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Abstract 

This document outlines the design of an autonomously 

navigating robot that is capable of mapping the interior of a 

given building. This system will be implemented in the Spring 

2020 iteration of the ECE 18-500 course. The output of the 

robotic system is a 2D floor plan of the given building, 

suitable for human navigation. This document outlines the 

system architecture, requirements, and implementation process 

for the device. We also explore existing similar projects and 

risk management we faced along the way. 
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I. INTRODUCTION 

Current mapping and navigation systems lack accurate and 

comprehensive indoor positioning information. Accurate 

indoor positioning information has applications benefiting 

everyday consumers, facility administrators, and autonomous 

systems. In order to show specific details on indoor locations, 

current solutions such as Google Maps require businesses and 

establishments to upload their own floor plans. However, most 

buildings do not have this information available online, 

making it difficult for visitors to navigate indoors. The 

Robotic Indoor Plotting project will autonomously generate 

indoor floor plans. When placed indoors, the robot will 

explore the space, creating a 2D map using obstacle detection 

sensors, SLAM, and a rotating LIDAR. After traversing the 

indoor space, the robot will synthesize information into a 

readable format for the user to view on a web application. 
 

II. DESIGN REQUIREMENTS 

Our methodology to determine system requirements included 

taking into account ideal use case scenarios, technical 

limitations of our components, and project feasibility. To 

provide a good user experience, we require the device to 

complete a full scan on one charge and generate a floorplan 

accurate enough to allow for human navigation. We then 

identified core requirement areas of the system to be the 

mapping speed, floorplan accuracy, obstacle avoidance, and 

power consumption. To create quantifiable target metrics, we 

assume a mapping area of 2000 square feet, similar to that of 

our final test cases of Tepper Quad 2nd floor and Wean 5th 

floor.  
For battery life, the iRobot Create 2 advertises a battery life of 

2 hours with vacuum motors fully running. Since our project 

does not require power from the vacuum motors which use 

50% normal operation wattage, the robotic base should 

realistically last us up to 4 hours per charge. The external 

power bank for the Pi and sensors will be supplying at 5V/3A, 

and we plan to acquire a 10Ah supply, which will last an 

estimated 3 hours. However, in order to provide the best user 

experience and reduce wait times, we created a tighter bound 

of an operational time of up to 2 hours. Combining the 

operational time requirement with our estimated map area of 

2000 square feet then yields us a required mapping speed of 

16 square ft/min. This total mapping time starts when the 

robot starts and ends when the map is fully generated. This 

speed requirement includes time taken for navigation 

inefficiencies and processing cycles. In cases where there are 

few obstacles, we expect this to be much faster.  
The final floorplan output is required only to be 

accurate enough for a human to navigate with. We estimated 

that a human could still navigate to a mapped room effectively 

when there is up to 10% error in the mapped dimensions. 
Put all together, figure 1 summarizes the design 

requirements our system will need to meet in order for build a 

successful minimum viable product: 

 
Figure 1.  

Mapping Speed Generate map faster than 16 

sqft/min 

 

Floorplan Within 10% of true distance and 

depth value 

 

Obstacle Avoidance Zero collisions with active or 

passive obstacles 

 

Power Operational time of 120 minutes 

per charge 

 

 

III. ARCHITECTURE 

 The system architecture of the hardware components of the 

project consists of a Raspberry Pi, a spinning LIDAR, and an 

iRobot Create 2 (Figure 3). The software component consists 

of a server hosted on AWS running a React web application. 

The Raspberry Pi is powered by an external power bank, and 

in turn powers the rest of the system. The Roomba has a 

separate independent battery. See figure 2 for a complete 

system diagram of the project architecture. 
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For the base of the robot, we will be using an iRobot 

