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Abstract -- KATbot is a MadLib style storytelling robot         
that interacts with children to aid in language and reading          
comprehension. It is inspired by a storytelling companion        
robot created by the MIT ​Personal Robot Group [1]. This          
robot had children create stories for the robot to tell by           
manipulating images on a tablet. In contrast, KATbot        
takes in words through speech input to personalize short         
stories, similar to a MadLib, or fill in the blank story, and            
includes a display that allows the user to read along with           
the story. The major components of KATbot are a         
Raspberry Pi 4 that connects to the displays, a         
microphone, a speaker, and one degree of freedom (DoF)         
robot arms. The Raspberry Pi communicates with a        
laptop running the story generation algorithm. KATbot       
integrates signal processing, machine learning, and      
robotics to provide an educational and engaging user        
experience for elementary school age children. This paper        
will explain in detail the requirements, system design and         
components, validation plan, and project schedule. 
 
Index Terms​ -- Machine Learning, Robot, Speech 
Processing, Story Generation, Storytelling, Synonym 
Generation, Text to Speech 

I. INTRODUCTION 

ESEARCH shows that early language development      
directly relates to performance in later education [2]. It         

is crucial to help children improve their language skills at a           
young age. Since language is an essential component of social          
and interactive context, assisting children in language       
development and comprehension would help them become an        
active part of society [3]. ​Robot companions would be         
instrumental in this area because they integrate the benefits of          
technology, such as accessibility and adaptive, easy-to-update       
software, with the benefits of social agents, such as         
communication skills and understanding social cues [4].  

For these reasons, we created a robotic learning companion         
to help children with language and reading development. It is          
not only important that our robot is a useful language learning           
toy, but equally important that it has a friendly, clean, and           
engaging user interface for the children to interact with.  

KATbot is a standalone interactive robot with the following         
qualities. It tells customized stories by asking the user to fill in            
parts of the story as it goes. It responds to user input within 4 -               
6 seconds, and has at least 85% word recognition accuracy, at           
least 90% part of speech accuracy, at least 85% synonym          
generation accuracy, cohesive stories, and relatively good user        
satisfaction. Testing with children was outside of the scope of          

what we could accomplish this semester, therefore KATbot        
was tested by adult users.  

II. DESIGN REQUIREMENTS 

Some of our requirements, especially within hardware, were        
adapted to address the constraints placed on us due to the           
COVID-19 pandemic situation. They will be addressed on an         
individual basis in the following sections.  

A. Hardware Requirements 
The hardware aspect of KATbot consists of a custom-made         

robot, embedded processors that communicate with      
peripherals, and a laptop running a story generation algorithm.         
The peripherals in KATbot consist of a microphone, speaker,         
and displays as well as motor drivers and motors.  

We chose to create a custom-made robot instead of using an           
off-the-shelf product because it would not only let us create a           
friendly looking robot suitable for children, but also let us          
design a product that could hold the electronics needed for          
this project.  

To build KATbot, we needed a processor with enough         
processing power to handle the speech processing, text to         
speech, and user-facing display algorithms. Since our product        
is meant to be standalone, this processor needed to be on a            
small form factor to reduce the space it would take up inside            
the robot. The processor needed to have many interfaces, such          
as HDMI, USBs, GPIOs, etc) to connect to the many          
peripherals we have for the product. Finally, the processor         
needed to be low cost so that the product’s bill of materials            
stays within the $600 constraint.  

KATbot has two robot arms, each of which are one degree           
of freedom. The arms move to help show emotion while the           
robot tells the story and interacts with the user. Although the           
arms were originally going to be made of acrylic and PLA           
filament, due to a lack of access to a laser-cutter and           
3D-printer with the COVID-19 pandemic, the arms were        
constructed from cardboard. Based on the weight of        
cardboard, the motors for the arms needed to have a minimum           
torque of 1.18 kg/cm. The calculations are below.  

Assume that the arm dimensions are The      in x 2in x 2in.6   
acrylic frame covers a surface area of Cardboard       6 in .5 2  
has a height of Therefore, the volume is    .125in.0      

The density of cardboard is in  114 cm . 7 3 =  3      
Therefore, the mass is.69 g/cm .0 3     

Torque is F*r, where F14cm 0.69g/cm 78.66g.1 3 *  =       
 and r = 6in = 15.24cm.0.078kg=    

Therefore, Torque  1.18 kg/cm. =   
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Fig. 1. Torque Calculations for the robot arms 
 

KATbot also has displays on its body. It has a display on            
the torso of the robot that shows the current sentence that the            
robot is speaking. This is to aid the user with reading           
comprehension. It also has a face display for KATbot’s face,          
so that it can show emotions. Eye movements and gestures are           
incredibly important when expressing emotion [5]. We chose        
to use a display for the face so that we could dynamically            
change the emotions that the eyes and mouth express to match           
the emotions of the story.  

B. Software Requirements 
The story generating component of KATbot has four main         

components. First, it needs to preprocess story templates prior         
to use for lower latency and to prepare for user input. Next, it             
should process the user input word by word, check for correct           
word semantics in the context of the story, and update the           
story as it goes. On the user interaction side, KATbot needs to            
be able to communicate effectively what type of word (part of           
speech or entity) it requires for each blank the user needs to            
fill in. On the algorithm side, it needs the ability to continue            
the story with any grammatically correct user input (i.e. the          
user should not be able to ‘break’ the algorithm with an           
unexpected input). To do this, the algorithm uses two features:          
synonym generation to fill in the story cohesively and part of           
speech detection to enforce correct syntax. For part of speech          
detection, we were aiming for a 90% accuracy level, which is           
around the minimum of popular natural language models [6].         
For synonyms, we wanted at least an 85% similarity rate for           
generated synonyms and antonyms, based on a paper on         
supervised learning synonym identification models, which      
evaluates a number of different synonym detection and recall         
algorithms [7]. Another major requirement is to keep the         
language and word choice at a child friendly level, to match           
the educational level of our target audience.  

In addition, the storytelling feature of KATbot has two         
comprehensive requirements: cohesion and enjoyment.     
Cohesion refers to how well the story flows and each sentence           
is related to the previous ones. Enjoyment refers to user          
satisfaction and how likely users are to continue interacting         
with KATbot. More information on the evaluation of these         
requirements can be found in the validation plan. 

Another major component of KATbot is the user interface.         
KATbot is meant to help early elementary school aged         
children who are working on their reading skills. This means          
that they cannot reliably interact with a completely text based          
system. We decided that in order to combat this problem, all           
users will interact with KATbot through speech.  

In speech recognition, word error rate (WER) is a common          
measure of system error. Having a low WER is an indicator           
that a system is performing well. In 2017, it was found that            

Sphinx4, a commonly used open-source speech recognition       
package, had a 37% WER, while Microsoft’s and Google’s         
speech recognition APIs had a WER of 18% and 9%          
respectively [8]. With KATbot, we aimed to have a WER of           
15% which is the average of the non open-source speech          
recognition APIs referenced.  

We would like to acknowledge that automatic speech        
recognition systems have been shown to perform poorly with         
speech from young users [10]. In one human robot interaction          
study, the best speech recognition system under the best         
conditions could only achieve a 38% recognition rate on         
children’s speech [9]. Because of poor recognition accuracy        
on children’s speech, our WER metric was applied only for          
adult users.  

