
1
18-500 Design Document: 03/02/2020

KATbot: Design Document
Authors: Ashika Koganti, Abha Agrawal, Jade Traiger: Electrical and Computer Engineering, Carnegie Mellon

University

Abstract -- KATbot is a MadLib style storytelling robot
that interacts with children to aid in language and reading
comprehension. It is inspired by a storytelling companion
robot created by the MIT Personal Robot Group [1]. This
robot had children create stories for the robot to tell by
manipulating images on a tablet. In contrast, KATbot
takes in words through speech input to personalize short
stories, similar to a MadLib, or fill in the blank story, and
includes a display that allows the user to read along with
the story. The major components of KATbot are a
Raspberry Pi 4 that connects to the displays, microphone,
speaker, and one degree of freedom (DoF) robot arms.
The Raspberry Pi communicates with a laptop running
the story generation algorithm. KATbot integrates signal
processing, machine learning, and robotics to provide an
educational and engaging user experience for elementary
school age children. This paper will explain in detail the
requirements, system design and components, validation
plan, and project schedule.

Index Terms -- Machine Learning, Robot, Speech
Processing, Story Generation, Storytelling, Synonym
Generation, Text to Speech

I. INTRODUCTION

ESEARCH shows that early language development
directly relates to performance in later education [2]. It
is crucial to help children improve their language skills

at a young age. In addition, because language is an essential
component of social and interactive context, assisting children
in language development and comprehension would help
them become an active part of society [3]. Robot companions
would be instrumental in this area because they integrate the
benefits of technology, such as accessibility and adaptive,
easy-to-update software, with the benefits of social agents,
such as communication skills and understanding social cues
[4].

Because of these reasons, we would like to create a robotic
learning companion to help children with language and
reading development. It is not only important that our robot is
a useful language learning toy, but equally important that it
has a friendly, clean, and engaging user interface for the
children to interact with.

KATbot will be a standalone interactive robot with the
following qualities. It will tell customized stories by asking
the user to fill in parts of the story as it goes. It will be able to
run for 30 - 45 minutes on its own battery power, respond to
user input within at most 4 - 6 seconds, have a 15 % word

error rate (WER), 90% part of speech accuracy, 85%
synonym recall accuracy, cohesive stories, and high user
satisfaction. Testing with children will be outside of the scope
of what we can accomplish this semester, therefore KATbot
will be designed and tested by adult users.

II. DESIGN REQUIREMENTS

A. Hardware Requirements
The hardware aspect of KATbot consists of a custom-made

robot, embedded processors that communicate with
peripherals and a laptop running a story generation algorithm.
The peripherals in KATbot consist of a microphone, speaker,
and displays as well as motor drivers and motors.

We chose to create a custom-made robot instead of using an
off-the-shelf product because it would not only let us create a
friendly looking robot suitable for children, but also let us
design a product that could hold the electronics needed for
this project.

We also need a processor with enough processing power to
handle the speech processing, text to speech, robot arm
motion planning, and user-facing display algorithms. Since
our product will be standalone, the processor needs to be on a
small form factor to reduce the space it would take up inside
the robot. The processor needs to have many interfaces, such
as HDMI, USBs, GPIOs, etc) to connect to the many
peripherals we have for the product. Finally, the processor
needs to be low cost so that the product’s bill of materials
stays within the $600 constraint.

We will also have two robot arms, each of which are one
degree of freedom. The arms will move to help show emotion
while the robot tells the story. They will be made with
materials easy to prototype with, such as acrylic and PLA
filament. Based on the weight of acrylic and PLA (3D-printed
material), the motors for the arms will need to have a
minimum torque of 2.04 kg/cm. The calculations are below.

Assume that the arm dimensions are The in x 2in x 2in.6
acrylic frame covers a surface area of Acrylic has 6 in .5 2
a height of Therefore, the volume is .125in.0

The density of acrylic is in 114 cm . 7 3 = 3 .18 g/cm .1 3

Therefore, the mass is 14cm 1.18g/cm 134.62g.1 3 * =

Torque is Fxr, where F and r = 6in = 0.134kg=
15.24cm. Therefore, Torque 2.04 kg/cm. =

Fig. 1. Torque Calculations for the robot arms

 2
18-500 Design Document: 03/02/2020

KATbot will also have displays connected to the Raspberry
Pis. It will have a display on the body of the robot, that shows
the current sentence that the robot is speaking. This is to aid
the user with reading comprehension. It will also have two
small displays on the face of the robot for the robot’s eyes.
Eye movements and gestures are incredibly important when
expressing emotion [5]. Instead of static eyes that would not
show emotion, we chose to use displays for them so that we
could dynamically change the emotions that the eyes express
to match the emotions of the story.

