# Asterism

Design Review Presentation Team B1: Yuyi, Kenny, Joy

# **Application Area and Solution Approach**

- Smart astrophotography mount
- Motor control, 3 motorized axes
  - Turn the camera on one axis to compensate for the motion of the sky
  - Other two axes for automated polar alignment and object tracking
- Mechanical fabrication
  - Difficult to integrate motor control into most existing mounts for all three axes
  - Existing mounts prohibitively expensive
- Object tracking with computer vision
  - In order to track a particular object





## System Specification

#### **General System Diagram**



**CV+GUI Block Diagram** 

#### **Mechanical Systems**



#### Electronic Block Diagram

Pi - to - Motor Controller Interface:

- GPIO pins (2 PWMs, 2 enables per motor)
- Logic buffers require 3.3V power from Pi
- Propagation delays:
  - PWM\_tphl: 1.11 ms
  - PWM\_tplh: 1.13 ms
  - EN\_tphl: 0.41 ms
  - EN\_tplh: 1.12 ms
- Pi to Gyroscope Interface
  - SPI interface (MOSI, MISO, SCLK, SS)
  - on-board SPI bus



## **Implementation Plan**

- Assembly of the mount
  - Laser-cutting some gears, 3D printing others
  - Gearbox for compensator
- Integration of motors with the mount
  - Stepper motors
- Software
  - libgphoto2 to interface with a camera
  - OpenCV for object tracking and object mapping
    - Figuring out our minimal resolution
    - Testing with videos of objects
  - Motor control
  - Gluing these together





## **Component Management**

| Components to<br>Purchase  | Project Subsystem          |
|----------------------------|----------------------------|
| 3x 400-step stepper motors | Mechanical control         |
| Gyroscope sensor           | Mechanical feedback sensor |
| Camera tripod              | Equatorial mount body      |
| Tripod camera holder       | Equatorial mount body      |
| Telescope finder scope     | Mechanical alignment       |
| Pi-compatible display      | Object tracking interface  |

| Components to borrow | Project Subsystem      |
|----------------------|------------------------|
| Raspberry Pi 3       | Mount electronics      |
| Arduino Uno Rev. 3   | Test setup electronics |

| Components to<br>Design/Develop         | Project Subsystem               |
|-----------------------------------------|---------------------------------|
| Power distribution boards               | Mount electronics               |
| Stepper motor controllers/logic buffers | Mount/test setup<br>electronics |
| Laser diode drivers                     | Test setup electronics          |
| Mount frame and gearing                 | Mount body                      |

| Components to<br>Download | Project Subsystem         |
|---------------------------|---------------------------|
| OpenCV                    | Object tracking software  |
| libgphoto2                | Camera-software interface |

#### **Metrics and Validation**

- Testing polar alignment with the mount
  - Testing Antipodal Alignment (Align to reference, rotate RA 180°, measure offsets from axes)
  - Offsets must be <1 degree on both axes
- Testing sky-tracking with the mount
  - Lights positioned on a spherical surface rotating at a known rate
  - Compare a long exposure with compensation with moving lights with an image of the still lights with varying manually applied amounts of blur (qualitative)
- Testing object-tracking with the mount
  - To aforementioned setup add another light with variable speed
  - Track object and compare smearing effect of object with other "sphere tied" objects
  - Similar to the above test
- Testing position tracking for compensator
  - Position feedback error for compensator is within 40% of offset accrued over long exposure (~0.1 degree over 60 seconds).

## Subsystem Testing and Validation

| Subsystem                         | Test Purpose             | Pass Condition                                                                                                   |
|-----------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------|
| Motor controller                  | Endurance                | The Arduino records 216 revolutions of the paper disk through the phototransistor.                               |
| Motor controller                  | Voltage spike survival   | The motor controller must pass the endurance test after going through this test sequence.                        |
| Computer Vision (Object tracking) | Computer vision accuracy | The test correctly identifies single object movement within 40% accuracy and cluster movement with 20% accuracy. |

#### Test Setup Electronic Diagram

Arduino - to - Motor Controller Interface:

- GPIO pins (1 PWM, 1 enable per motor)
- Logic buffers require 3.3V power from Arduino
- Propagation delays (same as before):
  - PWM\_tphl: 1.11 ms
  - PWM\_tplh: 1.13 ms
  - EN\_tphl: 0.41 ms
  - EN\_tplh: 1.12 ms
- Arduino to Laser Driver Interface:
- GPIO pins (1 enable per laser module)



# **Risk Mitigation**

- Motor controller test failure:
  - Purchase a stepper motor driver module with enable inputs as a replacement part.
    - Cons: Requires modification to power distribution.
- Gearbox/Compensator Failure:
  - An alternative design has been proposed to combine a (simple to fabricate and precise within a small range) "barn door mount" with a less precise but larger range turntable setup.
    - Pros: Easier and faster to fabricate in case of failure, does not rely on complex gearing.
    - Cons: Error accumulates and must be compensated for, small range
- Computer Vision (Object tracking) Failure:
  - By maintaining a database of known objects and their positions over time the mount could blind track objects after proper alignment has been done.