Testing our system with children was outside of the scope          
of this project because we did not have the proper paperwork           
or resources to test KATbot with children. Because speech         
recognition for children is an ongoing challenge for the field,          
we designed KATbot to perform well with adult users.  

C. Over​all Requirements 
Overall we aim for KATbot to be a standalone children’s          

toy with a friendly and engaging user experience. Because         
KATbot is meant to be a toy, we intended for it to be played              
with wherever a child wants to. Due to this, originally          
KATbot would have needed to have batteries for power. We          
found that children at the age of 5 can play with something            
that interests them for around 15 minutes and can interact with           
other children for around 10 - 25 minutes [11]. Because          
KATbot is an inherently interactive system, we estimate        
children will want to play with it for up to 25 minutes. Thus,             
we originally required that KATbot should be able to run for           
30 - 45 minutes off its own power system. However, due to            
the transition to remote instruction, we removed the power         
requirement and replaced it with a reliability metric. We         
would like the product to be able to be played with for 30-45             
minutes without any reboot, loss of connection, or loss of          
power issues.  

In order for KATbot to be a standalone toy, it needs to            
house all of the electronics for the product. These electronics          
include a processor that controls the peripherals, a        
microphone, a speaker, motors, and a motor shield for the          
robot arms, and displays.  

Another important part of our system design is latency         
between user input and dialogue feedback. We have found         
that the average response time per person for task oriented          
dialogue between humans is around 4 - 6 seconds [12]. ​Thus,           
we aimed for having a total system latency of at most 4 - 6              
seconds, which accounts for the time between when the user          
has finished uttering their response to the system and when          
the system says its next line of dialogue.  
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Fig. 2. Overall System Diagram. The storytelling algorithm is run on the laptop while audio input/output, the displays, and the arms are located and run in the                           
robot itself. The laptop and Raspberry Pi communicate wirelessly via sockets. All the tools, packages, and hardware components that we incorporated are                      
highlighted in orange.  

III. ARCHITECTURE AND  PRINCIPLE OF 
OPERATION 

To meet these requirements, we built a standalone (all         
electronics are housed within the robot) custom-made robot.        
The robot houses a main processor that communicates with         
the peripherals and handles the speech processing, text to         
speech, and user-facing display algorithms.  

The custom-made robot houses the processor and       
peripherals. The robot’s body and head dimensions were        
carefully chosen to be big enough to fit all the electronics           
within it. The robot has two one-degree-of-freedom arms. We         
used motors with a small form factor, so that they could fit            
within the robot, and that met the torque requirement of 1.18           
kg/cm.  

We used a microphone with an omnidirectional pickup        
pattern and a pickup distance which can cover up to 5ft           
around the robot itself. The pickup pattern and distance were          
chosen so that the user can move around while interacting          
with the robot. We used speakers with a small form factor so            
that they could fit in the base of the robot.  

The processor inside the robot communicates to a laptop         
that contains the story generation algorithm. Even though the         
end goal of this product was to be a standalone toy, given the             
time constraints of a semester project, we did not have enough           
time to not only have a completed story generation algorithm          
that meets our requirements, but also to have it run on an            
embedded processor. Therefore, we decided to run this        
algorithm on a laptop as part of the scope of this project.  
 

The storytelling algorithm starts with templates that are        
manually configured based on a loose set of constraints that          
ensure context and clear word relations. KATbot prompts the         
user for the word of the specified part of speech for the blank,             
and the user input goes through error detection to ensure it is            
the right part of speech. To make the system a little more            
forgiving, particularly for children with limited grammar       
knowledge, small grammar mistakes are corrected (e.g.       
singular vs. plural). On the algorithm side, any related words          
are filled in using generated synonyms and antonyms of the          
user input in conjunction with a machine learning based         
best-fit heuristic. This amplifies how much the user can         
customize the story, which adds both variety to the stories as           
well as a better user experience.  

IV. DESIGN TRADE STUDIES 

A. Machine Learning Components 

1. Part of speech tagging 

We chose to use the NLTK speech processing package for          
part of speech tagging because it meets our metric of 90%           
accuracy. The default tagger in this package is the perceptron          
tagger, which was reported to have a 96.5% accuracy [14].          
Another popular natural language model is SpaCy, which is         
more object-oriented than NLTK. While this is better for         
semantic meaning, NLTK conducts sentence tokenization      
much more quickly and has more tools and integrative         
capabilities than SpaCy [15]. Since the part of speech is the           
only feature we need for this portion, and NLTK is well suited            
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for other components, too, the advantages of using NLTK         
outweigh the advantages of SpaCy. 

 
Table 1. Accuracy and Latency Measurements for Different NLTK Part of           
Speech Taggers.  
 

Tagger Accuracy Latency 

Perceptron 90.38% 0.000740 s 

Bigram 74.60% 0.000741 s 

Combined 93.82% 0.000740 s 

 
The NLTK perceptron tagger yielded a 90.38% accuracy        

(see the validation plan for more information on how we          
tested accuracy). This met our requirement, but just barely. To          
boost this number, KATbot combines it with the NLTK         
bigram tagger. The perceptron tagger assigns part of speech         
based on a pre-trained machine learning model of word         
clusters, while the bigram tagger looks up the correct part of           
speech in a lookup table of the most frequently used word           
pairings, defaulting to the perceptron tagger if it cannot find          
anything [19]. The bigram tagger on its own only has a 74.6%            
accuracy, but when combined with the perceptron tagger, the         
whole system has an accuracy of 93.82%. This means that if           
the user input has the right part of speech when tagged with            
either tagger, it passes the error detection. The system latency          
for all three taggers (perceptron, bigram, and both), is about          
0.00074 seconds, so there is no apparent disadvantage to         
using both.  

2. Synonym/Antonym generation 

For this aspect of word generation, we initially chose to          
continue with the NLTK package because it already has a          
large database for its synonym detection and recall        
capabilities. One alternative is word2vec, but this tool does         
not come with its own corpus for training, and it is focused            
only on word similarity.  

To measure the accuracy of the synonym generation        
algorithm, we checked whether the generated words are listed         
on thesaurus.com. It is difficult to quantify whether the         
generated synonyms are the optimal synonyms, but this        
allowed us to at least see if they are commonly linked to the             
original word. When tested this way by generating synonyms         
and antonyms for a random set of 10 adjectives, the NLTK           
tool only had a 64.072% accuracy, but a relatively short          
latency of 0.07274 seconds. The tool also did not always          
return any synonyms for simple words, like “huge”, which         
affected the overall storytelling performance greatly.  

We then looked at fetching the synonyms and antonyms         
directly from thesaurus.com. This guaranteed that all the        
words returned were accurate and that the system always         
returns something. The latency is a little bit longer, at 0.38575           

seconds, but not enough to be noticeable. Upon observation,         
however, a lot of the generated words are at a much higher            
vocabulary level than the rest of the stories; for example, one           
resulting synonym of “huge” is “leviathan”. To combat this         
problem, we switched to using kids.wordsmyth.net, a kids        
dictionary and thesaurus. These words suit the story much         
better, and when this thesaurus cannot return any words, our          
algorithm resorts to thesaurus.com. Using both these       
thesauruses slows down the synonym generating system quite        
a bit, at 1.82123 seconds, but KATbot still meets its latency           
requirement and the performance benefits are significant       
enough to justify using this option. 

