## TEAM B1

# Asterism

Smart Astrophotography Mount

Kenny Ramos, Joy Gu, and Yuyi Shen

## Use Case



Jones, Trevor. Photograph of nebula w/ and w/o star tracking. AstroBackyard, 9 Sept. 2019, https://astrobackyard.com/wp-content/uploads/2019/10/how-to-use-star-tracker.jpg.

### Use Case



• Additional compensation is required for "non-stationary" objects (the moon, planets, comets, etc.) [Not commercially offered]

## Scope

- In-scope:
  - EQ mount construction
  - Polar alignment and object tracking
  - $\circ$  Motor control
  - Computer vision
  - User interface
- Out-of-scope:
  - Camera connection, tripod
  - Camera driver (libgphoto2)
  - Embedded controller board
- Areas: Software Systems, Circuits



## **General Requirements**

| Criterion                | Requirement                  | Justification                                                          |
|--------------------------|------------------------------|------------------------------------------------------------------------|
| Polar alignment accuracy | ~0.5 deg from celestial pole | Produces a 5% Error on a 60 sec Jupiter Capture                        |
| Polar alignment time     | <15 minutes                  | Optimistic time estimate for setting up a mid range telescope by hand. |
| Endurance                | 8 hours                      | Typical for commercial telescope batteries under normal conditions     |
| Power consumption        | 8.75 W                       | Typical capacities of commercial telescope batteries                   |
| Supply voltage           | 12 V                         | Typical for commercial batteries                                       |
| Object-tracking accuracy | ~0.5 deg in a minute         | Produces a 5% Error on a 60 sec Moon capture                           |

## Our Solution

- 4-axis camera mount (1 free, 3 motorized)
- CV interface between mount and camera
  - Components: gphoto2, OpenCV
  - Raspberry Pi 4
- Polar axis alignment w/ gyroscope + geared stepper motors (Pololu hybrid motors)
- Bipolar stepper motor controller board for interface w/ Raspberry Pi (gate drivers + PCB + H-bridge MOSFETs)
- Interface between user and Pi



#### General System Diagram



#### **CV+GUI Block Diagram**



## Requirements: Subsystem

| Criterion for component                                 | Requirement                | Justification                                                            |
|---------------------------------------------------------|----------------------------|--------------------------------------------------------------------------|
| Nominal load                                            | 1.9 kg                     | Average DSLR camera mass + 200mm<br>telephoto lens                       |
| Maximum loaded linear<br>deflection of polar axis shaft | 0.0051L (L = shaft length) | Derived from polar alignment accuracy and cantilever deflection equation |
| Polar axis shaft rotation speed                         | 4.178 mdeg / sec           | 360 degrees / sidereal day                                               |
| Required polar axis shaft torque                        | 1.8 x 10^(-5) kg*cm        | Derived from required rotation speed                                     |
| Required polar axis alignment torque                    | 0.23 kg*cm                 | Derived from nominal load and estimated polar axis shaft length          |

## Challenges

- Mechanical construction of the mount and gearboxes
- Fine-grained motor control
- Power distribution tree
- Software challenges
  - Working around image transfer latency
  - CV accuracy and ability to detect target objects
  - Translation between image distance in CV and rotation correction
  - Translation between rotation correction and motor control
- Integration

## Testing and Verification

- Testing polar alignment
  - Testing Antipodal Alignment (Align to reference, Rotate RA 180°, Measure Offset from Axis)
- Testing sky-tracking
  - Laser Pointers that can be positioned on a rotating spherical grid
  - Compare still image of "dots" with long exposure
- Testing object-tracking
  - To aforementioned setup add another light with variable speed
  - Track object and compare smearing effect of object with other "sphere tied" objects
- Power consumption tests
  - 2 ADCs connected between current sensing resistor
  - Outputs logged by Raspberry Pi, integrated for average power calculation

