
1
18-500 Final Design Document: 05/06/2020

KATbot: Final Design Document
Authors: Ashika Koganti, Abha Agrawal, Jade Traiger: Electrical and Computer Engineering, Carnegie Mellon

University

Abstract -- KATbot is a MadLib style storytelling robot
that interacts with children to aid in language and reading
comprehension. It is inspired by a storytelling companion
robot created by the MIT ​Personal Robot Group [1]. This
robot had children create stories for the robot to tell by
manipulating images on a tablet. In contrast, KATbot
takes in words through speech input to personalize short
stories, similar to a MadLib, or fill in the blank story, and
includes a display that allows the user to read along with
the story. The major components of KATbot are a
Raspberry Pi 4 that connects to the displays, a
microphone, a speaker, and one degree of freedom (DoF)
robot arms. The Raspberry Pi communicates with a
laptop running the story generation algorithm. KATbot
integrates signal processing, machine learning, and
robotics to provide an educational and engaging user
experience for elementary school age children. This paper
will explain in detail the requirements, system design and
components, validation plan, and project schedule.

Index Terms​ -- Machine Learning, Robot, Speech
Processing, Story Generation, Storytelling, Synonym
Generation, Text to Speech

I. INTRODUCTION

ESEARCH shows that early language development
directly relates to performance in later education [2]. It

is crucial to help children improve their language skills at a
young age. Since language is an essential component of social
and interactive context, assisting children in language
development and comprehension would help them become an
active part of society [3]. ​Robot companions would be
instrumental in this area because they integrate the benefits of
technology, such as accessibility and adaptive, easy-to-update
software, with the benefits of social agents, such as
communication skills and understanding social cues [4].

For these reasons, we created a robotic learning companion
to help children with language and reading development. It is
not only important that our robot is a useful language learning
toy, but equally important that it has a friendly, clean, and
engaging user interface for the children to interact with.

KATbot is a standalone interactive robot with the following
qualities. It tells customized stories by asking the user to fill in
parts of the story as it goes. It responds to user input within 4 -
6 seconds, and has at least 85% word recognition accuracy, at
least 90% part of speech accuracy, at least 85% synonym
generation accuracy, cohesive stories, and relatively good user
satisfaction. Testing with children was outside of the scope of

what we could accomplish this semester, therefore KATbot
was tested by adult users.

II. DESIGN REQUIREMENTS

Some of our requirements, especially within hardware, were
adapted to address the constraints placed on us due to the
COVID-19 pandemic situation. They will be addressed on an
individual basis in the following sections.

A. Hardware Requirements
The hardware aspect of KATbot consists of a custom-made

robot, embedded processors that communicate with
peripherals, and a laptop running a story generation algorithm.
The peripherals in KATbot consist of a microphone, speaker,
and displays as well as motor drivers and motors.

We chose to create a custom-made robot instead of using an
off-the-shelf product because it would not only let us create a
friendly looking robot suitable for children, but also let us
design a product that could hold the electronics needed for
this project.

To build KATbot, we needed a processor with enough
processing power to handle the speech processing, text to
speech, and user-facing display algorithms. Since our product
is meant to be standalone, this processor needed to be on a
small form factor to reduce the space it would take up inside
the robot. The processor needed to have many interfaces, such
as HDMI, USBs, GPIOs, etc) to connect to the many
peripherals we have for the product. Finally, the processor
needed to be low cost so that the product’s bill of materials
stays within the $600 constraint.

KATbot has two robot arms, each of which are one degree
of freedom. The arms move to help show emotion while the
robot tells the story and interacts with the user. Although the
arms were originally going to be made of acrylic and PLA
filament, due to a lack of access to a laser-cutter and
3D-printer with the COVID-19 pandemic, the arms were
constructed from cardboard. Based on the weight of
cardboard, the motors for the arms needed to have a minimum
torque of 1.18 kg/cm. The calculations are below.

Assume that the arm dimensions are The in x 2in x 2in.6
acrylic frame covers a surface area of Cardboard 6 in .5 2
has a height of Therefore, the volume is .125in.0

The density of cardboard is in 114 cm . 7 3 = 3
Therefore, the mass is.69 g/cm .0 3

Torque is F*r, where F14cm 0.69g/cm 78.66g.1 3 * =
 and r = 6in = 15.24cm.0.078kg=

Therefore, Torque 1.18 kg/cm. =

 2
18-500 Final Design Document: 05/06/2020

Fig. 1. Torque Calculations for the robot arms

KATbot also has displays on its body. It has a display on
the torso of the robot that shows the current sentence that the
robot is speaking. This is to aid the user with reading
comprehension. It also has a face display for KATbot’s face,
so that it can show emotions. Eye movements and gestures are
incredibly important when expressing emotion [5]. We chose
to use a display for the face so that we could dynamically
change the emotions that the eyes and mouth express to match
the emotions of the story.

B. Software Requirements
The story generating component of KATbot has four main

components. First, it needs to preprocess story templates prior
to use for lower latency and to prepare for user input. Next, it
should process the user input word by word, check for correct
word semantics in the context of the story, and update the
story as it goes. On the user interaction side, KATbot needs to
be able to communicate effectively what type of word (part of
speech or entity) it requires for each blank the user needs to
fill in. On the algorithm side, it needs the ability to continue
the story with any grammatically correct user input (i.e. the
user should not be able to ‘break’ the algorithm with an
unexpected input). To do this, the algorithm uses two features:
synonym generation to fill in the story cohesively and part of
speech detection to enforce correct syntax. For part of speech
detection, we were aiming for a 90% accuracy level, which is
around the minimum of popular natural language models [6].
For synonyms, we wanted at least an 85% similarity rate for
generated synonyms and antonyms, based on a paper on
supervised learning synonym identification models, which
evaluates a number of different synonym detection and recall
algorithms [7]. Another major requirement is to keep the
language and word choice at a child friendly level, to match
the educational level of our target audience.

In addition, the storytelling feature of KATbot has two
comprehensive requirements: cohesion and enjoyment.
Cohesion refers to how well the story flows and each sentence
is related to the previous ones. Enjoyment refers to user
satisfaction and how likely users are to continue interacting
with KATbot. More information on the evaluation of these
requirements can be found in the validation plan.

Another major component of KATbot is the user interface.
KATbot is meant to help early elementary school aged
children who are working on their reading skills. This means
that they cannot reliably interact with a completely text based
system. We decided that in order to combat this problem, all
users will interact with KATbot through speech.

In speech recognition, word error rate (WER) is a common
measure of system error. Having a low WER is an indicator
that a system is performing well. In 2017, it was found that

Sphinx4, a commonly used open-source speech recognition
package, had a 37% WER, while Microsoft’s and Google’s
speech recognition APIs had a WER of 18% and 9%
respectively [8]. With KATbot, we aimed to have a WER of
15% which is the average of the non open-source speech
recognition APIs referenced.

We would like to acknowledge that automatic speech
recognition systems have been shown to perform poorly with
speech from young users [10]. In one human robot interaction
study, the best speech recognition system under the best
conditions could only achieve a 38% recognition rate on
children’s speech [9]. Because of poor recognition accuracy
on children’s speech, our WER metric was applied only for
adult users.

Testing our system with children was outside of the scope
of this project because we did not have the proper paperwork
or resources to test KATbot with children. Because speech
recognition for children is an ongoing challenge for the field,
we designed KATbot to perform well with adult users.