 
3. FitBERT 

We chose to use FitBERT to help fill in the templates given            
user input, because it is an open-source, pretrained model.         
According to documentation, BERT, FitBERT’s parent      
package, has had success with actual MadLibs, and its         
easy-to-use python tools work well when incorporated with        
the other modules of the story generation algorithm. Also, its          
grammar correction capabilities make it particularly useful,       
and it has a low latency, which is important for real time            
performance.  

B. Speech Recognition  
The evaluation metrics we used to evaluate speech        

recognition were as follows: ability for the package to be used           
on an embedded device, whether the package required       
connection to the internet, ease of installation and usage, and          
accuracy.  

We evaluated several different packages including      
PocketSphinx, Julius and SpeechRecognition. Below is an       
evaluation of each package.  

PocketSphinx is an API meant for speech recognition from         
CMU. Some of the benefits that PocketSphinx provides are         
that it can run on an embedded device and does not require            
internet connection. It is also stable, has been designed to          
have a small code footprint and attempts to reduce memory          
consumption [16]. Some of the downsides to PocketSphinx        
are that it requires a base library to get it running, it can be              
hard to install, and it does not have the best recognition           
accuracy of the packages we considered.  

Julius is another open source API that we considered. Its          
benefits are that it is a real time system that has a low memory              
requirement ( < 64 MB). However, we did not find much           
documentation for it in regards to running it on an embedded           
system.  

The last package we considered was a python package         
called SpeechRecognition. SpeechRecognition supports    
several different speech recognition engines including CMU       
Sphinx, Google Speech Recognition, Google Cloud Speech       
API, Microsoft Bing Voice Recognition, IBM Speech to Text         
and others. It is also easily installable and can be installed on            
an embedded device.  
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We decided to go with the python SpeechRecognition        
package for the following reasons. The first and most         
important was configurability. SpeechRecognition allows the      
user to choose a recognition engine which adds flexibility.         
Specifically, we used the Google Speech Recognition engine.        
This engine requires a connection to the internet, but performs          
speech recognition better than other packages, and well        
enough to meet our metrics. In fact, the Google Speech API           
has been shown to be the best system for speech recognition           
in a study investigating speech recognition in human robot         
interaction for children [8].  

C. Text to Speech 
We evaluated several different text to speech packages for         

KATbot. These included Festival, Flite, eSpeak, say, spd-say,        
google_speech, gTTS (google text to speech), and AWS        
Polly. The evaluation metrics for the text to speech modules          
were that they had to be able to process the input words,            
generate speech quickly, and that the generated voice was         
clear and understandable.  

Of the packages evaluated, Festival, Flite, eSpeak, say, and         
spd-say were eliminated because they all had voices that were          
either robotic or unnatural.  

Google_speech, gTTS, and AWS Polly all offered good        
voices for the user to interact with. However, AWS Polly          
requires AWS credits which we wanted to avoid so that the           
users of KATbot would not have to pay for anything.  

We chose gTTS from the remaining two packages as it was           
updated more frequently than google_speech. gTTS provides       
a female voice, with good pronunciation and minimal latency         
in processing; however, it also requires internet connection.  

D. Pitch Shifting Algorithm 
We perform pitch shifting on the speech output of gTTS to           

make KATbot’s voice more appealing to the user. Pitch         
shifting refers to the process by which the pitch of the audio            
input is increased without changing the duration of the audio          
input. There are three main approaches that we considered.         
The first two involved writing our own pitch shifting software          
based on existing algorithms, and the last one involved using          
a python package to perform pitch shifting. 

The first algorithm for pitch shifting we considered was         
Pitch Synchronous Overlap Add (PSOLA). It relies on        
looking at the input speech signal and identifying periodic         
amplitude peaks within the waveform. These periodic       
amplitude peaks correspond to pitch marks within the signal.         
Suppose the pitch period at a certain point in the signal is            .tm
Then, samples are taken from around each pitch period by          
multiplying the samples with a Hanning window ( of a       [n])hm    
length that will allow it to overlap between 50 - 75% with the             
next windowed pitch period. For the mth windowed portion of          
the input signal, . To shift the   [n] h [t  n] [n]xm =  m m −  * x     
pitch of the input signal, a new set of pitch periods are            
generated such that they are either spaced closer together or          

farther apart. Then, the original frames are placed at the new           
pitch period, such that the output signal has pitch period  ,tq          
frames spaced at the new pitch [n] x [n t  t ]ym =  m +  m −  q       
period [17]. ​This algorithm requires careful analysis of the         
time domain signal to find pitch marks and pitch periods.  

The second algorithm for pitch shifting we considered was         
phase vocoding. Phase vocoding relies on taking the short         
time fourier transform (STFT) of the original signal, .        [n, ]X k  
The STFT provides a method by which the frequency content          
at discrete frequencies of a signal can be evaluated at periodic           
time intervals. It differs from the discrete time fourier         
transform (DTFT) which provides the frequency content of        
the entire signal. The STFT is calculated by multiplying the          
input audio signal by periodic windows to generate frames,         
then calculating the DTFT of each frame. Once we have the           
STFT representation of the signal we can calculate both the          
magnitude and phase of each frame for each frequency. From          
the magnitude and phase information of each frame, we can          
calculate the instantaneous phase, or the derivative of the         
phase for each frame. To perform pitch shifting we increase          
the instantaneous phase at each frame for each frequency.         
Reconstruction is performed by summing up sinusoids at each         
frequency with the magnitude and altered instantaneous phase        
at each frame. Below is a block diagram of the system as well             
as relevant equations.  

 
 

 
Fig. 3. Complete single channel of a phase vocoder analyzer. The input comes             
in and is multiplied by a sine and cosine of frequency and convolved with            ⍵k    
a window to get the “real” and “imaginary response” and of the         (⍵ )  an k  (⍵ )  bn k   
input at time window  and frequency [20] n  ⍵k  
 
X (e )| (⍵ ) (⍵ ) )  | n

j⍵k = (an k
2 + bn k

2 1/2  
 
Fig 4. The equation for the magnitude response of the input given the “real”              
and “imaginary” responses for window n and frequency k.  

 
Fig. 5. Discrete time instantaneous phase equation. Instantaneous phase is          
calculated per input window, n, and is calculated from the “real” and            
‘imaginary” responses of the input signal. Instantaneous phase is calculated          
using derivatives of the “real” and “imaginary” responses. It is the           
instantaneous phase that is changed in order to change the pitch of the input              
signal without changing the timing. [21] 
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Fig. 6. Reconstruction of the output of a phase vocoder analyzer. The            
magnitude is preserved across the reconstruction, the instantaneous phase         
term is changed in order to shift pitch. Reconstruction of the signal at time n               
and frequency involves performing a continuous integral of the phase, then   ⍵k          
re-assembling the signal by applying the proper phase to a cosine and sine at              
frequency   and multiplying it by the magnitude response.[22] ⍵k  

The third option for pitch shifting involved using        
AudioSegment from a python package called pydub.       
AudioSegment has built-in functions to take an audio input         
and play it back at a new sampling rate without changing the            
duration of the audio input.  

E. Embedded Processor 
The three embedded processors in the market today that         

satisfied our requirements were the Raspberry Pi 3, Raspberry         
Pi 4, and Nvidia Jetson Nano.  