Create 2 for physical movement of the entire system. The 

iRobot Create system provides an Open Interface API to 

communicate with the robot case. This software interface is 

used to control and manipulate the robot’s behavior, as well as 

read in from its sensors through a series of commands. It has 

multiple built-in ultrasonic sensors that can be used to detect 

cliffs and obstacles at the same height of the robot. The 

Roomba interfaces with the Raspberry Pi via a serial 

connection through a ribbon cable.  
To process information from the rest of the hardware, 

we will use a Raspberry Pi 4 microcontroller. This version 

contains 4GB of  RAM and includes all the necessary ports to 

connect our system gracefully. The Pi runs all of the control 

code, taking in data from the LIDAR and Roomba and turning 

it into commands for movement. The majority of the software 

packages we plan to use are compatible with the Raspberry Pi 

4, and the extra processing power allows for extension and 

scaling of this project in the future.  
The spinning LIDAR will be used to detect 

dimensions of objects and walls surrounding the robot. The 

RPLidar A1 model we’re using allows for detection of objects 

360 degrees around the robot, and up to 6m. Since it outputs a 

2D point cloud on a horizontal plane, it does not give us any 

vertical data. For the initial prototype of this project, the Lidar 
sensor will be placed at a height directly above the robotic 

vacuum to reduce noise scan obstacles close to the floor.  
 

Figure 2. System level block diagram 
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IV. DESIGN TRADE STUDIES 

A. Robot Base 

The robotic base is responsible for physical movement of the 

entire system. Based on our target metrics, we need a 

hardware system large and strong enough to support the rest of 

the equipment in the system. One option that would allow for 

flexibility and customization is building and wiring our own 

chassis. However, with the limited time and tools available, 

we decided it would not be wise to spend most of our efforts  
  

 
Figure 3: Robot system structure 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

on a large mechanical undertaking. We found a few existing 

hobbyist bases such as the DirtDog or Smartibot, but they 

lacked a great deal of connectivity, stability, and battery life. 

With this in mind, we chose to use the iRobot Create 2. It is 

well-documented with an Open Interface software tool, 

developer-friendly, and designed specifically for robotics 

projects. There are several built-in sensors that are easily 

interfaceable, and the base is large enough to support our 
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frame and other components. for robotics projects. There are 

several built-in sensors that are easily interfaceable, and the 

base is large enough to support our frame and other 

components. We later found that depending on the firmware 

version of the iRobot Create 2 model, the odometry data may 

be corrupted. This was the case in our project, and we had to 

periodically check and reset our robot base if the sensor 

readings were wrong.  

B. Depth Detection Sensor 

The depth detection sensor will be used to data for map 

generation. Initially, we considered a few custom-built 

sensors, such as an IR Dot Matrix, a multi camera CV system, 

or a stereo LIDAR, but each of these came with their own 

challenges with accuracy, tolerances, and manufacturing 

quality. To circumvent these issues, we decided to purchase an 

existing manufactured sensor. 
Our first choice was the Intel RealSense d415, a 

stereo LIDAR system. It is well-documented, accurate, and 

integrates well with the rest of our system. However, this 

sensor requires excessive processing power to create the 3D 

point-cloud output. The specs of this sensor overshoot our 

requirements by a lot, while hindering our computational 

speed. We also considered the Microsoft Kinect 2 which 

processes more efficiently but is not very compatible with the 

rest of our components. The Kinect 2 requires additional cable 
connections to interface with the rest of the system, and has 

deprecated software support. In the end, we decided to use the 

RPLIDAR A1M8, a rotating lidar that generates a 2D point 

cloud output that is leaner. The output scans are customizable 

and accurate enough to support our use case. 

C. Microcontroller 

When considering which microcontroller to use, we settled on 

the Raspberry Pi 4 because of our team’s experience with the 

device, as well as the compatibility with the other components 

of our system. This is the newest version of the Raspberry Pi, 

and gives us increased processing power and more ports to 

interface with. In order to reduce ramp-up time required to 

learn a new system and unique configuration for integration, 

we found that the Raspberry Pi’s universal compatibility, 

detailed documentation, and developer-friendly environment 

is the best choice. We did consider using two Raspberry Pi’s 

(one for receiving information, one for transmitting 

information), but the benefits of separating the system did not 

outweigh the integration efforts it would require. 

D. Power 

Originally, we had planned to use the Roomba’s vacuum 

motor drivers to supply power to our Pi and sensors. The 

drivers had ample power, but with two drawbacks. The first is 

that the power came in at 12-16V/500-1500mA instead of the 

5V/3A required by the Pi, meaning we would need to build a 

custom transformer circuit. The second drawback is that in 

order to draw power from these motor drives, we must send a 

signal to the Roomba, but we cannot do that without first 

powering the Pi, which means we would still need an external 

power jumpstart. In the end we decided on simply buying an 

external power bank for the Pi. Among the many options, we 

chose one that fulfilled our 5V/3A USB-C requirement, while 

also having 10Ah capacity to last our required 2 hours. 