C. Over​all Requirements
Overall we aim for KATbot to be a standalone children’s

toy with a friendly and engaging user experience. Because
KATbot is meant to be a toy, we intended for it to be played
with wherever a child wants to. Due to this, originally
KATbot would have needed to have batteries for power. We
found that children at the age of 5 can play with something
that interests them for around 15 minutes and can interact with
other children for around 10 - 25 minutes [11]. Because
KATbot is an inherently interactive system, we estimate
children will want to play with it for up to 25 minutes. Thus,
we originally required that KATbot should be able to run for
30 - 45 minutes off its own power system. However, due to
the transition to remote instruction, we removed the power
requirement and replaced it with a reliability metric. We
would like the product to be able to be played with for 30-45
minutes without any reboot, loss of connection, or loss of
power issues.

In order for KATbot to be a standalone toy, it needs to
house all of the electronics for the product. These electronics
include a processor that controls the peripherals, a
microphone, a speaker, motors, and a motor shield for the
robot arms, and displays.

Another important part of our system design is latency
between user input and dialogue feedback. We have found
that the average response time per person for task oriented
dialogue between humans is around 4 - 6 seconds [12]. ​Thus,
we aimed for having a total system latency of at most 4 - 6
seconds, which accounts for the time between when the user
has finished uttering their response to the system and when
the system says its next line of dialogue.

 3
18-500 Final Design Document: 05/06/2020

Fig. 2. Overall System Diagram. The storytelling algorithm is run on the laptop while audio input/output, the displays, and the arms are located and run in the
robot itself. The laptop and Raspberry Pi communicate wirelessly via sockets. All the tools, packages, and hardware components that we incorporated are
highlighted in orange.

III. ARCHITECTURE AND PRINCIPLE OF
OPERATION

To meet these requirements, we built a standalone (all
electronics are housed within the robot) custom-made robot.
The robot houses a main processor that communicates with
the peripherals and handles the speech processing, text to
speech, and user-facing display algorithms.

The custom-made robot houses the processor and
peripherals. The robot’s body and head dimensions were
carefully chosen to be big enough to fit all the electronics
within it. The robot has two one-degree-of-freedom arms. We
used motors with a small form factor, so that they could fit
within the robot, and that met the torque requirement of 1.18
kg/cm.

We used a microphone with an omnidirectional pickup
pattern and a pickup distance which can cover up to 5ft
around the robot itself. The pickup pattern and distance were
chosen so that the user can move around while interacting
with the robot. We used speakers with a small form factor so
that they could fit in the base of the robot.

The processor inside the robot communicates to a laptop
that contains the story generation algorithm. Even though the
end goal of this product was to be a standalone toy, given the
time constraints of a semester project, we did not have enough
time to not only have a completed story generation algorithm
that meets our requirements, but also to have it run on an
embedded processor. Therefore, we decided to run this
algorithm on a laptop as part of the scope of this project.

The storytelling algorithm starts with templates that are
manually configured based on a loose set of constraints that
ensure context and clear word relations. KATbot prompts the
user for the word of the specified part of speech for the blank,
and the user input goes through error detection to ensure it is
the right part of speech. To make the system a little more
forgiving, particularly for children with limited grammar
knowledge, small grammar mistakes are corrected (e.g.
singular vs. plural). On the algorithm side, any related words
are filled in using generated synonyms and antonyms of the
user input in conjunction with a machine learning based
best-fit heuristic. This amplifies how much the user can
customize the story, which adds both variety to the stories as
well as a better user experience.

IV. DESIGN TRADE STUDIES

A. Machine Learning Components

1. Part of speech tagging

We chose to use the NLTK speech processing package for
part of speech tagging because it meets our metric of 90%
accuracy. The default tagger in this package is the perceptron
tagger, which was reported to have a 96.5% accuracy [14].
Another popular natural language model is SpaCy, which is
more object-oriented than NLTK. While this is better for
semantic meaning, NLTK conducts sentence tokenization
much more quickly and has more tools and integrative
capabilities than SpaCy [15]. Since the part of speech is the
only feature we need for this portion, and NLTK is well suited

 4
18-500 Final Design Document: 05/06/2020

for other components, too, the advantages of using NLTK
outweigh the advantages of SpaCy.

Table 1. Accuracy and Latency Measurements for Different NLTK Part of
Speech Taggers.

Tagger Accuracy Latency

Perceptron 90.38% 0.000740 s

Bigram 74.60% 0.000741 s

Combined 93.82% 0.000740 s

The NLTK perceptron tagger yielded a 90.38% accuracy

(see the validation plan for more information on how we
tested accuracy). This met our requirement, but just barely. To
boost this number, KATbot combines it with the NLTK
bigram tagger. The perceptron tagger assigns part of speech
based on a pre-trained machine learning model of word
clusters, while the bigram tagger looks up the correct part of
speech in a lookup table of the most frequently used word
pairings, defaulting to the perceptron tagger if it cannot find
anything [19]. The bigram tagger on its own only has a 74.6%
accuracy, but when combined with the perceptron tagger, the
whole system has an accuracy of 93.82%. This means that if
the user input has the right part of speech when tagged with
either tagger, it passes the error detection. The system latency
for all three taggers (perceptron, bigram, and both), is about
0.00074 seconds, so there is no apparent disadvantage to
using both.

2. Synonym/Antonym generation

For this aspect of word generation, we initially chose to
continue with the NLTK package because it already has a
large database for its synonym detection and recall
capabilities. One alternative is word2vec, but this tool does
not come with its own corpus for training, and it is focused
only on word similarity.

To measure the accuracy of the synonym generation
algorithm, we checked whether the generated words are listed
on thesaurus.com. It is difficult to quantify whether the
generated synonyms are the optimal synonyms, but this
allowed us to at least see if they are commonly linked to the
original word. When tested this way by generating synonyms
and antonyms for a random set of 10 adjectives, the NLTK
tool only had a 64.072% accuracy, but a relatively short
latency of 0.07274 seconds. The tool also did not always
return any synonyms for simple words, like “huge”, which
affected the overall storytelling performance greatly.

We then looked at fetching the synonyms and antonyms
directly from thesaurus.com. This guaranteed that all the
words returned were accurate and that the system always
returns something. The latency is a little bit longer, at 0.38575

seconds, but not enough to be noticeable. Upon observation,
however, a lot of the generated words are at a much higher
vocabulary level than the rest of the stories; for example, one
resulting synonym of “huge” is “leviathan”. To combat this
problem, we switched to using kids.wordsmyth.net, a kids
dictionary and thesaurus. These words suit the story much
better, and when this thesaurus cannot return any words, our
algorithm resorts to thesaurus.com. Using both these
thesauruses slows down the synonym generating system quite
a bit, at 1.82123 seconds, but KATbot still meets its latency
requirement and the performance benefits are significant
enough to justify using this option.

3. FitBERT

We chose to use FitBERT to help fill in the templates given
user input, because it is an open-source, pretrained model.
According to documentation, BERT, FitBERT’s parent
package, has had success with actual MadLibs, and its
easy-to-use python tools work well when incorporated with
the other modules of the story generation algorithm. Also, its
grammar correction capabilities make it particularly useful,
and it has a low latency, which is important for real time
performance.

B. Speech Recognition
The evaluation metrics we used to evaluate speech

recognition were as follows: ability for the package to be used
on an embedded device, whether the package required
connection to the internet, ease of installation and usage, and
accuracy.

We evaluated several different packages including
PocketSphinx, Julius and SpeechRecognition. Below is an
evaluation of each package.

PocketSphinx is an API meant for speech recognition from
CMU. Some of the benefits that PocketSphinx provides are
that it can run on an embedded device and does not require
internet connection. It is also stable, has been designed to
have a small code footprint and attempts to reduce memory
consumption [16]. Some of the downsides to PocketSphinx
are that it requires a base library to get it running, it can be
hard to install, and it does not have the best recognition
accuracy of the packages we considered.