The Raspberry Pi 4 has upgraded specifications, as        
compared to the Raspberry Pi 3, with respect to the CPU,           
GPU, and RAM. It has two HDMI ports, unlike the Raspberry           
Pi 3 which is useful as each HDMI port could drive one of             
KATbot’s two displays. Our processor needed to be able to          
handle fast computation to meet our latency requirements.        
More RAM aided in running the programs more quickly,         
reducing latency, which was a major concern of ours.         
Upgraded hardware, more ports, more memory, and faster        
processing and performance speeds caused the Raspberry Pi 4         
to be a better fit for our project than the Raspberry Pi 3.  

When comparing the Raspberry Pi 4 to the Jetson Nano,          
most of the specifications are very similar. However, the CPU          
on the Raspberry Pi 4 has a slightly faster clock and uses 20%             
less power than the CPU on the Nano. In addition, at $99, the             
Nano is almost double the price of the Raspberry Pi 4, which            
is important due to our constrained budget of $600.  

We decided to go with the Raspberry Pi 4 as our robot’s             
processor because it met our needs, was less expensive than          
the NVIDIA Jetson Nano, and had better specs than the          
Raspberry Pi 3.  

F. Microphone 
We had several different choices for a microphone system         

for KATbot. The options included a head mounted        
microphone, a table microphone, and a studio microphone.        
Head mounted microphones are good for spoken dialogue        
systems because the microphone is placed very close to the          
user’s mouth. Similarly, studio microphones are designed to        
best capture human voice and have been shown to produce          
the best audio inputs for automatic speech recognition systems         
[9]. Despite offering high quality audio inputs to our system,          
we decided against a head mounted microphone and a studio          
microphone in order to maintain KATbot as a standalone         
product. Both types of microphones also restrict the user from          
moving around while interacting with the robot.  

The other option that we considered was a conference table          
microphone with omnidirectional input that can be housed        
within or on KATbot. Despite the fact that the table          
microphone provides a worse audio signal input to speech         
recognition it can be easily integrated with the robot and has           
both omnidirectional pickup and pickup from a distance. This         
allows the user to move around while interacting with the          
robot.  

G. Displays 
The face display is important to be able to express emotion           

that matches the tone of the story. To do so, movements of            
both the eyes and the mouth is important. This is why we            
chose to have one display for the entire face that would show            
the eyes and the mouth, as opposed to two small displays for            
just the eyes.  

It is important to have displays that meet the requirements,          
but draw minimal current to reduce power consumption. In         
addition, to meet our requirements, we needed displays that         
could communicate face shape/movement or text effectively       
to the user, and this does not require high resolution. Finally,           
it was important that any display that we choose can interface           
well with our embedded processor. We chose to use LCD          
screens, as opposed to LED screens, for KATbot since         
off-the-shelf LCD screens have the capability to remove        
backlight, and therefore, reduce power consumption.      
Although OLED screens use less power than LCD screens, we          
could not find any OLED screens with dimensions big enough          
for this project. 

V. SYSTEM DESCRIPTION 

A. Text to Speech 
Text to speech is the primary way that KATbot         

communicates with the user. We used Google’s text to speech          
package called gTTS as KATbot’s text to speech synthesizer.         
gTTS has a simple API which takes in a string and converts it             
to a .mp3 file.  
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Fig. 7. Diagram of the audio subsystem within KATbot. A single iteration of the user interacting would behave as follows. 1. The Raspberry Pi receives a                          
packet from the laptop containing strings with the next line of dialog, a prompt value, and whether user input is needed from the socket interface. 2. The packet is                             
passed into the audio output pathway. 3. The next line of dialog string is processed using functions from a python package called gTTS which performs text to                           
speech on the input file to generate a .mp3 file of the input text. The .mp3 file is pitch shifted upward using python’s AudioSegment package and then played out                             
through the speakers via a system call to mpg123. 4. In order to save time, all prompts’ text to speech files are generated in the setup function on the Raspberry                              
Pi. The prompt value is used to look up and find the proper .mp3 file which is then played through the speakers. 5. In the event that user output is not required, it                                 
returns a ready signal to the laptop. In the event that user input is required, three seconds of audio is recorded from the microphone. The recording is thresholded                            
to see if speech is present. If speech is not present TIMEOUT is returned. If audio is discernible, it is processed using functions from python’s                         
SpeechRecognition package. If a word is recognized, it is returned by the audio input pathway; otherwise, UNK is returned. 6. The return value of the audio input                           
pathway is passed to the socket interface and written as a packet to the laptop.  

 
 

When the Raspberry Pi in KATbot receives the next line of           
dialogue from the story generation algorithm, it contains three         
pieces of information, the next line of dialogue, a user prompt           
type, and whether user input is required. The next line of           
dialogue is converted by gTTS to an .mp3 file, the file is then             
pitch shifted using AudioSegment and played through the        
speakers using a system call to a program called mpg123. The           
user prompt value includes various parts of speech and is          
spoken in the normal gTTS output pitch. During KATbot’s         
setup function we pre-generated the mp3 files for prompts to          
save time. Sample dialogue includes: “There once was a dog          
who was <<adjective>>.” The items in angle brackets        
indicate the system speaking in a lower pitch.  

B. Pitch Shifting and Voices 
One important part of KATbot is its voice, as it is the main             

user interactive portion of our interface. KATbot has two         
“voices,” a higher pitched voice during narration and a lower          
pitched voice to cue the user for an input. gTTS synthesizes           
text to an adult female voice, so we used the original gTTS            

output for the cueing and pitch shifted the voice upward          
during narration.  

To generate the narration voice we pitch shifted the TTS          
output upward by 2 semitones. We arrived at this amount          
through shifting the TTS voice over a range of pitch shifts and            
choosing the most appealing voice.  

Of the three options for pitch shifting, we decided to go           
with pydub’s AudioSegment package. We chose this method        
to save on time and put the rest of our time towards            
integrating each of the individual parts of KATbot. 

C.  Speech Recognition 
We used python’s SpeechRecognition package with      

Google’s speech recognition API as the speech recognition        
engine. The API has commands that will listen through the          
system’s microphone, automatically recognize speech, and      
end its recognition when it hears silence. The API also has           
functions that perform speech recognition on audio files. 

We decided to implement speech recognition by recording        
the user for three seconds after they are prompted and then           
passing the recording of the user to SpeechRecognition. This         
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method was advantageous over having SpeechRecognition      
access the microphone itself as it prevented the package’s         
functions from hanging or ending abruptly. Ultimately,       
recording the user for some duration and passing the file to           
SpeechRecognition yielded a much more fluid user       
experience.  

KATbot uses two different packages to record the user         
depending on what system the robot code is running on. If the            
program is running on the Raspberry Pi we used arecord as it            
was a fast linux system call that was easy to run. However, in             
the case that the system that the robot code was running on            
didn’t have arecord on it, then we defaulted to using pyAudio,           
a python package that does recording.  

Should recording fail in any way, KATbot will fall back on           
SpeechRecognition’s function that listens through the      
system’s microphone.  

The speech recognition output consists of three possible        
outputs. The first type of output is a user timeout. Timeouts           
are reported in the case that the user did not say anything            
within the recording duration. Timeouts are determined by        
taking the max amplitude of the recording and comparing it          
with a threshold determined through testing. If the max         
amplitude is below the threshold then it is likely that the user            
had not said anything. The other two outputs from speech          
recognition include the word recognized by the speech        
recognition package and ‘unknown’ in the event that the word          
could not be recognized. 