 Upon completion of our project, we found that all 

necessary power requirements to run the system at a 

reasonable speed were met. We experienced no problems with 

real-time processing, and think that it more advanced software 

such as computer vision and extra peripherals could be easily 

added in the future.  

 

E. SLAM 

Since SLAM is a popular field of study, there are many 

existing SLAM packages available for free. Most notably, 

Google Cartographer is an open-source codebase along with 

some documentation for installation and usage. We were 

initially set on using Cartographer for its sophisticated 

algorithm and reputable developers, but decided against it for 

several reasons. Primarily, installation and setup of 

Cartographer was extremely problematic with our hardware. 

The most recent ROS compatible version had many 

dependency and environment bugs in just the installation 

process.. Additionally, we realized that we would need to 

hook into SLAM and modify some of the internal behaviors, 
which would be difficult for a complex system like 

Cartographer. Similarly, we found many compatibility issues 

when trying to install ROS’ Gmapping module. Finally, we 

decided to forgo ROS packages and decided to use 

BreezySLAM. BreezySLAM is a well maintained Python 

SLAM package that does not require ROS. While simpler and 

less granular, BreezySLAM allows for an optimal balance of 

customization and ease of use. With this in mind, we tried 

several simpler SLAM packages and settled on BreezySLAM 

for its acceptable accuracy, ease of use, and ease of 

modification. 

F. Navigation 

Similar to SLAM, there are many open-source options 

available for navigation packages. Existing navigation 

packages are able to take in odometry and movement data to 

generate path planning and positioning. However, since the 

accuracy of our raw data is subject to error and tuning, we 

opted to write our own navigation algorithms instead 

alongside our control code for greater flexibility and testing 

options. 
 

 

V. SYSTEM DESCRIPTION 

To use the Robotic Indoor Plotting robot, a user will set it 

down on the ground. Whichever way the robot is facing will 

be represented as ‘North’ on the orientation of the final user 

map. The robot will navigate until it has determined that all 

the explorable area has been explored and logged in a map. 

When finished, it’ll automatically stop and send the final user 
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map as an image to display on a web application. Finally, the 

user can navigate to the web application and use the generated 

image with any other application for their specific use case. 

This is a breakdown of each system component:  

A. Base 

The base itself is a nearly self-contained system. We will not 

be modifying the base except to remove the vacuum modules 

and install a mount on top for our other components. Power 

supply and sensor wiring are all handled inside the Roomba. If 

needed, the robot can dock wirelessly into a charging station 

to recharge the battery. The only connection to the base is in 

the form of a serial cable that directly connects into the Pi to 

send and receive data. Four of the DIN pins are for Roomba 

power, and one is used to change the baud rate, which we do 

not need since both Roomba and Pi default to 115200. The 

only data we will be transmitting through the input pin is 

movement commands. The base will handle no processing or 

navigation on its own. 

B. Sensing 

Our sensing system consists of two parts: Roomba’s internal 

sensors and the rotating LIDAR. 
 The RPLIDAR A1M8 is adhered directly on top of 

the Roomba at the center. Both power and data are transmitted 

through a provided USB 3.0 adapter from the Pi. We will be 

sending the LIDAR commands to activate the spinning motor 
and laser, with variable rotation speed and sampling rate for 

both. The sensor will output a 2D point cloud representing all 

the distances sampled by the laser, to be processed by the Pi 

for navigation and mapping. 
 Through the iRobot Interface, we can retrieve data 

packets containing the measurements from the robot’s internal 

sensors. Of the 58 sensor packets available, we were 

particularly interested in the frontal ultrasounds, frontal push 

bumpers, and frontal cliff ultrasounds. Theoretically, these 

sensors alone should be able to provide enough data for 

obstacle detection. However, due to inherent firmware bugs, 

these sensors would permanently get stuck at certain values, 

rendering them faulty until restart. As a result, we had to 

incorporate intermediate LIDAR data for obstacle avoidance. 
 Though the robot does provide data on distance 

traveled and angle turned, another inherent firmware bug 

rendered these data packets completely unreliable. In place of 

this data, we implemented our own dead-reckoning odometry 

system.  