Julius is another open source API that we considered. Its
benefits are that it is a real time system that has a low memory
requirement (< 64 MB). However, we did not find much
documentation for it in regards to running it on an embedded
system.

The last package we considered was a python package
called SpeechRecognition. SpeechRecognition supports
several different speech recognition engines including CMU
Sphinx, Google Speech Recognition, Google Cloud Speech
API, Microsoft Bing Voice Recognition, IBM Speech to Text
and others. It is also easily installable and can be installed on
an embedded device.

 5
18-500 Final Design Document: 05/06/2020

We decided to go with the python SpeechRecognition
package for the following reasons. The first and most
important was configurability. SpeechRecognition allows the
user to choose a recognition engine which adds flexibility.
Specifically, we used the Google Speech Recognition engine.
This engine requires a connection to the internet, but performs
speech recognition better than other packages, and well
enough to meet our metrics. In fact, the Google Speech API
has been shown to be the best system for speech recognition
in a study investigating speech recognition in human robot
interaction for children [8].

C. Text to Speech
We evaluated several different text to speech packages for

KATbot. These included Festival, Flite, eSpeak, say, spd-say,
google_speech, gTTS (google text to speech), and AWS
Polly. The evaluation metrics for the text to speech modules
were that they had to be able to process the input words,
generate speech quickly, and that the generated voice was
clear and understandable.

Of the packages evaluated, Festival, Flite, eSpeak, say, and
spd-say were eliminated because they all had voices that were
either robotic or unnatural.

Google_speech, gTTS, and AWS Polly all offered good
voices for the user to interact with. However, AWS Polly
requires AWS credits which we wanted to avoid so that the
users of KATbot would not have to pay for anything.

We chose gTTS from the remaining two packages as it was
updated more frequently than google_speech. gTTS provides
a female voice, with good pronunciation and minimal latency
in processing; however, it also requires internet connection.

D. Pitch Shifting Algorithm
We perform pitch shifting on the speech output of gTTS to

make KATbot’s voice more appealing to the user. Pitch
shifting refers to the process by which the pitch of the audio
input is increased without changing the duration of the audio
input. There are three main approaches that we considered.
The first two involved writing our own pitch shifting software
based on existing algorithms, and the last one involved using
a python package to perform pitch shifting.

The first algorithm for pitch shifting we considered was
Pitch Synchronous Overlap Add (PSOLA). It relies on
looking at the input speech signal and identifying periodic
amplitude peaks within the waveform. These periodic
amplitude peaks correspond to pitch marks within the signal.
Suppose the pitch period at a certain point in the signal is .tm
Then, samples are taken from around each pitch period by
multiplying the samples with a Hanning window (of a [n])hm
length that will allow it to overlap between 50 - 75% with the
next windowed pitch period. For the mth windowed portion of
the input signal, . To shift the [n] h [t n] [n]xm = m m − * x
pitch of the input signal, a new set of pitch periods are
generated such that they are either spaced closer together or

farther apart. Then, the original frames are placed at the new
pitch period, such that the output signal has pitch period ,tq
frames spaced at the new pitch [n] x [n t t]ym = m + m − q
period [17]. ​This algorithm requires careful analysis of the
time domain signal to find pitch marks and pitch periods.

The second algorithm for pitch shifting we considered was
phase vocoding. Phase vocoding relies on taking the short
time fourier transform (STFT) of the original signal, . [n,]X k
The STFT provides a method by which the frequency content
at discrete frequencies of a signal can be evaluated at periodic
time intervals. It differs from the discrete time fourier
transform (DTFT) which provides the frequency content of
the entire signal. The STFT is calculated by multiplying the
input audio signal by periodic windows to generate frames,
then calculating the DTFT of each frame. Once we have the
STFT representation of the signal we can calculate both the
magnitude and phase of each frame for each frequency. From
the magnitude and phase information of each frame, we can
calculate the instantaneous phase, or the derivative of the
phase for each frame. To perform pitch shifting we increase
the instantaneous phase at each frame for each frequency.
Reconstruction is performed by summing up sinusoids at each
frequency with the magnitude and altered instantaneous phase
at each frame. Below is a block diagram of the system as well
as relevant equations.

Fig. 3. Complete single channel of a phase vocoder analyzer. The input comes
in and is multiplied by a sine and cosine of frequency and convolved with ⍵k
a window to get the “real” and “imaginary response” and of the (⍵) an k (⍵) bn k
input at time window and frequency [20] n ⍵k

X (e)| (⍵) (⍵)) | n

j⍵k = (an k
2 + bn k

2 1/2

Fig 4. The equation for the magnitude response of the input given the “real”
and “imaginary” responses for window n and frequency k.

Fig. 5. Discrete time instantaneous phase equation. Instantaneous phase is
calculated per input window, n, and is calculated from the “real” and
‘imaginary” responses of the input signal. Instantaneous phase is calculated
using derivatives of the “real” and “imaginary” responses. It is the
instantaneous phase that is changed in order to change the pitch of the input
signal without changing the timing. [21]

 6
18-500 Final Design Document: 05/06/2020

Fig. 6. Reconstruction of the output of a phase vocoder analyzer. The
magnitude is preserved across the reconstruction, the instantaneous phase
term is changed in order to shift pitch. Reconstruction of the signal at time n
and frequency involves performing a continuous integral of the phase, then ⍵k
re-assembling the signal by applying the proper phase to a cosine and sine at
frequency and multiplying it by the magnitude response.[22] ⍵k

The third option for pitch shifting involved using
AudioSegment from a python package called pydub.
AudioSegment has built-in functions to take an audio input
and play it back at a new sampling rate without changing the
duration of the audio input.

E. Embedded Processor
The three embedded processors in the market today that

satisfied our requirements were the Raspberry Pi 3, Raspberry
Pi 4, and Nvidia Jetson Nano.

The Raspberry Pi 4 has upgraded specifications, as
compared to the Raspberry Pi 3, with respect to the CPU,
GPU, and RAM. It has two HDMI ports, unlike the Raspberry
Pi 3 which is useful as each HDMI port could drive one of
KATbot’s two displays. Our processor needed to be able to
handle fast computation to meet our latency requirements.
More RAM aided in running the programs more quickly,
reducing latency, which was a major concern of ours.
Upgraded hardware, more ports, more memory, and faster
processing and performance speeds caused the Raspberry Pi 4
to be a better fit for our project than the Raspberry Pi 3.

When comparing the Raspberry Pi 4 to the Jetson Nano,
most of the specifications are very similar. However, the CPU
on the Raspberry Pi 4 has a slightly faster clock and uses 20%
less power than the CPU on the Nano. In addition, at $99, the
Nano is almost double the price of the Raspberry Pi 4, which
is important due to our constrained budget of $600.

We decided to go with the Raspberry Pi 4 as our robot’s
processor because it met our needs, was less expensive than
the NVIDIA Jetson Nano, and had better specs than the
Raspberry Pi 3.

F. Microphone
We had several different choices for a microphone system

for KATbot. The options included a head mounted
microphone, a table microphone, and a studio microphone.
Head mounted microphones are good for spoken dialogue
systems because the microphone is placed very close to the
user’s mouth. Similarly, studio microphones are designed to
best capture human voice and have been shown to produce
the best audio inputs for automatic speech recognition systems
[9]. Despite offering high quality audio inputs to our system,
we decided against a head mounted microphone and a studio
microphone in order to maintain KATbot as a standalone
product. Both types of microphones also restrict the user from
moving around while interacting with the robot.

The other option that we considered was a conference table
microphone with omnidirectional input that can be housed
within or on KATbot. Despite the fact that the table
microphone provides a worse audio signal input to speech
recognition it can be easily integrated with the robot and has
both omnidirectional pickup and pickup from a distance. This
allows the user to move around while interacting with the
robot.