Once speech recognition occurs, its output is passed to         
socket code to be sent to the storytelling algorithm.  

D. Embedded Processor 
The robot houses a Raspberry Pi 4, which is the main           

processor that communicates with the peripherals and handles        
the speech processing, text to speech, and user-facing display         
algorithms. With four USB ports, a 40 pin GPIO header, 2           
HDMI ports, and a four-pole audio port, it has the necessary           
ports needed for all the peripherals in this project. In addition,           
with a quad core Cortex A72 CPU and 4GB of RAM, it has             
sufficient processing power for the necessary algorithms. 

The Raspberry Pi connects with the microphone via USB,         
and powers the speakers through USB. The speaker signal         
comes from the four-pole audio port. The Raspberry Pi’s two          
micro HDMI outputs are used to drive a face display and a            
text display on the robot.  

The Raspberry Pi is used to run all of KATbot’s I/O           
software. It has two threads, a thread that runs display code           
and a thread that runs audio input and output.  

The display code was implemented using a package called         
Kivy, which is a python package used to develop applications.          
The display code updates the display every time a new input           
comes in from the ML algorithm to the Raspberry Pi. The           
display shows the current line of dialogue being said by the           
robot, and, at the end of the storytelling process, displays the           
full user generated story with user and algorithm generated         
inputs highlighted.  

The thread that runs the audio input handles receiving         
packets from the storytelling algorithm, and parses out the         
next line of dialogue, prompt value, and whether a user input           
is expected. The thread then passes the next line of dialogue to            
the display, and runs TTS to say the next line of dialogue and             
prompt value. If a user input is expected, it runs speech           
recognition code and passes the user output back to the          
storytelling algorithm.  

E. Raspberry Pi and Laptop Communication  
The Raspberry Pi and laptop communicate wirelessly       

through python’s sockets interface. For KATbot, we had the         
laptop act as a server and the Raspberry Pi act as the client.             
The process for communication involves setting the laptop        
running the storytelling algorithm as the host for the         
Raspberry Pi to connect to, and then setting the port number           
in both the laptop and Raspberry Pi code to be the same port.             
The storytelling algorithm is first started up and creates a          
socket with the laptop’s IP and a port number. The          
storytelling algorithm then prints that it is ready to receive a           
connection and stalls until the Raspberry Pi connects to it.  

The data that is passed from the storytelling program to the           
Raspberry Pi includes, as mentioned previously, the next line         
of dialogue, the prompt type, and whether user input is          
expected. This information is sent from the laptop to the Pi in            
a single packet using a socket send function. Once the Pi has            
finished its processing it sends back speech recognition output         
or a ready signal in the case that user input was not expected.             
Note that the speech recognition output can be one of a           
timeout error, an unknown word error, or the word recognized          
through speech recognition. The storytelling algorithm takes       
the Raspberry Pi inputs and uses them to decide what the next            
line of dialogue should be. 

F. Robot Body 
The custom-made robot initially was planned to have a         

laser-cut acrylic frame with a 3D-printed and/or cloth shell.         
Due to limited resources because of the COVID-19 pandemic,         
we built the robot with cardboard instead. It houses the          
processor, peripherals, and batteries. To house all of these         
components, the robot body’s dimensions are 8 inches by 8          
inches by 10 inches and the robot’s head’s dimensions are 6           
inches by 6 inches by 9 inches.  
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Fig 8. Top down view of the custom robot to show how the hardware is housed within the body. The speakers are powered by a USB port on the Raspberry Pi, 
and receive signal from the ⅛” port on the Pi. Both displays on the robot are powered by USB ports on the Raspberry Pi and receive data from the HDMI ports. 
The microphone receives power and passes data to the Raspberry Pi via USB. The motors for KATbot’s arms are powered and receive data from a NXT Brick. 
The NXT Brick, which provides data and power to the NXT motors are not integrated with the Raspberry Pi code.  

 
 
 

 
Fig. 9. Dimensions and external view of the custom-made robot. The robot 
has two displays, one for displaying facial expressions, and the other to 
display text for the user to read as they interact with KATbot. The arms are 
driven by NXT motors (see Fig. 10 & 11) and the Microphone is disguised as 
a “paw” on the robot. The other paw was made with clay and matches the 
shape of the microphone.  
 

 

 
Fig. 10. Completed Custom-made Robot. The robot is constructed out of           
cardboard, and other household items due to lack of access to 3D-printing and             
laser cutting during remote instruction.  
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G. Robotic arms 
The robot has two one-degree-of-freedom arms. Each arm        

is about 6 inches long. To meet the torque requirement of 1.18            
kg/cm for the motors for the robot arms, we were originally           
going to use servo motors, since standard servo motors         
provide a torque of 4.4 kg/cm at 4.8 volts. Since we could not             
receive servo motors during the semester due to shipping         
delays because of COVID-19, we used Lego Mindstorms        
motors which have a torque of 1.5 kg/cm.  
 

 
Fig. 11. CAD of the Original Robot Arm Frame 
 

 
Fig. 12. Current Robot Arm Frame 
 

 
Fig. 13. Current Robot Arm with Shell 

H. Peripherals 

1. Microphone 

KATbot’s audio input comes from a conference table        
microphone with omnidirectional pickup pattern and a 11.5        
foot pickup distance. We have decided on this microphone         
because its pickup range is roughly what we expect for how           

far users will be from KATbot when interacting with it. The           
omnidirectional aspect of the microphone pickup also helps if         
the user decides to move around while interacting with the          
robot. The microphone is mounted on the outside of KATbot          
and masquerades as a foot on the robot. It was placed on the             
outside of the robot so that it could best pick up audio inputs.  

2. Speakers 

For our speakers we decided to use a set of speakers from a             
previous 18-500 group. They have a small form factor and          
sound good enough to work for our purposes.  

3. Text and Eyes Displays 

The display for the text is on the body of the robot. It is 3               
inches by 5 inches. The robot has another 3 in. by 5 in. display              
for the face. Both displays are connected to the Raspberry Pi           
via HDMI.  
 

Fig. 14. Example of “Happy” Face on KATbot’s face display.  
 

 
Fig. 15. Example of Completed Story on the Text Display. Bolded words are 
either user inputs (after grammar correction) or FitBERT inputs 
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Fig. 16. Storytelling Generation Model. The template is generated prior to the start of the program. As the story continues, new sentences are generated 
continuously, starting from the template and ending with the sentence or sentence phrase for KATbot to say, and the process is only stalled when waiting for user 
input. User input is passed in from the speech recognition module, and the sentence  output is passed to the TTS module. 

H. Story Generation Algorithm 
 

The storytelling algorithm that KATbot uses has three main         
components. The first is generating the barebone templates for         
the stories. By using templates, we can have more control          
over cohesion and a fixed story length since we are building           
off of actual short stories. To customize the story, we remove           
all the keywords that drive the narrative and fill them in as we             
go instead. The next component is the user input, which the           
algorithm receives word by word from the speech recognition         
module. The last component is word prediction, which builds         
off of the user input to complete the sentences and tailor the            
story. 