C. Control 

All processing in our system will be handled by the Raspberry 

Pi 4, and all components will physically interface directly with 

the Pi. In total, we expect to use one USB port for the Lidar, 

and a serial connection with the Roomba robotic base, which 

leaves us plenty of extra connections if necessary. The Pi also 

will handle all the software computation within the system. 

This includes running SLAM, navigation and path planning, 

odometry sensor readings from the Lidar and Roomba, 

obstacle detection, and movement. Upon completing the 

operation, the Pi will transmit the captured data over to our 

server through Wi-Fi using basic FTP. Although a lot of 

different processes will be running on the Pi at the same time, 

we have planned accordingly in the case the Pi cannot handle 

the load. If needed, we are able to modify software processing 

requirements and power drawn from hardware components to 

an optimal solution. 

D. Multithreaded Program Flow 

We separated our code into multiple concurrent threads for 

modularity and efficiency. The parent Main thread spawns a 

Movement, Obstacle, and SLAM thread, each of which 

persists until program shutdown. Most of the control flow is 

handled within the Main thread, along with navigation 

(explained below). Through a shared object, navigation 

instructions are passed to the Movement thread, which 

independently handles all robot movement and odometry. The 

SLAM thread is constantly monitoring the LIDAR data, 

feeding it into the BreezySLAM package, and maintaining a 

shared map object which the Main thread uses to navigate. 

The Obstacle thread runs as an event handler. When an 

obstacle is detected either through the Roomba data packets or 

the LIDAR hook, this thread will assume control of the entire 

system to prevent collision and update the map with new 

knowledge of the obstacle. All threads are running together in 
real-time, continuously updating the set of program and map 

information. 

The end condition for the system program is when 

the robot completes full loop closure of an indoor space. The 

robot continuously takes 2D scans from the lidar and compiles 

historical information using SLAM. The robot continues until 

it recognizes that it is in a space fully enclosed by walls, and 

has mapped everywhere within the walls. This means that the 

robot recognizes it has explored all unknown frontiers, and 

stops the program. See figure 5 for navigation algorithm flow 

diagram.  

All together, each thread in the program contributes 

to creating successive iterations of different representations of 

the mapped space. This starts with raw scans from the lidar 

sensor, represented as individual points of distance and 

direction in an array. Individually, this picture and 2D point 

cloud does not give us much information of what the room 

actually looks like. This collection of points is then given to 

BreezySLAM to generate a map of the current state of the 

surroundings. BreezySLAM will stitch together point clouds 

in an attempt to construct a global view. Our internal program 

then uses this map from BreezySLAM to create an internal 

data map with which we represent with data labeling each 

section of the map. Red is the robot’s current position, green is 

the destination position, yellow is the proposed path the robot 

will take, blue are identified walls, and orange are caution 

buffers around known obstacles and walls. This map is 

updated by the program and the obstacle thread during each 

move sequence. Lastly, we strip the most updated data map of 

compression and labelled data to produce the final user map. 

The user map is a simple black and white representation of 

known walls and obstacles in the room, and includes a 1 meter 
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marker for scale. See this flow of information between the 

different maps in figure 6.  

  
Figure 5. Navigation algorithm flow 
 

 
 

 

 

 

 
Figure 6. Program Data flow 

E. Navigation 

In order for the robot to generate a map of the unexplored 

environment, we built our own autonomous navigation 

system. Using the information collected from BreezySLAM, 

the lidar sensors, Roomba odometry data, and obstacle 

avoidance, we construct an internal data map that represents 

the current state of the program. This map keeps track of 

walls, known obstacles, current position, destination position, 

and paths (see Figure 7). With each cycle of movement and 

scanning during our program, this internal data map is 

updated. This system uses the map to do two things: choose a 

destination and find a path from the robot’s current position to 

the selected destination. 

To choose a destination, the robot uses the current 

map representation to pick an unexplored area to navigate to. 

Because the internal data map keeps track of where obstacles, 

walls, and unexplored areas are, the program is able to spirally 

pick from a range of radii until there is a destination that is 

unexplored and navigable. 