G. Displays
The face display is important to be able to express emotion

that matches the tone of the story. To do so, movements of
both the eyes and the mouth is important. This is why we
chose to have one display for the entire face that would show
the eyes and the mouth, as opposed to two small displays for
just the eyes.

It is important to have displays that meet the requirements,
but draw minimal current to reduce power consumption. In
addition, to meet our requirements, we needed displays that
could communicate face shape/movement or text effectively
to the user, and this does not require high resolution. Finally,
it was important that any display that we choose can interface
well with our embedded processor. We chose to use LCD
screens, as opposed to LED screens, for KATbot since
off-the-shelf LCD screens have the capability to remove
backlight, and therefore, reduce power consumption.
Although OLED screens use less power than LCD screens, we
could not find any OLED screens with dimensions big enough
for this project.

V. SYSTEM DESCRIPTION

A. Text to Speech
Text to speech is the primary way that KATbot

communicates with the user. We used Google’s text to speech
package called gTTS as KATbot’s text to speech synthesizer.
gTTS has a simple API which takes in a string and converts it
to a .mp3 file.

 7
18-500 Final Design Document: 05/06/2020

Fig. 7. Diagram of the audio subsystem within KATbot. A single iteration of the user interacting would behave as follows. 1. The Raspberry Pi receives a
packet from the laptop containing strings with the next line of dialog, a prompt value, and whether user input is needed from the socket interface. 2. The packet is
passed into the audio output pathway. 3. The next line of dialog string is processed using functions from a python package called gTTS which performs text to
speech on the input file to generate a .mp3 file of the input text. The .mp3 file is pitch shifted upward using python’s AudioSegment package and then played out
through the speakers via a system call to mpg123. 4. In order to save time, all prompts’ text to speech files are generated in the setup function on the Raspberry
Pi. The prompt value is used to look up and find the proper .mp3 file which is then played through the speakers. 5. In the event that user output is not required, it
returns a ready signal to the laptop. In the event that user input is required, three seconds of audio is recorded from the microphone. The recording is thresholded
to see if speech is present. If speech is not present TIMEOUT is returned. If audio is discernible, it is processed using functions from python’s
SpeechRecognition package. If a word is recognized, it is returned by the audio input pathway; otherwise, UNK is returned. 6. The return value of the audio input
pathway is passed to the socket interface and written as a packet to the laptop.

When the Raspberry Pi in KATbot receives the next line of
dialogue from the story generation algorithm, it contains three
pieces of information, the next line of dialogue, a user prompt
type, and whether user input is required. The next line of
dialogue is converted by gTTS to an .mp3 file, the file is then
pitch shifted using AudioSegment and played through the
speakers using a system call to a program called mpg123. The
user prompt value includes various parts of speech and is
spoken in the normal gTTS output pitch. During KATbot’s
setup function we pre-generated the mp3 files for prompts to
save time. Sample dialogue includes: “There once was a dog
who was <<adjective>>.” The items in angle brackets
indicate the system speaking in a lower pitch.

B. Pitch Shifting and Voices
One important part of KATbot is its voice, as it is the main

user interactive portion of our interface. KATbot has two
“voices,” a higher pitched voice during narration and a lower
pitched voice to cue the user for an input. gTTS synthesizes
text to an adult female voice, so we used the original gTTS

output for the cueing and pitch shifted the voice upward
during narration.

To generate the narration voice we pitch shifted the TTS
output upward by 2 semitones. We arrived at this amount
through shifting the TTS voice over a range of pitch shifts and
choosing the most appealing voice.

Of the three options for pitch shifting, we decided to go
with pydub’s AudioSegment package. We chose this method
to save on time and put the rest of our time towards
integrating each of the individual parts of KATbot.

C. Speech Recognition
We used python’s SpeechRecognition package with

Google’s speech recognition API as the speech recognition
engine. The API has commands that will listen through the
system’s microphone, automatically recognize speech, and
end its recognition when it hears silence. The API also has
functions that perform speech recognition on audio files.

We decided to implement speech recognition by recording
the user for three seconds after they are prompted and then
passing the recording of the user to SpeechRecognition. This

 8
18-500 Final Design Document: 05/06/2020

method was advantageous over having SpeechRecognition
access the microphone itself as it prevented the package’s
functions from hanging or ending abruptly. Ultimately,
recording the user for some duration and passing the file to
SpeechRecognition yielded a much more fluid user
experience.

KATbot uses two different packages to record the user
depending on what system the robot code is running on. If the
program is running on the Raspberry Pi we used arecord as it
was a fast linux system call that was easy to run. However, in
the case that the system that the robot code was running on
didn’t have arecord on it, then we defaulted to using pyAudio,
a python package that does recording.

Should recording fail in any way, KATbot will fall back on
SpeechRecognition’s function that listens through the
system’s microphone.

The speech recognition output consists of three possible
outputs. The first type of output is a user timeout. Timeouts
are reported in the case that the user did not say anything
within the recording duration. Timeouts are determined by
taking the max amplitude of the recording and comparing it
with a threshold determined through testing. If the max
amplitude is below the threshold then it is likely that the user
had not said anything. The other two outputs from speech
recognition include the word recognized by the speech
recognition package and ‘unknown’ in the event that the word
could not be recognized.

Once speech recognition occurs, its output is passed to
socket code to be sent to the storytelling algorithm.

D. Embedded Processor
The robot houses a Raspberry Pi 4, which is the main

processor that communicates with the peripherals and handles
the speech processing, text to speech, and user-facing display
algorithms. With four USB ports, a 40 pin GPIO header, 2
HDMI ports, and a four-pole audio port, it has the necessary
ports needed for all the peripherals in this project. In addition,
with a quad core Cortex A72 CPU and 4GB of RAM, it has
sufficient processing power for the necessary algorithms.

The Raspberry Pi connects with the microphone via USB,
and powers the speakers through USB. The speaker signal
comes from the four-pole audio port. The Raspberry Pi’s two
micro HDMI outputs are used to drive a face display and a
text display on the robot.

The Raspberry Pi is used to run all of KATbot’s I/O
software. It has two threads, a thread that runs display code
and a thread that runs audio input and output.

The display code was implemented using a package called
Kivy, which is a python package used to develop applications.
The display code updates the display every time a new input
comes in from the ML algorithm to the Raspberry Pi. The
display shows the current line of dialogue being said by the
robot, and, at the end of the storytelling process, displays the
full user generated story with user and algorithm generated
inputs highlighted.

The thread that runs the audio input handles receiving
packets from the storytelling algorithm, and parses out the
next line of dialogue, prompt value, and whether a user input
is expected. The thread then passes the next line of dialogue to
the display, and runs TTS to say the next line of dialogue and
prompt value. If a user input is expected, it runs speech
recognition code and passes the user output back to the
storytelling algorithm.

E. Raspberry Pi and Laptop Communication
The Raspberry Pi and laptop communicate wirelessly

through python’s sockets interface. For KATbot, we had the
laptop act as a server and the Raspberry Pi act as the client.
The process for communication involves setting the laptop
running the storytelling algorithm as the host for the
Raspberry Pi to connect to, and then setting the port number
in both the laptop and Raspberry Pi code to be the same port.
The storytelling algorithm is first started up and creates a
socket with the laptop’s IP and a port number. The
storytelling algorithm then prints that it is ready to receive a
connection and stalls until the Raspberry Pi connects to it.

The data that is passed from the storytelling program to the
Raspberry Pi includes, as mentioned previously, the next line
of dialogue, the prompt type, and whether user input is
expected. This information is sent from the laptop to the Pi in
a single packet using a socket send function. Once the Pi has
finished its processing it sends back speech recognition output
or a ready signal in the case that user input was not expected.
Note that the speech recognition output can be one of a
timeout error, an unknown word error, or the word recognized
through speech recognition. The storytelling algorithm takes
the Raspberry Pi inputs and uses them to decide what the next
line of dialogue should be.