1. Template Generation 

The templates are based on Aesop’s Fables. We have a          
collection of 177 fables that are each about 5-7 sentences          
long. The vocabulary is approximately at a preK-3rd grade         
level. For the scope of this project, the robot matches this           
level by using a similar vocabulary list for filling in the blank            
and customizing the story. All template generation was done         
manually, and the following protocol makes it easy to add          
new templates to the list. Creating the templates has three          
main steps: 

a. Marking words for user input and FitBERT input. There          
should be at most one of each input type for each sentence or             

clause. User input blanks should be prompted by some         
context, so the user will have some basis in choosing words.           
FitBERT input blanks should have some relationship with the         
user input, so that the user can feel like they are in charge of              
the story while maintaining cohesion.  

b. Rewording text, if needed, for more clear word         
relationships. This includes changing parts of speech and        
matching phrases throughout the story for more cohesion.        
This step helps FitBERT make more educated decisions when         
filling in the blanks. 

c. Restructuring text for more context. For optimal        
performance, any algorithm or user input should be near the          
end of the sentence so there is more context for choosing a            
word. For cases where the key words are concentrated at the           
beginning, the sentence structure should be rearranged. 

2. FitBERT input 

FitBERT is the open-source, fill-in-the-blanks version of       
BERT (​Bidirectional Encoder Representations from     
Transformers)​. It works by taking in a list of words and a            
sentence with a blank and ranking the words in order of best            
fit into the sentence. Then, it outputs the full sentence with the            
word inserted. For KATbot’s algorithm, the input is the         
templated sentence or sentence phrase with any user inputs         
already entered (i.e. one blank left). There are two cases of           
FitBERT inputs. First, the input is not dependent on user input           
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and is random to set the tone of the story (for story variety). In              
this case, the list of words is the entire corpus matching that            
part of speech, taken from a preK to 3rd grade vocabulary list.            
Second, the input is dependent on user input and tries to           
promote cohesion. In this case, the list is either the user input            
and a select number of synonyms or a list of antonyms, based            
on what kind of input the word blank needs.  

 

Original Template 

A Nightingale sitting on the top of 
an oak, singing her evening song, 
was spied by a hungry Hawk, who 
swooped down and seized her. 
The frightened Nightingale prayed 
the Hawk to let her go. 
 
“If you are hungry,” said she, 
“why not catch some large bird? I 
am not big enough for even a 
luncheon.” 
 
“Do you happen to see many large 
birds flying about?” said the 
Hawk. “You are the only bird I 
have seen to-day, and I should be 
foolish indeed to let you go for the 
sake of larger birds that are not in 
sight. A morsel is better than 
nothing.” 

A Nightingale sitting on the top of an 
**USER-R** , singing her **FB-R** 
song, was spied by a Hawk that was 
**USER-R**, who swooped down and 
seized her.  
 
“If you are hungry,” said the 
Nightingale, “why not catch some 
**USER-1** bird? I am not 
**FB-1** enough for even a 
luncheon.” 
 
“Do you happen to see many 
**FB-1** birds **USER-R** about?” 
said the Hawk. 
“You are the only bird I have seen 
today, and if I let you go for the sake of 
**FB-1** birds that are not in sight, I 
would be **USER-R**. A **FB-1A** 
bird is better than nothing.” 

Fig. 17. Example template from “The Hawk and the Nightingale”. Each input            
is either ‘USER’ or ‘FB’ (FitBERT) and the relationships between words are            
indicated with numbers or ‘R’ for standalone words. A number followed by            
‘A’ indicates antonyms, and just a number indicates a synonym or the same             
word.  

3. User Input 

The start of the sentence is spoken by KATbot, and the 
missing input is denoted with a change in voice and its part of 
speech. If the user needs more clarification of the part of 
speech, there is a command phrase, “Help me”, indicated in 
the directions that the user can use for more information. 
Once the user says a word, the word is compared to the 
desired part of speech. Small grammatical mistakes are 
forgiven, such as singular vs. plural or a mistake in verb 
conjugation. These mistakes are handled with FitBERT’s 
grammar correction tool. If there is no match in part of 
speech, KATbot outputs an error statement and gives the user 
another chance (up to 3 tries). Once all inputs, user and 
FitBERT, have been provided, the full sentence is delivered to 
the text to speech module and KATbot finishes saying the 
sentence. Upon completion of the story KATbot displays the 
story in full, with all user and FitBert words bolded, and asks 
the user if they would like it to tell another story or end the 
session. The user experience looks like Figure 18. 

 
 
Fig. 18. User Flow Chart. The boxes represent the dialogue that KATbot says, 
and the transitions represent the user responses that drive the state machine.  

 
The start of the sentence is spoken by KATbot, and the 

missing input is denoted with a change in voice and its part of 
speech. If the user needs more clarification of the part of 
speech, there is a command phrase, “Help me”, indicated in 
the directions that the user can use for more information. 
Once the user says a word, the word is compared to the 
desired part of speech. Small grammatical mistakes are 
forgiven, such as singular vs. plural or a mistake in verb 
conjugation. These mistakes are handled with FitBERT’s 
grammar correction tool. If there is no match in part of 
speech, KATbot outputs an error statement and gives the user 
another chance (up to 3 tries). Once all inputs, user and 
FitBERT, have been provided, the full sentence is delivered to 
the text to speech module and KATbot finishes saying the 
sentence. Upon completion of the story KATbot displays the 
story in full, with all user and FitBert words bolded, and asks 
the user if they would like it to tell another story or end the 
session. The user experience looks like Figure 18. 

VI. Validation Plan 

A. Component Testing 

1. Machine Learning 

To test the accuracy of the part of speech error detection,           
we took a vocabulary list of 1038 words from a preK to 3rd             
grade level. For each word, we got the top two most           
commonly used parts of speech from dictionary.com, along        
with one false part of speech, if there is one, and sent it to the               
detection algorithm to see if it would return correct or          
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incorrect as expected. We paired each word with a random          
sentence from our templates that had a blank with the same           
part of speech because the part of speech tagging system takes           
sentence context as input as well. The results indicated a          
93.82% accuracy, passing our requirement. 

For synonym generation, we originally planned to test the         
accuracy level similarly, with a random test dataset of words          
from the preK to 3rd grade vocabulary list. We were going to            
judge accuracy by cross listing the generated synonyms and         
antonyms with those from an online thesaurus. However, as         
mentioned in the trade studies section, we changed our design          
to fetch the synonyms and antonyms directly from online         
thesauruses. This makes this metric obsolete. 

2. Speech Recognition Accuracy 

KATbot receives single word inputs from the user, so, in          
order to test speech recognition we created a test which probes           
the user to say a specific word as input, runs our speech            
recognition function, and then compares the inputs. Each test         
consisted of 100 words from a list of 1000 of the most            
common words in English. The list of words contains a mix of            
adjectives, nouns, and verbs which is what most of KATbot’s          
inputs are.  

We had two users test the speech recognition system with          
10 trials of 100 words each between both of them. The tests            
were performed using the Raspberry Pi and microphone that         
KATbot uses. Below are the test results.  

 
Table 2. Results of the speech recognition system test. Each trial was run by              
two users each saying 100 words. The second column represents the           
percentage of words correctly recognized, and the third column represents the           
number of words with homophones that were included in the trial. 