To determine whether a selected destination is able to be 

navigated to, the program plans a path from the current robot 

position to the given destination. The path planning algorithm 

takes in the grid representation of the current map, the start 

and end positions, and returns back its determined best path (if 

possible) using the A* search algorithm. We use the 

Manhattan distance heuristic for possible directions on the 

path, as keeping our robot’s turns two the four cardinal 

directions will minimize error. Using the A* algorithm for 

path planning has the advantage of distance heuristics that find 

the “best” path, not just any path. This allows for heuristic 

tuning to avoid known obstacles, navigate through unexplored 

areas, and watch out for walls.  

F. Server and Web App 

Since the processing has already been completed by the time 

data is passed to the server, our web application is a very 

simple UI to display the resultant maps. It contains some basic 

information about the project and a page with the most 

recently generated maps in chronological order. The final set 

of maps to display to the user are saved onto the Raspberry Pi, 

then transmitted to the EC2 instance the web application is 

hosted on. This UI is written in React and uses NodeJS and 

Webpack packages. This web application is where additional 

features of user correction, labeling, and real-time generation 

visualization could be in the future.  
 

 
Figure 7. Internal Data Map 
 

 
 

 

VI. PROJECT MANAGEMENT 

A. Project Schedule and Gantt Chart 

The Gantt chart (see Appendix B) outlines the proposed 

project timeline until completion. This timeline was created 

with the highest priority being to finish the minimum viable 

product before the end of the course. Although this Gantt chart 
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has been continuously updated throughout the course, there 

was one major shift in division of labor after converting to 

remote work. In order for this schedule to be as useful as 

possible, we’ve constructed it with practicality and feasibility 

in mind. With each component of the project, we’ve built in 

slack time in addition to integration time to cover unexpected 

issues that may arise. We’ve also identified and scheduled 

around known non-work days for school breaks and 

holidays. Additionally, we’ve scheduled in time for 

continuous documentation and presentation preparation. 

B. Division of Labor 

The implementation of our project is divided into three main 

areas: robotic programming, navigation, and the web 

application. Our origin division of labor was to each lead one 

area while assisting with another. Due to logistical issues, the 

division of labor was affected, as we started to work in remote 

locations in different time zones. We identified several 

modular parts of the project that can be worked on 

independently, and split them thusly: 

 

1. Hardware Interfacing: Aditi.  

2. Navigation/Movement: Alex, Shanel 

3. Obstacle Avoidance: Aditi 

4. Web Application: Shanel, Alex 

 
Since time was of the essence during this project, we 

made the decision to keep all the hardware in one place, 

delegated to one person. This would eliminate shipping and 

transportation of the parts, and allow us to continue testing in 

the same. location. Aditi had all the parts with her, and led the 

majority of the testing and hardware interfacing changes. 

Otherwise, Shanel and Alex worked on software 

components including navigation, path planning, the web 

application, and program representation and control flow.  

After the transition to remote work, the majority of 

progress was done together in scheduled Zoom calls with all 

three members present. This turned out to be a beneficial 

because it ensured that nearly every part was completed with 

input from every member. Since we had to make decisions 

quickly and quite often throughout the process, it was helpful 

to have input from other team members who have context 

right away.  

C. Budget and Bill of Materials 

This project is scoped to fit within the limits of a 

$600 budget, not including borrowed materials from the 

Carnegie Mellon University Electrical and Computer 

Engineering Department. In order to fulfill the minimum 

viable product, the total cost of materials was estimated to be 

$356.59. However, due to unforeseen logistical limitations due 

to COVID-19, there were additional costs to buy monitors, 

keyboards, and other workstation setup materials. We also did 

not end up using the ultrasound sensors and Raspberry Pi 

Camera purchased for the original scope of the project. The 

final cost including those, is $515.68. For the full parts list and 

bill of materials, see Appendix C.   

D. Testing Plan 

For the robot module, we’ll be testing the accuracy of 

the resulting dimensioned map with a series of rooms with 

varied sizes, shapes and clutter density. In addition to the 

accuracy of the final product, we’ll be monitoring the total 

processing time and the success of obstacle detection. The 

planned idea test cases for the robotic module included: 

1. Rectangular room - empty 

2. Rectangular room - furnished 

3. Irregular shaped room - empty 

4. Irregular shaped room - furnished 

5. Irregular shaped room - furnished with dynamic 

components 

Specific identified test cases include Wean 5th floor (big, 

standardized building), and Tepper Quad (furnished with high 

traffic). 

