iRobot Create 2

6. https://www.irobotweb.com/~/media/MainSite/PDFs/

About/STEM/Create/iRobot_Roomba_600_Open_Interface_S

pec.pdf iRobot Create 2 Open Interface specification sheet,

used for software interfacing with the roomba.

7. https://github.com/pomeroyb/Create2Control

Encapsulating python API built on top of iRobot Open

Interface. This library was used to control the robot using

python commands.

SLAM

8. https://github.com/simondlevy/BreezySLAM Python

SLAM packaged used to handle the SLAM component of the

project. The rpslam module was highly integrated with the

https://learn.adafruit.com/slamtec-rplidar-on-pi?view=all
https://opensource.googleblog.com/2016/10/introducing-cartographer.html
https://opensource.googleblog.com/2016/10/introducing-cartographer.html
http://course.ece.cmu.edu/~ece500/projects/s19-teambc/
https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/45466.pdf
https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/45466.pdf
https://link.springer.com/article/10.1007/s10514-012-9298-8
https://link.springer.com/article/10.1007/s10514-012-9298-8
https://www.irobotweb.com/~/media/MainSite/PDFs/About/STEM/Create/iRobot_Roomba_600_Open_Interface_Spec.pdf
https://www.irobotweb.com/~/media/MainSite/PDFs/About/STEM/Create/iRobot_Roomba_600_Open_Interface_Spec.pdf
https://www.irobotweb.com/~/media/MainSite/PDFs/About/STEM/Create/iRobot_Roomba_600_Open_Interface_Spec.pdf
https://github.com/pomeroyb/Create2Control
https://github.com/simondlevy/BreezySLAM

18-500 Final Report: 05/05/2020

8

SLAM portion of our project, and was tuned specifically for

the RIP project use case.

Navigation and Path Planning

9. https://medium.com/@nicholas.w.swift/easy-a-star-

pathfinding-7e6689c7f7b2 A* search algorithm conceptual

explanation. Our path finding algorithm is based on this A*

concept.

https://www.hackerearth.com/practice/algorithms/graphs/flood

-fill-algorithm/tutorial/ Floodfill algorithm conceptual

explanation. Our enclosed check to determine whether or not

the robot is enclosed by walls uses this floodfill concept.

B. Parts List and Bill of Materials

https://medium.com/@nicholas.w.swift/easy-a-star-pathfinding-7e6689c7f7b2
https://medium.com/@nicholas.w.swift/easy-a-star-pathfinding-7e6689c7f7b2
https://www.hackerearth.com/practice/algorithms/graphs/flood-fill-algorithm/tutorial/
https://www.hackerearth.com/practice/algorithms/graphs/flood-fill-algorithm/tutorial/

18-500 Final Report: 05/05/2020

9

C. Gantt Chart

	I. Introduction
	II. Design Requirements
	III. Architecture
	IV. Design Trade Studies
	A. Robot Base
	B. Depth Detection Sensor
	C. Microcontroller
	D. Power
	E. SLAM
	F. Navigation

	V. System Description
	A. Base
	B. Sensing
	C. Control
	D. Multithreaded Program Flow
	E. Navigation
	F. Server and Web App

	VI. Project Management
	A. Project Schedule and Gantt Chart
	B. Division of Labor
	C. Budget and Bill of Materials
	D. Testing Plan
	E. Risk Management

	VII. Related Work
	A. RPLidar A1 with RPi3
	B. Google Mapper
	C. Capstone S19 Team BC (AutoMapper)

	VIII. AWS Credit Usage
	IX. Appendix
	A. References
	B. Parts List and Bill of Materials
	C. Gantt Chart