F. Robot Body
The custom-made robot initially was planned to have a

laser-cut acrylic frame with a 3D-printed and/or cloth shell.
Due to limited resources because of the COVID-19 pandemic,
we built the robot with cardboard instead. It houses the
processor, peripherals, and batteries. To house all of these
components, the robot body’s dimensions are 8 inches by 8
inches by 10 inches and the robot’s head’s dimensions are 6
inches by 6 inches by 9 inches.

 9
18-500 Final Design Document: 05/06/2020

Fig 8. Top down view of the custom robot to show how the hardware is housed within the body. The speakers are powered by a USB port on the Raspberry Pi,
and receive signal from the ⅛” port on the Pi. Both displays on the robot are powered by USB ports on the Raspberry Pi and receive data from the HDMI ports.
The microphone receives power and passes data to the Raspberry Pi via USB. The motors for KATbot’s arms are powered and receive data from a NXT Brick.
The NXT Brick, which provides data and power to the NXT motors are not integrated with the Raspberry Pi code.

Fig. 9. Dimensions and external view of the custom-made robot. The robot
has two displays, one for displaying facial expressions, and the other to
display text for the user to read as they interact with KATbot. The arms are
driven by NXT motors (see Fig. 10 & 11) and the Microphone is disguised as
a “paw” on the robot. The other paw was made with clay and matches the
shape of the microphone.

Fig. 10. Completed Custom-made Robot. The robot is constructed out of
cardboard, and other household items due to lack of access to 3D-printing and
laser cutting during remote instruction.

 10
18-500 Final Design Document: 05/06/2020

G. Robotic arms
The robot has two one-degree-of-freedom arms. Each arm

is about 6 inches long. To meet the torque requirement of 1.18
kg/cm for the motors for the robot arms, we were originally
going to use servo motors, since standard servo motors
provide a torque of 4.4 kg/cm at 4.8 volts. Since we could not
receive servo motors during the semester due to shipping
delays because of COVID-19, we used Lego Mindstorms
motors which have a torque of 1.5 kg/cm.

Fig. 11. CAD of the Original Robot Arm Frame

Fig. 12. Current Robot Arm Frame

Fig. 13. Current Robot Arm with Shell

H. Peripherals

1. Microphone

KATbot’s audio input comes from a conference table
microphone with omnidirectional pickup pattern and a 11.5
foot pickup distance. We have decided on this microphone
because its pickup range is roughly what we expect for how

far users will be from KATbot when interacting with it. The
omnidirectional aspect of the microphone pickup also helps if
the user decides to move around while interacting with the
robot. The microphone is mounted on the outside of KATbot
and masquerades as a foot on the robot. It was placed on the
outside of the robot so that it could best pick up audio inputs.

2. Speakers

For our speakers we decided to use a set of speakers from a
previous 18-500 group. They have a small form factor and
sound good enough to work for our purposes.

3. Text and Eyes Displays

The display for the text is on the body of the robot. It is 3
inches by 5 inches. The robot has another 3 in. by 5 in. display
for the face. Both displays are connected to the Raspberry Pi
via HDMI.

Fig. 14. Example of “Happy” Face on KATbot’s face display.

Fig. 15. Example of Completed Story on the Text Display. Bolded words are
either user inputs (after grammar correction) or FitBERT inputs

 11
18-500 Final Design Document: 05/06/2020

Fig. 16. Storytelling Generation Model. The template is generated prior to the start of the program. As the story continues, new sentences are generated
continuously, starting from the template and ending with the sentence or sentence phrase for KATbot to say, and the process is only stalled when waiting for user
input. User input is passed in from the speech recognition module, and the sentence output is passed to the TTS module.

H. Story Generation Algorithm

The storytelling algorithm that KATbot uses has three main
components. The first is generating the barebone templates for
the stories. By using templates, we can have more control
over cohesion and a fixed story length since we are building
off of actual short stories. To customize the story, we remove
all the keywords that drive the narrative and fill them in as we
go instead. The next component is the user input, which the
algorithm receives word by word from the speech recognition
module. The last component is word prediction, which builds
off of the user input to complete the sentences and tailor the
story.

1. Template Generation

The templates are based on Aesop’s Fables. We have a
collection of 177 fables that are each about 5-7 sentences
long. The vocabulary is approximately at a preK-3rd grade
level. For the scope of this project, the robot matches this
level by using a similar vocabulary list for filling in the blank
and customizing the story. All template generation was done
manually, and the following protocol makes it easy to add
new templates to the list. Creating the templates has three
main steps:

a. Marking words for user input and FitBERT input. There
should be at most one of each input type for each sentence or

clause. User input blanks should be prompted by some
context, so the user will have some basis in choosing words.
FitBERT input blanks should have some relationship with the
user input, so that the user can feel like they are in charge of
the story while maintaining cohesion.

b. Rewording text, if needed, for more clear word
relationships. This includes changing parts of speech and
matching phrases throughout the story for more cohesion.
This step helps FitBERT make more educated decisions when
filling in the blanks.

c. Restructuring text for more context. For optimal
performance, any algorithm or user input should be near the
end of the sentence so there is more context for choosing a
word. For cases where the key words are concentrated at the
beginning, the sentence structure should be rearranged.

2. FitBERT input

FitBERT is the open-source, fill-in-the-blanks version of
BERT (​Bidirectional Encoder Representations from
Transformers)​. It works by taking in a list of words and a
sentence with a blank and ranking the words in order of best
fit into the sentence. Then, it outputs the full sentence with the
word inserted. For KATbot’s algorithm, the input is the
templated sentence or sentence phrase with any user inputs
already entered (i.e. one blank left). There are two cases of
FitBERT inputs. First, the input is not dependent on user input

 12
18-500 Final Design Document: 05/06/2020

and is random to set the tone of the story (for story variety). In
this case, the list of words is the entire corpus matching that
part of speech, taken from a preK to 3rd grade vocabulary list.
Second, the input is dependent on user input and tries to
promote cohesion. In this case, the list is either the user input
and a select number of synonyms or a list of antonyms, based
on what kind of input the word blank needs.

Original Template

A Nightingale sitting on the top of
an oak, singing her evening song,
was spied by a hungry Hawk, who
swooped down and seized her.
The frightened Nightingale prayed
the Hawk to let her go.

“If you are hungry,” said she,
“why not catch some large bird? I
am not big enough for even a
luncheon.”

“Do you happen to see many large
birds flying about?” said the
Hawk. “You are the only bird I
have seen to-day, and I should be
foolish indeed to let you go for the
sake of larger birds that are not in
sight. A morsel is better than
nothing.”

A Nightingale sitting on the top of an
USER-R , singing her **FB-R**
song, was spied by a Hawk that was
USER-R, who swooped down and
seized her.

“If you are hungry,” said the
Nightingale, “why not catch some
USER-1 bird? I am not
FB-1 enough for even a
luncheon.”

“Do you happen to see many
FB-1 birds **USER-R** about?”
said the Hawk.
“You are the only bird I have seen
today, and if I let you go for the sake of
FB-1 birds that are not in sight, I
would be **USER-R**. A **FB-1A**
bird is better than nothing.”

Fig. 17. Example template from “The Hawk and the Nightingale”. Each input
is either ‘USER’ or ‘FB’ (FitBERT) and the relationships between words are
indicated with numbers or ‘R’ for standalone words. A number followed by
‘A’ indicates antonyms, and just a number indicates a synonym or the same
word.