 

Trial Number Percentage Correct Homophones 

1 81% 0 

2 91% 0 

3 89% 6 

4 80% 0 

5 91% 4 

6 91% 4 

7 87% 8 

8 88% 6 

9 88% 8 

10 91% 6 

Average 87.7% 6 

 
The average accuracy was 87.7 % over 10 trials of 100           

words each. For some trials output files were made containing          
the speech decoding errors. For these trials the number of          

homophones (words that have the same pronunciation but        
different spellings) were recorded. An example of this from         
our testing includes the prompt word being ‘share’ and the          
speech recognizer recognizing ‘Cher.’ The average number of        
homophones per test was 6 homophones. Technically, these        
words were recognized correctly from their sounds, however        
we did not count them towards our average accuracy because          
they weren’t what we were expecting.  

3. User Interface 

Since this product is aimed for children, it is extremely          
important to have a clean and engaging user interface. The          
user interface includes the robot’s aesthetics, robotic arms, the         
displays, and the audio output. All of these factors tie in           
together to create a friendly and interactive robot. We         
validated this with the user satisfaction survey, which is         
described below.  

B. System Testing 

1. System Latency 

We tested our system’s latency by recording five separate         
storytelling sessions from start to finish which included user         
errors, timeouts, and unknown words. We then used Audacity,         
an audio processing software, to measure exact latencies by         
looking at the audio waveforms. We measured latency in this          
way because while it was possible to measure latencies within          
functions that we wrote, it was hard to measure latencies          
incurred by functions from python packages that we were         
using. 

There were two latency measurements that were of interest         
to us. The first latency measurement was to measure user          
latency, or the time between when the user stopped speaking          
to when the next line of dialogue was spoken. This latency           
includes the time needed for speech recognition,       
communication, and text to speech pre-processing. The       
second latency measurement we made was non-user latency,        
which was measured from when a line of dialogue was spoken           
to when the next line of dialogue was spoken. This latency           
measures the latency of the communications system between        
the laptop and pi as well as pre-processing for text to speech.            
We decided to measure both latencies because we noticed         
that, depending on whether the system took a user input or           
not,  latency times fluctuated. 

We measured latency across five separate trials. Below is an          
example of the measurements from one trial.  

 
We found that user latency was often much higher than          

non-user latency, and measured them separately.  
Below are some of our findings about user and non-user          
latency.  
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Table 3. Measured latencies from one trial. “user” indicates that user input            
was required, and the latency is the time between the user finishes speaking             
and KATbot starts speaking.”non” indicates that no user input was required,           
and the latency is the time between KATbot says two consecutive sentences. 

 

Type of Sentence Latency (sec) 

user 5.326 

user 4.422 

non 2.283 

user 4.803 

non 2.045 

… 12 more trials ... 

Average User Latency: 4.811625 

Average Non User Latency:  2.425375 

Average Latency 3.549705882 
 
 
Table 4. Statistics after five trials of measuring latencies between sentences. 

 

Type Min (sec) Max (sec) Average (sec) 

User 1.981 7.582 2.5795 

Non User 3.658 9.273 4.840 

All Latencies 1.981 9.273 3.849 

 
From this we can see that the average user and non-user           

latencies are both within the 4-6 second range that we wanted.           
In addition, an average overall latency measurement shows        
that we have a total average latency of 3.849 seconds which is            
within our goal range. From this we can also see that user            
latency was much higher than non-user latency, which        
indicates that speech recognition took a non-negligible portion        
of time. Finally, while the average latencies were within our          
goals, max user and non-user latencies were 7.58 and 9.27          
seconds respectively. So, KATbot on average performs within        
our latency goal, however, individual interactions may take        
longer than our latency goal.  

3. Story Cohesion 

Story cohesion was tested through user surveys. We        
gathered three types of stories: the original stories,        
user-generated stories, and random stories. The user-generated       
stories were created by friends and family members (due to          
limited accessibility), where each user created 2-3 stories. The         
random stories were created by filling in each of the user and            
FitBert blanks in the templates with random inputs from a          
preK to 3rd grade vocabulary level, still matching the         
appropriate parts of speech. The stories were then given to          
different family members to score in a blind study. There are           

five variables related to narrative cohesion that we will look          
for during this evaluation: logical sense, themes, genre,        
narrator, and style [18]. Each story was graded on a scale of            
0-10 for each of the five variables, for a total score out of 50.              
The goal was to achieve a story cohesion score for the user            
generated stories between that of the random input stories and          
the original stories.  
 
Table 5. Story Cohesion Scores based on User Surveys. Each variable was            
scored out of 10, and the total score is out of 50.  

 

Variable Random 
Input 
Stories 

User 
Generated 
Stories 

Original 
Stories 

Logical Sense 1.6 4.0 8.4 

Theme 5.0 6.13 8.4 

Genre 5.4 6.0 8.4 

Narrator 5.2 6.47 8.4 

Style 5.0 6.4 8.4 

Total 22.2 29.0 42.0 

 
As shown above, the story cohesion passed our goal, scoring          
consistently higher than the random input stories for each         
variable and in total. 

4. User Satisfaction 

An important part of our project is user satisfaction. Our          
project was inspired by an MIT robotics group’s interactive         
storytelling robot so we wanted to be able to match their           
metrics. They evaluated their robot on several different        
characteristics. This included 87.5% of users liking the        
stories, 100% wanting to play again, 87.5% believing that the          
robot was friendly, 87.5% believing the robot’s stories were         
interesting, and 100% of the users rating the robot’s stories as           
understandable. We tested user satisfaction with 3 users who         
were quarantined with the team member who had built the          
robot. They rated the five criterias on a scale of 1-7 where 1             
represented Strongly Disagree and 7 represented Strongly       
Agree. Although we did not meet all of the criterias, we were            
within 15% of each metric. The results can be seen on Table            
6.  

 
5. Reliability.  

 
Based on research of children’s attention spans, we would         

like the product to be able to be played with for 30-45 minutes             
without any reboot, loss of connection, or loss of power          
issues.  
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To test this, we played with the robot for 30-45 minutes at a             
time over 3 trials. In each trial, the robot had no issues with             
reboot, loss of connection, or loss of power. The results can be            
seen on Table 7.  

 
Table 6. User Satisfaction Scores based on User Surveys. Each variable was            
ranked on a scale of 1-7 where 1 represented Strongly Disagree and 7             
represented Strongly Agree. 

 

Variable MIT robot KATbot 

Liked the stories 87.5% 90.5% 

Wanted to play 
again 

100% 90.5% 

Robot was friendly 87.5% 76.2% 

Stories were 
interesting 

87.5% 90.5% 

Stories were 
understandable 

100% 85.7% 

 
Table 7. Reliability Testing Results. The robot was tested for 3 aspects of             
reliability over 3 trials with a user playing with the robot. For all 3 trials, the                
robot passed all 3 aspects of reliability measured.  

 

Variable Trial 1 Trial 2 Trial 3 

Did the robot 
reboot?  

No No No 

Did the robot lose 
connection with the 
laptop?  

No No No 

Did the robot lose 
power?  

No No No 

 

VI. FUTURE WORK 

A. Professional Feedback  
We talked with Dr. Henny Admoni, a professor and 

researcher in Human-Robot Interaction at Carnegie Mellon 
University. We described our project, gave her a live demo, 
and received feedback on the viability and usability of this 
product.  