| TASK TITLE                                | TASK OWNER   | week     |             |           |           |          |           |           |            |            |           |            |            |            |
|-------------------------------------------|--------------|----------|-------------|-----------|-----------|----------|-----------|-----------|------------|------------|-----------|------------|------------|------------|
|                                           |              | 4<br>2/3 | 5<br>3 2/10 | 6<br>2/17 | 7<br>2/24 | 8<br>3/2 | SB<br>3/9 | 9<br>3/16 | 10<br>3/23 | 11<br>3/30 | 12<br>4/6 | 13<br>4/13 | 14<br>4/20 | 15<br>4/27 |
|                                           |              |          |             |           |           |          |           |           |            |            |           |            |            |            |
| CAD Mount (not including gearing)         | JG           |          |             |           |           |          |           |           |            |            |           |            |            |            |
| CAD Mount with gearing                    | JG           |          |             |           |           |          |           |           |            |            |           |            |            |            |
| Design compensator gearing                | KR           |          |             |           |           |          |           |           |            |            |           |            |            |            |
| Order parts and supplies for mount        | JG           |          |             |           |           |          |           |           |            |            |           |            | Î.         |            |
| Constructing Equatorial Mount             | JG + KR + YS | 8        |             |           |           |          |           |           |            |            |           |            |            |            |
| Obtain Camera Adapter + Tripod            | JG + KR + YS |          |             |           |           |          |           |           |            |            |           |            |            |            |
| Circuitry                                 |              |          |             |           | -         |          |           |           |            |            |           |            |            |            |
| Motor Driver+Gyroscope Circuit Design     | YS           |          |             |           |           |          |           |           |            |            |           |            |            |            |
| Motor Driver+Gyroscope Board Layout + Fab | YS           |          |             |           | ľ.        |          |           |           |            |            |           |            |            |            |
| User interface board layout + Fab         | YS           |          |             |           |           |          |           |           |            |            |           |            |            |            |
| CV System and Interface                   |              |          |             |           |           |          |           |           |            |            |           |            |            |            |
| Polar alignment algorithm                 | KR           |          |             |           |           |          |           |           |            |            |           |            |            |            |
| Interface PA with mount circuitry         | JG + YS      |          |             |           |           |          |           |           |            |            |           |            |            |            |
| Object Mapping                            | JG + KR      |          |             |           |           |          |           |           |            |            |           |            | l.         |            |
| Object tracking prototype (with video)    | JG           |          |             |           |           |          |           |           |            |            |           |            |            |            |
| Integrate with Mount Movement             | JG + KR      |          |             |           |           |          |           |           |            |            |           |            |            |            |
| Calibrate for mount and camera zoom       | JG + KR      |          |             |           |           |          |           |           |            |            |           |            |            |            |
| GUI                                       |              |          |             |           |           |          |           |           |            |            |           |            |            |            |
| Software implementation                   | KR           |          |             |           |           |          |           |           |            |            |           |            |            |            |
| Obtain and install peripherals            | JG + KR + YS |          |             |           |           |          |           |           |            |            | 1         |            |            |            |
| Testing of software implementation        | KR           |          |             |           |           |          |           |           |            |            |           |            |            |            |
| Verification                              |              |          |             |           |           |          |           |           |            |            |           |            |            |            |
| Skychart laser array circuit design       | YS + KR      |          |             |           |           |          |           |           |            |            |           |            |            |            |
| Skychart laser array board layout+fab     | YS           |          |             |           |           |          |           |           |            |            |           |            |            |            |
| Assembly of Skychart laser array          | JG + KR      |          |             |           |           |          |           |           |            |            |           |            |            |            |
| Sky tracking and object tracking tests    | JG + KR + YS |          |             |           |           |          |           |           |            |            |           |            |            |            |
| Integration and Additional Testing        | JG + KR + YS |          |             |           |           |          |           |           |            |            |           |            |            |            |
| Course Logistics                          |              |          |             |           |           |          |           |           |            |            |           |            |            |            |
| 1st Status Report                         | JG + KR + YS |          |             |           | 1         |          |           |           |            |            |           |            |            |            |
| Design Presentation                       | JG + KR + YS |          |             |           |           |          |           |           |            |            |           |            |            |            |
| Design Document                           | JG + KR + YS |          |             |           |           |          |           |           |            |            |           |            |            |            |
| Final Presentation                        | JG + KR + YS |          |             |           |           |          |           |           |            |            |           |            |            |            |
| Final Report                              |              |          |             |           |           |          |           |           |            |            |           |            |            |            |