Quarantine measures greatly limited our testing 

capabilities. We originally planned not only to test in many of 

the large, structured buildings around campus, but also to 

build our own custom test courses out of cardboard or 

styrofoam. In the end, our only viable test cases were the 

bathroom, bedroom, and hallway of the apartment building 

where our team member with the hardware lived. 
The bathroom is intended to function as a base test. 

This space is about. 129 square feet, and contains a couple of 
key obstacles along the walls including a sink, trashcan, and 

toilet. Since the room is so small, the program completes 

nearly instantly, with no movement. Little complex processing 

is done, and no navigation is performed. Our system was able 

to get 96% accuracy of the total mapped area.However, there 

are some signs of feature loss as result of SLAM processing 

and compression algorithms.  
With a larger size and more obstacles, the bedroom 

functions as a more complete test. Scanning, processing, 

navigation, movement, and obstacle avoidance are all tested as 

the robot moves around the room. The bedroom that we set as 

our test case contains a cardboard box in the middle of the 

room, as well as a chair and desk. Our robot was able to 

navigate the room safely and generate a final user map 

representative of the room to an acceptable degree of accuracy 

(86.5%). Despite being a more comprehensive test, the 

relatively small size of the room limits operational time to 

about one minute. 
We tried several times to test our system in the 

hallway, but kept running into some issues with the LIDAR 

that we were unable to debug without live monitoring of the 

data. Although the test ultimately was incomplete, we did 

confirm that in areas closer to our projected use case (large 

open areas with little furniture), our obstacle avoidance was 

much more robust 

E. Risk Management  

A. Power consumption and battery life 

Theoretical calculations of power consumption result in a 

projected system battery life of ~3 hours. This meets our 

requirements, though we have no way to verify this metric, 

since the program never takes longer than a couple minutes to 

map out the use cases available to use at this time. 
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B. Logistics 

Campus lockdown incurred the loss of access to important 

services, such as fabrication labs, soldering irons, workspaces, 

and hardware peripherals. These components were either 

scrapped or replaced with purchases through Amazon. Lack of 

testing capability and the necessity of testing through video 

call greatly hampered our test capabilities, resulting in slow 

development cycles. 
 

C. Hardware bugs 

The iRobot Create 2 turned out to be extremely unreliable for 

sensor data. Persistent hardware and firmware bugs resulted in 

fatal data corruption, garbage sensor readings, and regular 

system freezes which could only be resolved through a factory 

reset. A large amount of effort was spent poring through 

online documentation or support threads, of which there were 

thankfully many.  
 

D. SLAM 

Using BreezySLAM over Cartographer was a calculated 

choice, but it still came with many of its own risks. The 

relatively simple algorithm may have been easier to pick up 

and modify, but was also less sophisticated, resulting in less 

accuracy. Few customization options were available, again 
due to the simplicity of the package. Furthermore, when we 

compress the map for internal data processing, even more 

accuracy is lost.  

VII. RELATED WORK 

As indoor positioning and navigation is a highly researched 

topic, similar iterations of our project have been carried out by 

Google and other university teams. However, the identified 

similar projects focus on optimizing SLAM and indoor map 

generation. We have yet to find another project attempting to 

add door detection and labeling on top of a produced map. We 

believe incorporating CV to add this information to the map is 

a unique and substantial addition to existing projects. 

 

A. RPLidar A1 with RPi3 

This is a simple project that uses a raspberry Pi, RPLidar, and 

an Adafruit PiTFT display to display data from an RPLidar 

onto a screen. It is a useful resource for learning how to read 

and process data from the same spinning lidar model we will 

be using.  

B. Google Mapper 

Cartographers is a project by Google that creates maps in real-

time using a broad range of sensor configurations common in 

academia and industry. Although it is mainly used for 3D 

point cloud projects, we will still be using the same 

fundamental navigation algorithms for our 2D use case. The 

project also provides software that can be integrated with 

ROS, among other useful library functions for lidar 

navigation. 

C. Capstone S19 Team BC (AutoMapper) 

This is a Capstone project from 2019 that similarly uses a 

Roomba and RPLidar to create an autonomous mapping 

system and detects the presence of humans using a thermal 

camera. It’s pretty similar to our own project in its basic 

movement and mapping functionality and uses a lot of similar 

parts.  