She mentioned that it is important to consider the large gap 
in knowledge and learning between children at age 5 and at 
age 8 (the range that we are targeting). For example, it might 
not be beneficial to teach parts of speech to children at age 5, 
while parts of speech is probably very important to teach 

children at age 8. She thought that it would be useful to toggle 
different features, such as teach parts of speech, so that 
teachers and parents can customize the robot for the age of the 
children.  

Dr. Admoni also said that she has seen that children tend to 
touch their toys a lot so it is important to ensure that 
everything is durable and that the inner electronics can not be 
accessed easily.  

The robot also repeats the last sentence after receiving an 
user input to aid in story cohesion. Dr. Admoni thought that it 
might be more efficient to repeat the last verb or noun phrase 
instead of the entire sentence.  

Finally, Dr. Admoni said that speech recognition can be 
hard with children, and it might be more practical to replace 
or supplement spoken user input with pictures instead.  

B. User Feedback 
We also asked the users who participated in our User 

Satisfaction survey for feedback. They mentioned that it 
would be beneficial to give a visual indicator of when the 
robot was looking for user input, such as a red “recording” 
circle on the display, to give the user a more intuitive 
understanding of when to speak. In addition, they mentioned 
that the robot’s voice should be slowed down a little so that 
they didn’t rely as heavily on the text display to understand 
the story.  

C. Future Work 
The feedback that we received from users and from a 

professional was crucial in helping to understand how to 
improve our product, especially to a state where we could 
deploy it.  

Future iterations of this product would involve constructing 
a robot frame made with more durable materials such as 
laser-cut acrylic and 3d-printed filament. It would also 
involve a customizable story generation format that could be 
adapted for children at different ages and/or different learning 
levels. We would also include visual indicators and pictures 
on the display to give the users a more friendly and intuitive 
experience. 
 

VI. PROJECT MANAGEMENT 

A. Schedule 
Figure 19 below is the Gantt chart of our project. It includes            

a schedule with the division of tasks per person, pair, and over            
the whole team for the whole semester.  
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B. Team Member Responsibilities  
Ashika was in charge of story creation and constructed all          

the story generation algorithms. Jade was responsible for the         
speech processing aspect and handled both collecting audio        
input and the text-to-speech capabilities. Abha built the        
physical robot, including integrating the peripherals and       
working on the robot arms. 

Jade and Ashika worked on integrating the speech        
processing and story creation modules together, Abha and        
Ashika worked on displaying the sentences with the robot’s         
display, and Jade and Abha worked on text to speech with the            
speakers in the robot. Everyone worked on getting the socket          
code to work with the Raspberry Pi in the robot. Everyone           
worked on testing their individual components as they went,         
and everyone worked together to test and evaluate the whole          
system.  

C. Budget 
Figure 20 below is the bill of materials for KATbot.          

Overall, our spending consists mostly of buying peripherals        
for the robot itself as well as raw materials to design the robot.             
With the transition to remote instructure, we also ordered         
duplicates of some parts due to team members being in          
different locations.  

VII. RELATED WORK 

A. MIT Storytelling Robot 
KATbot’s initial inspiration came from the MIT storytelling        

robot, but its key features and system architecture are quite          
different. The MIT robot has two modes: storytelling and         
listening, and KATbot is based on the storytelling mode. The          
MIT robot creates stories based on the images that a child can            
move around on a tablet. This is a fairly limited user           
experience and involves image processing rather than speech        
processing. KATbot’s user experience begins with a little        
more structure because it starts with story templates, but the          
user is not restricted to any limited word set as input.  

The MIT robot has a face display and a toy-like outer           
appearance. It makes small movements, primarily with its        
head, to mimic natural movement. KATbot’s exterior is        
similar, with moving arms and an eye display to add gestures           
and emotions to the storytelling feature. However, KATbot        
also has a display to display the sentences as it speaks. This            
difference is important because KATbot does not rely on a          
tablet or external technology for the user to read from. This           
leads to the big advantage that KATbot aims to be a single            
unit product, with no additional technology required to        
interact with it. 

B. AI Dungeon 2 
While storytelling robots are becoming increasingly popular       

in the AI world, there are few programs out there that have            
achieved interactive storytelling. The most notable is an AI         
driven video game that generates narratives based on user         
input. Similar to a choose-your-own-adventure story, ​AI       
Dungeon 2 (​https://play.aidungeon.io/​) starts with a user       
selected setting and character, and then tells the story a few           
sentences at a time. The user is expected to respond to the            
question “What will you do?” after each generated output.         
The story is tailored to this input and changes direction based           
on what the user chooses to do. Here is an example interaction            
with the game: 
 
Input:​ look for water 
Output: You search through the cupboards until you find a          
bottle of water. You drink half of it and immediately feel           
thirsty again. 
 

According to documentation, this program was created by        
training a machine learning model on a collection of         
choose-your-own-adventure stories [13]. It performs well with       
grammatical accuracy, with only a few observed semantic        
mistakes with pronouns. However, it takes in entire sentences         
from the user, not words like KATbot, and while it does           
respond to the user input, the advantage of being a video game            
allows it to only factor in the last few inputs, not the entire             
narrative. Additionally, the game does not always carry the         
story; this task falls on the user, and a lot of the generated             
outputs end without much prompt for the user to go on. While            
this suits the goal of a game, this is quite different from the             
goals of KATbot, which has a lot more control over the story            
because it aims to create full stories with a beginning, middle,           
and end. Overall, ​AI Dungeon 2 is a great model for           
processing and responding to the semantic meanings of user         
input, but the end goals differ drastically from KATbot.  

VIII.​ ​SUMMARY 
KATbot exceeded our performance expectations, especially      

given the circumstances. On the storytelling side, we could         
improve the part of speech detection even further with more          
research into taggers or other tools. We could also parallelize          
the system further to avoid long latencies while the story is           
updating. On the audio side, we could implement a robust          
speech recognition system that recognizes when the user stops         
talking and immediately starts on recognition instead of        
recording them for a duration and then performing speech         
recognition. We could also add the option for the user to           
respond with short phrases instead of single words. For the          
robot itself, if we had access to resources on campus, we           
could construct the 3D printed, acrylic robot shell we had          
initially planned to make. We would also be able to play           
around with the face display and implement sentiment        
analysis to integrate the emotions and arm movements with         
the story.  

https://play.aidungeon.io/
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As we built KATbot, we learned a few key lessons along           
the way. First, prototyping is always a good idea. Creating          
small prototypes of the parts we were working on allowed us           
to flesh out design details and confirm how pieces of the           
design interfaced. Second, when writing software, good       
documentation helps your teammates set up the right        
environments and understand how to run your code. When we          
were integrating remotely, we spent a lot of time talking          
through installation or system configuration issues that could        
have been avoided by keeping a running document of what          
packages to install and what flags to change from the          
beginning. Third, having modularity within components of the        
project was really helpful in terms of parallelizing work.         
Because the three of us were working on independent         
components we were able to parallelize a lot of work. While           
this may be unique to this semester, dividing the work once           
we went to remote instruction was much easier with mostly          
independent components. Integration over video calling can       
be quite restricting and slow, so it was advantageous that we           
could work on our individual tasks independently.  
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Fig. 19. Gantt Chart 
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Fig. 20. Bill of Materials 