3. User Input

The start of the sentence is spoken by KATbot, and the
missing input is denoted with a change in voice and its part of
speech. If the user needs more clarification of the part of
speech, there is a command phrase, “Help me”, indicated in
the directions that the user can use for more information.
Once the user says a word, the word is compared to the
desired part of speech. Small grammatical mistakes are
forgiven, such as singular vs. plural or a mistake in verb
conjugation. These mistakes are handled with FitBERT’s
grammar correction tool. If there is no match in part of
speech, KATbot outputs an error statement and gives the user
another chance (up to 3 tries). Once all inputs, user and
FitBERT, have been provided, the full sentence is delivered to
the text to speech module and KATbot finishes saying the
sentence. Upon completion of the story KATbot displays the
story in full, with all user and FitBert words bolded, and asks
the user if they would like it to tell another story or end the
session. The user experience looks like Figure 18.

Fig. 18. User Flow Chart. The boxes represent the dialogue that KATbot says,
and the transitions represent the user responses that drive the state machine.

The start of the sentence is spoken by KATbot, and the

missing input is denoted with a change in voice and its part of
speech. If the user needs more clarification of the part of
speech, there is a command phrase, “Help me”, indicated in
the directions that the user can use for more information.
Once the user says a word, the word is compared to the
desired part of speech. Small grammatical mistakes are
forgiven, such as singular vs. plural or a mistake in verb
conjugation. These mistakes are handled with FitBERT’s
grammar correction tool. If there is no match in part of
speech, KATbot outputs an error statement and gives the user
another chance (up to 3 tries). Once all inputs, user and
FitBERT, have been provided, the full sentence is delivered to
the text to speech module and KATbot finishes saying the
sentence. Upon completion of the story KATbot displays the
story in full, with all user and FitBert words bolded, and asks
the user if they would like it to tell another story or end the
session. The user experience looks like Figure 18.

VI. Validation Plan

A. Component Testing

1. Machine Learning

To test the accuracy of the part of speech error detection,
we took a vocabulary list of 1038 words from a preK to 3rd
grade level. For each word, we got the top two most
commonly used parts of speech from dictionary.com, along
with one false part of speech, if there is one, and sent it to the
detection algorithm to see if it would return correct or

 13
18-500 Final Design Document: 05/06/2020

incorrect as expected. We paired each word with a random
sentence from our templates that had a blank with the same
part of speech because the part of speech tagging system takes
sentence context as input as well. The results indicated a
93.82% accuracy, passing our requirement.

For synonym generation, we originally planned to test the
accuracy level similarly, with a random test dataset of words
from the preK to 3rd grade vocabulary list. We were going to
judge accuracy by cross listing the generated synonyms and
antonyms with those from an online thesaurus. However, as
mentioned in the trade studies section, we changed our design
to fetch the synonyms and antonyms directly from online
thesauruses. This makes this metric obsolete.

2. Speech Recognition Accuracy

KATbot receives single word inputs from the user, so, in
order to test speech recognition we created a test which probes
the user to say a specific word as input, runs our speech
recognition function, and then compares the inputs. Each test
consisted of 100 words from a list of 1000 of the most
common words in English. The list of words contains a mix of
adjectives, nouns, and verbs which is what most of KATbot’s
inputs are.

We had two users test the speech recognition system with
10 trials of 100 words each between both of them. The tests
were performed using the Raspberry Pi and microphone that
KATbot uses. Below are the test results.

Table 2. Results of the speech recognition system test. Each trial was run by
two users each saying 100 words. The second column represents the
percentage of words correctly recognized, and the third column represents the
number of words with homophones that were included in the trial.

Trial Number Percentage Correct Homophones

1 81% 0

2 91% 0

3 89% 6

4 80% 0

5 91% 4

6 91% 4

7 87% 8

8 88% 6

9 88% 8

10 91% 6

Average 87.7% 6

The average accuracy was 87.7 % over 10 trials of 100

words each. For some trials output files were made containing
the speech decoding errors. For these trials the number of

homophones (words that have the same pronunciation but
different spellings) were recorded. An example of this from
our testing includes the prompt word being ‘share’ and the
speech recognizer recognizing ‘Cher.’ The average number of
homophones per test was 6 homophones. Technically, these
words were recognized correctly from their sounds, however
we did not count them towards our average accuracy because
they weren’t what we were expecting.

3. User Interface

Since this product is aimed for children, it is extremely
important to have a clean and engaging user interface. The
user interface includes the robot’s aesthetics, robotic arms, the
displays, and the audio output. All of these factors tie in
together to create a friendly and interactive robot. We
validated this with the user satisfaction survey, which is
described below.

B. System Testing

1. System Latency

We tested our system’s latency by recording five separate
storytelling sessions from start to finish which included user
errors, timeouts, and unknown words. We then used Audacity,
an audio processing software, to measure exact latencies by
looking at the audio waveforms. We measured latency in this
way because while it was possible to measure latencies within
functions that we wrote, it was hard to measure latencies
incurred by functions from python packages that we were
using.

There were two latency measurements that were of interest
to us. The first latency measurement was to measure user
latency, or the time between when the user stopped speaking
to when the next line of dialogue was spoken. This latency
includes the time needed for speech recognition,
communication, and text to speech pre-processing. The
second latency measurement we made was non-user latency,
which was measured from when a line of dialogue was spoken
to when the next line of dialogue was spoken. This latency
measures the latency of the communications system between
the laptop and pi as well as pre-processing for text to speech.
We decided to measure both latencies because we noticed
that, depending on whether the system took a user input or
not, latency times fluctuated.

We measured latency across five separate trials. Below is an
example of the measurements from one trial.

We found that user latency was often much higher than

non-user latency, and measured them separately.
Below are some of our findings about user and non-user
latency.

 14
18-500 Final Design Document: 05/06/2020

Table 3. Measured latencies from one trial. “user” indicates that user input
was required, and the latency is the time between the user finishes speaking
and KATbot starts speaking.”non” indicates that no user input was required,
and the latency is the time between KATbot says two consecutive sentences.

Type of Sentence Latency (sec)

user 5.326

user 4.422

non 2.283

user 4.803

non 2.045

… 12 more trials ...

Average User Latency: 4.811625

Average Non User Latency: 2.425375

Average Latency 3.549705882

Table 4. Statistics after five trials of measuring latencies between sentences.

Type Min (sec) Max (sec) Average (sec)

User 1.981 7.582 2.5795

Non User 3.658 9.273 4.840

All Latencies 1.981 9.273 3.849

From this we can see that the average user and non-user

latencies are both within the 4-6 second range that we wanted.
In addition, an average overall latency measurement shows
that we have a total average latency of 3.849 seconds which is
within our goal range. From this we can also see that user
latency was much higher than non-user latency, which
indicates that speech recognition took a non-negligible portion
of time. Finally, while the average latencies were within our
goals, max user and non-user latencies were 7.58 and 9.27
seconds respectively. So, KATbot on average performs within
our latency goal, however, individual interactions may take
longer than our latency goal.

3. Story Cohesion

Story cohesion was tested through user surveys. We
gathered three types of stories: the original stories,
user-generated stories, and random stories. The user-generated
stories were created by friends and family members (due to
limited accessibility), where each user created 2-3 stories. The
random stories were created by filling in each of the user and
FitBert blanks in the templates with random inputs from a
preK to 3rd grade vocabulary level, still matching the
appropriate parts of speech. The stories were then given to
different family members to score in a blind study. There are

five variables related to narrative cohesion that we will look
for during this evaluation: logical sense, themes, genre,
narrator, and style [18]. Each story was graded on a scale of
0-10 for each of the five variables, for a total score out of 50.
The goal was to achieve a story cohesion score for the user
generated stories between that of the random input stories and
the original stories.