 

VIII. AWS CREDIT USAGE 

We obtained a total of $100 in AWS credits at the start of the 

course. The sole use of the credits was to spin up an EC2 

Micro instance to host our web application. Since we made 

sure to stop the instance when not in use, we ended up using 

only $9 worth of credits, leaving $91 remaining.  
We would like to thank Amazon for providing these credits 

for educational purposes, and also CMU ECE for connecting 

us to these resources 
 

 

IX. APPENDIX 

A. References 

 

Project Research 

1. https://learn.adafruit.com/slamtec-rplidar-on-pi?view=all 

Specifications and data sheet for the RPLidar A1 part we 

used in our project.  

2. https://opensource.googleblog.com/2016/10/introducing-

cartographer.html Google’s Open Source Cartographer 
ROS package used for research. We did not use this in the 

final project. 

3. http://course.ece.cmu.edu/~ece500/projects/s19-teambc/ 

Previous Capstone AutoMapper project referenced in 

‘Related Works’ section.  

4. https://static.googleusercontent.com/media/research.googl

e.com/en//pubs/archive/45466.pdf Documentation on loop 

closure using 2D lidar slam. This information was useful 

when we were planning to write our own closure and end 

conditions for our program. 

5. https://link.springer.com/article/10.1007/s10514-012-

9298-8 Comparison of a couple known path planning 

strategies for exploration using SLAM. Some of these 

concepts related to conceptual search algorithms were 

used when constructing our own algorithm.  

 

iRobot Create 2 

6. https://www.irobotweb.com/~/media/MainSite/PDFs/

About/STEM/Create/iRobot_Roomba_600_Open_Interface_S

pec.pdf iRobot Create 2 Open Interface specification sheet, 

used for software interfacing with the roomba. 

7. https://github.com/pomeroyb/Create2Control 

Encapsulating python API built on top of iRobot Open 

Interface. This library was used to control the robot using 

python commands. 

 

SLAM 

8. https://github.com/simondlevy/BreezySLAM Python 

SLAM packaged used to handle the SLAM component of  the 

project. The rpslam module was highly integrated with the 

https://learn.adafruit.com/slamtec-rplidar-on-pi?view=all
https://opensource.googleblog.com/2016/10/introducing-cartographer.html
https://opensource.googleblog.com/2016/10/introducing-cartographer.html
http://course.ece.cmu.edu/~ece500/projects/s19-teambc/
https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/45466.pdf
https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/45466.pdf
https://link.springer.com/article/10.1007/s10514-012-9298-8
https://link.springer.com/article/10.1007/s10514-012-9298-8
https://www.irobotweb.com/~/media/MainSite/PDFs/About/STEM/Create/iRobot_Roomba_600_Open_Interface_Spec.pdf
https://www.irobotweb.com/~/media/MainSite/PDFs/About/STEM/Create/iRobot_Roomba_600_Open_Interface_Spec.pdf
https://www.irobotweb.com/~/media/MainSite/PDFs/About/STEM/Create/iRobot_Roomba_600_Open_Interface_Spec.pdf
https://github.com/pomeroyb/Create2Control
https://github.com/simondlevy/BreezySLAM
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SLAM portion of our project, and was tuned specifically for 

the RIP project use case. 

 

Navigation and Path Planning 

9. https://medium.com/@nicholas.w.swift/easy-a-star-

pathfinding-7e6689c7f7b2 A* search algorithm conceptual 

explanation. Our path finding algorithm is based on this A* 

concept.  

https://www.hackerearth.com/practice/algorithms/graphs/flood

-fill-algorithm/tutorial/ Floodfill algorithm conceptual 

explanation. Our enclosed check to determine whether or not 

the robot is enclosed by walls uses this floodfill concept.  
 

 

 

B. Parts List and Bill of Materials 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://medium.com/@nicholas.w.swift/easy-a-star-pathfinding-7e6689c7f7b2
https://medium.com/@nicholas.w.swift/easy-a-star-pathfinding-7e6689c7f7b2
https://www.hackerearth.com/practice/algorithms/graphs/flood-fill-algorithm/tutorial/
https://www.hackerearth.com/practice/algorithms/graphs/flood-fill-algorithm/tutorial/
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C. Gantt Chart  
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