B. Software Requirements
The story generating component of KATbot has four main

components. First, it needs to preprocess story templates prior
to use for lower latency and to prepare for user input. Next, it
should process the user input word by word, check for correct
word semantics in the context of the story, and update the
story as it goes. On the user interaction side, KATbot needs to
be able to communicate effectively what type of word (part of
speech or entity) it requires for each blank the user needs to
fill in. On the algorithm side, it needs the ability to continue
the story with any grammatically correct user input (i.e. the
user should not be able to ‘break’ the algorithm with an
unexpected input). To do this, the algorithm will need two
features: synonym generation to fill in the story cohesively
and part of speech detection to enforce correct syntax. For
part of speech detection, we are aiming for a 90% accuracy
level, which is around the minimum of popular natural
language models [6]. For synonyms, we would like an 85%
similarity rate for generated synonyms and antonyms, based
on a paper on supervised learning synonym identification
models, which evaluates a number of different synonym
detection and recall algorithms [7]. Another major
requirement is to keep the language and word choice at a child
friendly level, to match the educational level of our target
audience.

In addition, the storytelling feature of KATbot has two
comprehensive requirements: cohesion and enjoyment.
Cohesion refers to how well the story flows and each sentence
is related to the previous ones. Enjoyment refers to user
satisfaction and how likely users are to continue interacting
with KATbot. More information on the evaluation of these
requirements can be found in the validation plan.

Another major component of KATbot is the user interface.
KATbot is meant to help early elementary school aged
children who are either learning to read or working on their
reading skills. This means that they cannot reliably interact
with a completely text based system. We decided that in order
to combat this problem, all users will interact with KATbot
through speech.

In speech recognition, word error rate (WER) is a common
measure of system error. Having a low WER is an indicator
that a system is performing well. In 2017, it was found that
Sphinx4, a commonly used open-source speech recognition
package, had a 37% WER, while Microsoft’s and Google’s

speech recognition APIs had a WER of 18% and 9%
respectively [8]. With KATbot we aim to have a WER of
15% which is the average of the non open-source speech
recognition APIs referenced.

We would like to acknowledge that automatic speech
recognition systems have been shown to perform poorly with
speech from young users [10]. In one human robot interaction
study, the best speech recognition system under the best
conditions could only achieve a 38% recognition rate on
children’s speech [9]. Because of poor recognition accuracy
on children’s speech, our WER metric will be applied only for
adult users.

Testing our system with children will be outside of the
scope of this project because we do not have the proper
paperwork to test KATbot with children. Because speech
recognition for children is an ongoing challenge for the field,
we will be designing KATbot to perform well with adult
users.

C. Overall Requirements
Overall we aim for KATbot to be a standalone children’s

toy with a friendly and engaging user experience. Because
KATbot is meant to be a toy we intend for it to be played with
wherever a child wants to. Due to this, KATbot will need to
have batteries for power. We found that children at the age of
5 can play with something that interests them for around 15
minutes and can interact with other children for around 10 -
25 minutes [11]. Because KATbot is an inherently interactive
system, we estimate children will want to play with it for up
to 25 minutes. Thus, we require that KATbot should be able
to run for 30 - 45 minutes off its own power system.

In order for KATbot to be a standalone toy, it will need to
house all of the electronics for the product. These electronics
include a processor that controls the peripherals, a
microphone, a speaker, motors, and a motor shield for the
robot arms, and displays. All of the batteries will also need to
be housed within the body of the robot.

Another important part of our system design is latency
between user input and dialogue feedback. We have found
that the average response time per person for task oriented
dialog between humans is around 4 - 6 seconds [12] Thus, we
aim for having a total system latency of at most 4 - 6 seconds,
which accounts for the time between when the user has
finished uttering their response to the system and when the
system says its next line of dialogue.

 3
18-500 Design Document: 03/02/2020

III. ARCHITECTURE AND/OR PRINCIPLE OF
OPERATION

Fig. 2. Overall System Diagram

To meet these requirements, we will be building a
standalone (all electronics are housed within the robot)
custom-made robot. The robot will house a main processor
that will communicate with the peripherals and handles the
speech processing, text to speech, robot arm motion planning,
and user-facing display algorithms.

The custom-made robot will be made with a sturdy frame
that can be handled by children. It will house the processor,
peripherals, and batteries. The robot’s body and head
dimensions will be carefully chosen to be big enough to fit all
the electronics within it. The robot will have two
one-degree-of-freedom arms. We will use motors with a small
form factor, so that they can fit within the robot, and that meet
the torque requirement of 2.04 kg/cm.