## Tasks and Division of Labor

| Yuyi Shen                             | Kenny Ramos                                                      | Joy Gu                                                |
|---------------------------------------|------------------------------------------------------------------|-------------------------------------------------------|
| Motor controller and gyroscope boards | Gearing design and<br>fabrication, some of<br>mount construction | Mount construction and<br>CAD of gearing and<br>mount |
| User interface board                  | Polar alignment<br>algorithm                                     | Motor control (software component)                    |
| Test environment construction         | User interface                                                   | Object tracking algorithm                             |
| Code convention verification          | Testing                                                          | Testing                                               |

|                                           | -            | Week |      |      |      |     |     |      |      |             |     |      |      |      |
|-------------------------------------------|--------------|------|------|------|------|-----|-----|------|------|-------------|-----|------|------|------|
|                                           |              | 4    | 5    | 6    | 7    | 8   | SB  | 9    | 10   | 11          | 12  | 13   | 14   | 15   |
| TASK TITLE                                | TASK OWNER   | 2/3  | 2/10 | 2/17 | 2/24 | 3/2 | 3/9 | 3/16 | 3/23 | 3/30        | 4/6 | 4/13 | 4/20 | 4/27 |
| Fabrication and Mechanical                |              |      |      |      |      |     |     |      |      |             |     |      |      |      |
| CAD Mechanical Parts                      | JG           |      |      | _    |      |     |     |      |      |             |     |      |      |      |
| Motor Driver+Gyroscope Circuit Design     | YS           |      |      |      |      |     |     |      |      |             |     |      |      |      |
| Motor Driver+Gyroscope Board Layout + Fab | YS           |      |      |      |      |     |     |      |      |             |     |      |      |      |
| User interface board layout + Fab         | YS           |      |      |      |      |     |     |      |      |             |     |      |      |      |
| Constructing Equatorial Mount             | JG + KR + YS |      |      |      |      |     |     |      |      |             |     |      |      |      |
| Obtain Camera Adapter + Tripod            | JG + KR + YS |      |      |      |      |     |     |      |      |             |     |      |      |      |
| CV System and Interface                   |              |      |      |      |      |     |     |      |      |             |     |      |      |      |
| Polar alignment algorithm                 | KR           |      |      |      |      |     |     |      |      |             |     |      |      |      |
| Interface PA with mount circuitry         | JG + YS      |      |      |      |      |     |     |      |      |             |     |      |      |      |
| Object Mapping                            | JG           |      |      |      |      |     |     |      |      | · · · · · · |     |      |      |      |
| Object tracking prototype (with video)    | JG           |      |      |      |      |     |     |      |      |             |     |      |      |      |
| Integrate with Mount Movement             | JG + KR      |      |      |      |      |     |     |      |      |             |     |      |      |      |
| Calibrate for mount and camera zoom       | JG + KR      |      |      |      |      |     |     |      |      |             |     |      |      |      |
| GUI                                       |              |      |      |      |      |     |     |      |      |             |     |      |      |      |
| Software implementation                   | KR           |      |      |      |      |     |     |      |      |             |     |      |      |      |
| Obtain and install peripherals            | JG + KR + YS |      |      |      |      |     |     |      |      |             |     |      |      |      |
| Testing of software implementation        | KR           |      |      |      |      |     |     |      |      |             |     |      |      |      |
| Verification                              |              |      |      |      |      |     |     |      |      |             |     |      |      |      |
| Skychart laser array circuit design       | YS + KR      |      |      |      |      |     |     |      |      |             |     |      |      |      |
| Skychart laser array board layout+fab     | YS           |      |      |      |      |     |     |      |      |             |     |      |      |      |
| Assembly of Skychart laser array          | YS + KR      |      |      |      |      |     |     |      |      |             |     |      |      |      |
| Sky tracking and object tracking tests    | JG + KR + YS |      |      |      |      |     |     |      |      |             |     |      |      |      |
| Integration and Additional Testing        | JG + KR + YS |      |      |      |      |     |     |      |      |             |     |      |      |      |
| Course Logistics                          |              |      |      |      |      |     |     |      |      |             |     |      |      |      |
| 1st Status Report                         | JG + KR + YS |      |      | -    |      |     |     |      |      |             |     |      |      |      |
| Design Presentation                       | JG + KR + YS |      |      |      |      |     |     |      |      |             |     |      |      |      |
| Design Document                           | JG + KR + YS |      |      |      |      |     |     |      |      |             |     |      |      | -    |
| Final Presentation                        | JG + KR + YS |      |      | -    |      |     |     |      |      |             |     |      |      |      |
| Final Report                              | JG + KR + YS |      |      |      |      |     |     |      |      |             |     |      |      |      |

S

C

h

e

d

u

1

e