Table 5. Story Cohesion Scores based on User Surveys. Each variable was
scored out of 10, and the total score is out of 50.

Variable Random
Input
Stories

User
Generated
Stories

Original
Stories

Logical Sense 1.6 4.0 8.4

Theme 5.0 6.13 8.4

Genre 5.4 6.0 8.4

Narrator 5.2 6.47 8.4

Style 5.0 6.4 8.4

Total 22.2 29.0 42.0

As shown above, the story cohesion passed our goal, scoring
consistently higher than the random input stories for each
variable and in total.

4. User Satisfaction

An important part of our project is user satisfaction. Our
project was inspired by an MIT robotics group’s interactive
storytelling robot so we wanted to be able to match their
metrics. They evaluated their robot on several different
characteristics. This included 87.5% of users liking the
stories, 100% wanting to play again, 87.5% believing that the
robot was friendly, 87.5% believing the robot’s stories were
interesting, and 100% of the users rating the robot’s stories as
understandable. We tested user satisfaction with 3 users who
were quarantined with the team member who had built the
robot. They rated the five criterias on a scale of 1-7 where 1
represented Strongly Disagree and 7 represented Strongly
Agree. Although we did not meet all of the criterias, we were
within 15% of each metric. The results can be seen on Table
6.

5. Reliability.

Based on research of children’s attention spans, we would

like the product to be able to be played with for 30-45 minutes
without any reboot, loss of connection, or loss of power
issues.

 15
18-500 Final Design Document: 05/06/2020

To test this, we played with the robot for 30-45 minutes at a
time over 3 trials. In each trial, the robot had no issues with
reboot, loss of connection, or loss of power. The results can be
seen on Table 7.

Table 6. User Satisfaction Scores based on User Surveys. Each variable was
ranked on a scale of 1-7 where 1 represented Strongly Disagree and 7
represented Strongly Agree.

Variable MIT robot KATbot

Liked the stories 87.5% 90.5%

Wanted to play
again

100% 90.5%

Robot was friendly 87.5% 76.2%

Stories were
interesting

87.5% 90.5%

Stories were
understandable

100% 85.7%

Table 7. Reliability Testing Results. The robot was tested for 3 aspects of
reliability over 3 trials with a user playing with the robot. For all 3 trials, the
robot passed all 3 aspects of reliability measured.

Variable Trial 1 Trial 2 Trial 3

Did the robot
reboot?

No No No

Did the robot lose
connection with the
laptop?

No No No

Did the robot lose
power?

No No No

VI. FUTURE WORK

A. Professional Feedback
We talked with Dr. Henny Admoni, a professor and

researcher in Human-Robot Interaction at Carnegie Mellon
University. We described our project, gave her a live demo,
and received feedback on the viability and usability of this
product.

She mentioned that it is important to consider the large gap
in knowledge and learning between children at age 5 and at
age 8 (the range that we are targeting). For example, it might
not be beneficial to teach parts of speech to children at age 5,
while parts of speech is probably very important to teach

children at age 8. She thought that it would be useful to toggle
different features, such as teach parts of speech, so that
teachers and parents can customize the robot for the age of the
children.

Dr. Admoni also said that she has seen that children tend to
touch their toys a lot so it is important to ensure that
everything is durable and that the inner electronics can not be
accessed easily.

The robot also repeats the last sentence after receiving an
user input to aid in story cohesion. Dr. Admoni thought that it
might be more efficient to repeat the last verb or noun phrase
instead of the entire sentence.

Finally, Dr. Admoni said that speech recognition can be
hard with children, and it might be more practical to replace
or supplement spoken user input with pictures instead.

B. User Feedback
We also asked the users who participated in our User

Satisfaction survey for feedback. They mentioned that it
would be beneficial to give a visual indicator of when the
robot was looking for user input, such as a red “recording”
circle on the display, to give the user a more intuitive
understanding of when to speak. In addition, they mentioned
that the robot’s voice should be slowed down a little so that
they didn’t rely as heavily on the text display to understand
the story.

C. Future Work
The feedback that we received from users and from a

professional was crucial in helping to understand how to
improve our product, especially to a state where we could
deploy it.

Future iterations of this product would involve constructing
a robot frame made with more durable materials such as
laser-cut acrylic and 3d-printed filament. It would also
involve a customizable story generation format that could be
adapted for children at different ages and/or different learning
levels. We would also include visual indicators and pictures
on the display to give the users a more friendly and intuitive
experience.

VI. PROJECT MANAGEMENT

A. Schedule
Figure 19 below is the Gantt chart of our project. It includes

a schedule with the division of tasks per person, pair, and over
the whole team for the whole semester.

 16
18-500 Final Design Document: 05/06/2020

B. Team Member Responsibilities
Ashika was in charge of story creation and constructed all

the story generation algorithms. Jade was responsible for the
speech processing aspect and handled both collecting audio
input and the text-to-speech capabilities. Abha built the
physical robot, including integrating the peripherals and
working on the robot arms.

Jade and Ashika worked on integrating the speech
processing and story creation modules together, Abha and
Ashika worked on displaying the sentences with the robot’s
display, and Jade and Abha worked on text to speech with the
speakers in the robot. Everyone worked on getting the socket
code to work with the Raspberry Pi in the robot. Everyone
worked on testing their individual components as they went,
and everyone worked together to test and evaluate the whole
system.

C. Budget
Figure 20 below is the bill of materials for KATbot.

Overall, our spending consists mostly of buying peripherals
for the robot itself as well as raw materials to design the robot.
With the transition to remote instructure, we also ordered
duplicates of some parts due to team members being in
different locations.

VII. RELATED WORK

A. MIT Storytelling Robot
KATbot’s initial inspiration came from the MIT storytelling

robot, but its key features and system architecture are quite
different. The MIT robot has two modes: storytelling and
listening, and KATbot is based on the storytelling mode. The
MIT robot creates stories based on the images that a child can
move around on a tablet. This is a fairly limited user
experience and involves image processing rather than speech
processing. KATbot’s user experience begins with a little
more structure because it starts with story templates, but the
user is not restricted to any limited word set as input.

The MIT robot has a face display and a toy-like outer
appearance. It makes small movements, primarily with its
head, to mimic natural movement. KATbot’s exterior is
similar, with moving arms and an eye display to add gestures
and emotions to the storytelling feature. However, KATbot
also has a display to display the sentences as it speaks. This
difference is important because KATbot does not rely on a
tablet or external technology for the user to read from. This
leads to the big advantage that KATbot aims to be a single
unit product, with no additional technology required to
interact with it.

B. AI Dungeon 2
While storytelling robots are becoming increasingly popular

in the AI world, there are few programs out there that have
achieved interactive storytelling. The most notable is an AI
driven video game that generates narratives based on user
input. Similar to a choose-your-own-adventure story, ​AI
Dungeon 2 (​https://play.aidungeon.io/​) starts with a user
selected setting and character, and then tells the story a few
sentences at a time. The user is expected to respond to the
question “What will you do?” after each generated output.
The story is tailored to this input and changes direction based
on what the user chooses to do. Here is an example interaction
with the game:

Input:​ look for water
Output: You search through the cupboards until you find a
bottle of water. You drink half of it and immediately feel
thirsty again.

According to documentation, this program was created by
training a machine learning model on a collection of
choose-your-own-adventure stories [13]. It performs well with
grammatical accuracy, with only a few observed semantic
mistakes with pronouns. However, it takes in entire sentences
from the user, not words like KATbot, and while it does
respond to the user input, the advantage of being a video game
allows it to only factor in the last few inputs, not the entire
narrative. Additionally, the game does not always carry the
story; this task falls on the user, and a lot of the generated
outputs end without much prompt for the user to go on. While
this suits the goal of a game, this is quite different from the
goals of KATbot, which has a lot more control over the story
because it aims to create full stories with a beginning, middle,
and end. Overall, ​AI Dungeon 2 is a great model for
processing and responding to the semantic meanings of user
input, but the end goals differ drastically from KATbot.

VIII.​ ​SUMMARY
KATbot exceeded our performance expectations, especially

given the circumstances. On the storytelling side, we could
improve the part of speech detection even further with more
research into taggers or other tools. We could also parallelize
the system further to avoid long latencies while the story is
updating. On the audio side, we could implement a robust
speech recognition system that recognizes when the user stops
talking and immediately starts on recognition instead of
recording them for a duration and then performing speech
recognition. We could also add the option for the user to
respond with short phrases instead of single words. For the
robot itself, if we had access to resources on campus, we
could construct the 3D printed, acrylic robot shell we had
initially planned to make. We would also be able to play
around with the face display and implement sentiment
analysis to integrate the emotions and arm movements with
the story.

https://play.aidungeon.io/

 17
18-500 Final Design Document: 05/06/2020

As we built KATbot, we learned a few key lessons along
the way. First, prototyping is always a good idea. Creating
small prototypes of the parts we were working on allowed us
to flesh out design details and confirm how pieces of the
design interfaced. Second, when writing software, good
documentation helps your teammates set up the right
environments and understand how to run your code. When we
were integrating remotely, we spent a lot of time talking
through installation or system configuration issues that could
have been avoided by keeping a running document of what
packages to install and what flags to change from the
beginning. Third, having modularity within components of the
project was really helpful in terms of parallelizing work.
Because the three of us were working on independent
components we were able to parallelize a lot of work. While
this may be unique to this semester, dividing the work once
we went to remote instruction was much easier with mostly
independent components. Integration over video calling can
be quite restricting and slow, so it was advantageous that we
could work on our individual tasks independently.

 18
18-500 Final Design Document: 05/06/2020

IX. References

[1] Westlund, J. K. (n.d.). Storytelling Companion.
Retrieved from
http://robotic.media.mit.edu/portfolio/storytelling-co
mpanion/

[2] Fish, M. and Pinkerman, B. 2003. Language skills in
lowSES rural Appalachian children: Normative
development and individual differences, infancy to
preschool. J. Appl. Dev. Psychol., 235, 539-565.

[3] Duranti, A. and Goodwin, C. 1992. Rethinking
context: Language as an interactive phenomenon.
Cambridge University Press.

[4] Kory, J., & Breazeal, C. (2014). Storytelling with
Robots: Learning Companions for Preschool
Children’s Language Development. In P. A. Vargas
& R. Aylett (Eds.),

[5] Jiang, C., Wang, Z., & Yu, J. (2015). An Expressive
Eye Model: Using Eye Movement to Show Ocular
Emotional Expression. ​IFAC-PapersOnLine​, ​48​(28),
1456–1461. doi: 10.1016/j.ifacol.2015.12.338

[6] Ruder, S. (n.d.). Part-of-speech tagging. Retrieved
from
http://nlpprogress.com/english/part-of-speech_taggin
g.html

[7] Hagiwara, M. 2008. A supervised learning approach
to automatic synonym identification based on
distributional features. In ​Proceedings of the 46th
Annual Meeting of the Association for
Computational Linguistics: Human Language
Technologies​, pp. 1–6, Columbus, Ohio, USA.

[8] Këpuska, V., & Bohouta, G. (2017). Comparing
Speech Recognition Systems (Microsoft API, Google
API And CMU Sphinx). ​International Journal of
Engineering Research and Applications​, ​07​(03),
20–24. doi: 10.9790/9622-0703022024

[9] Kennedy, J., Lemaignan, S., Montassier, C.,
Lavalade, P., Irfan, B., Papadopoulos, F., Belpaeme,
T. (2017). Child Speech Recognition in
Human-Robot Interaction. ​Proceedings of the 2017
ACM/IEEE International Conference on
Human-Robot Interaction - HRI 17​. doi:
10.1145/2909824.3020229

[10] Yeung, G., & Alwan, A. (2018). On the Difficulties
of Automatic Speech Recognition for
Kindergarten-Aged Children. ​Interspeech 2018​. doi:
10.21437/interspeech.2018-2297

[11] Children and Age-Appropriate Attention Spans.
(2016, September 22). Retrieved from
https://www.speechtherapycentres.com/children-and-
age-appropriate-attention-spans/

[12] Bull, M., & Aylett, M. (1998). An analysis of the
timing of turn-taking in a corpus of goal-oriented
dialogue. In ​Proceedings of the fifth international
conference on spoken language processing​ (​ICSLP
‘98​), Sydney, Australia, (Vol. 4, pp. 1175–1178).

[13] Jeffrey, C. (2019, December 6). AI driven text
adventure game give players true non-linear
gameplay. Retrieved from
https://www.techspot.com/news/83072-ai-driven-text
-adventure-game-give-players-true.html

[14] McCoy, N. (2016, October 27). Evaluating NLTK
Taggers Tutorial. Retrieved from
https://natemccoy.github.io/2016/10/27/evaluatingnlt
ktaggerstutorial.html

[15] Comparison of Python NLP libraries:
ActiveWizards: data science and engineering lab.
(n.d.). Retrieved from
https://activewizards.com/blog/comparison-of-pytho
n-nlp-libraries/

[16] Shmyrev, N. (n.d.). Building an application with
PocketSphinx. Retrieved from
https://cmusphinx.github.io/wiki/tutorialpocketsphin
x/

[17] Moulines, E., & Charpentier, F. (1990).
Pitch-synchronous waveform processing techniques
for text-to-speech synthesis using diphones. ​Speech
Communication​, ​9​(5-6), 453–467. doi:
10.1016/0167-6393(90)90021-z

[18] Hargood, Charlie, Millard, David and Weal, Mark
(2011) Measuring Narrative Cohesion: A Five
Variables Approach. Narrative and Hypertext
Workshop at Hypertext 11.

[19] Categorizing and Tagging Words. (n.d.). Retrieved
from http://www.nltk.org/book/ch05.html

[20] Reprinted from Digital Processing of Speech Signals
pp. 336, by Rabiner and Schafer, 1978, retrieved
from http://course.ece.cmu.edu/~ece792/ Copyright
1979 by Pearson

[21] Reprinted from Digital Processing of Speech Signals
pp. 335, by Rabiner and Schafer, 1978, retrieved
from http://course.ece.cmu.edu/~ece792/ Copyright
1979 by Pearson

[22] Reprinted from Digital Processing of Speech Signals
pp. 337, by Rabiner and Schafer, 1978, retrieved
from http://course.ece.cmu.edu/~ece792/ Copyright
1979 by Pearson

http://robotic.media.mit.edu/portfolio/storytelling-companion/
http://robotic.media.mit.edu/portfolio/storytelling-companion/
http://nlpprogress.com/english/part-of-speech_tagging.html
http://nlpprogress.com/english/part-of-speech_tagging.html
https://natemccoy.github.io/2016/10/27/evaluatingnltktaggerstutorial.html
https://natemccoy.github.io/2016/10/27/evaluatingnltktaggerstutorial.html
https://activewizards.com/blog/comparison-of-python-nlp-libraries/
https://activewizards.com/blog/comparison-of-python-nlp-libraries/
https://cmusphinx.github.io/wiki/tutorialpocketsphinx/
https://cmusphinx.github.io/wiki/tutorialpocketsphinx/

 19
18-500 Final Design Document: 05/06/2020

Fig. 19. Gantt Chart

 20
18-500 Final Design Document: 05/06/2020

Fig. 20. Bill of Materials