We will be using a microphone with an omnidirectional
pickup pattern and a pickup distance which can cover up to
5ft around the robot itself. The pickup pattern and distance are
chosen so that the user can move around while interacting
with the robot. We will use speakers with a small form factor
so that they can fit in the base of the robot.

The processor inside the robot will communicate to a laptop
that contains the story generation algorithm. Even though the
end goal of this product is to be a standalone toy, we realize
that given the time constraints of a semester project, we might
not have enough time to not only have a completed story
generation algorithm that meets our requirements, but also
have it run on an embedded processor. Therefore, we decided
to run this algorithm on a laptop as part of the scope of this
project.

The storytelling algorithm will start with templates that are
manually configured based on a loose set of constraints that
ensure context and clear word relations. KATbot will prompt
the user for the word of the specified part of speech for the
blank, and the user input will go through error detection to
ensure it is the right part of speech. To make the system a
little more forgiving, particularly for children with limited
grammar knowledge, small grammar mistakes will be ignored
(e.g. singular vs. plural). On the algorithm side, any related
words will be filled in using synonym and antonym
generation in conjunction with a machine learning based
best-fit heuristic. This amplifies how much the user can
customize the story, which adds both variety to the stories as
well as a better user experience.

IV. DESIGN TRADE STUDIES

A. MIT Storytelling Robot
KATbot’s initial inspiration came from the MIT storytelling

robot, but its key features and system architecture are quite
different. The MIT robot has two modes: storytelling and
listening, and KATbot is based on the storytelling mode. The
MIT robot creates stories based on the images that a child can
move around on a tablet. This is a fairly limited user
experience and involves image processing rather than speech
processing. KATbot’s user experience begins with a little
more structure because it starts with story templates, but the
user is not restricted to any limited word set as input.

 4
18-500 Design Document: 03/02/2020

The MIT robot has a face display and a toy-like outer
appearance. It makes small movements, primarily with its
head, to mimic natural movement. KATbot’s exterior is
similar, with moving arms and an eye display to add gestures
and emotions to the storytelling feature. However, KATbot
also has a display to display the sentences as it speaks. This
difference is important because KATbot does not rely on a
tablet or external technology for the user to read from. This
leads to the big advantage that KATbot will aim to be a single
unit product, with no additional technology required to
interact with it.

B. AI Dungeon 2
While storytelling robots are becoming increasingly popular

in the AI world, there are few programs out there that have
achieved interactive storytelling. The most notable is an AI
driven video game that generates narratives based on user
input. Similar to a choose-your-own-adventure story, AI
Dungeon 2 (https://play.aidungeon.io/) starts with a user
selected setting and character, and then tells the story a few
sentences at a time. The user is expected to respond to the
question “What will you do?” after each generated output.
The story is tailored to this input and changes direction based
on what the user chooses to do. Here is an example interaction
with the game:

Input: look for water
Output: You search through the cupboards until you find a
bottle of water. You drink half of it and immediately feel
thirsty again.

According to documentation, this program was created by
training a machine learning model on a collection of
choose-your-own-adventure stories [13]. It performs well with
grammatical accuracy, with only a few observed semantic
mistakes with pronouns. However, it takes in entire sentences
from the user, not words like KATbot, and while it does
respond to the user input, the advantage of being a video game
allows it to only factor in the last few inputs, not the entire
narrative. Additionally, the game does not always carry the
story; this task falls on the user, and a lot of the generated
outputs end without much prompt for the user to go on. While
this suits the goal of a game, this is quite different from the
goals of KATbot, which has a lot more control over the story
because it aims to create full stories with a beginning, middle,
and end. Overall, AI Dungeon 2 is a great model for
processing and responding to the semantic meanings of user
input, but the end goals differ drastically from KATbot.

C. Machine Learning Components

1. Part of speech tagging

We chose to use the NLTK speech processing package for
part of speech tagging because it meets our metric of 90%

accuracy. The default tagger in this package is the perceptron
tagger, which has 96.5% accuracy [14]. Another popular
natural language model is SpaCy, which is more
object-oriented than NLTK. While this is better for semantic
meaning, NLTK conducts sentence tokenization much more
quickly and has more tools and integrative capabilities than
SpaCy [15]. Since the part of speech is the only feature we
need for this portion, and NLTK is well suited for other
components, too (see below), the advantages of using NLTK
outweigh the advantages of SpaCy.

2. Synonym/Antonym generation

For this aspect of word generation, we chose to continue
with the NLTK package because it already has a large
database for its synonym detection and recall capabilities, and
it has both word similarity measurements, which will be
helpful for testing and pruning, and synonym generation. One
alternative is word2vec, but this tool does not come with its
own corpus for training, and it is focused only on word
similarity.

3. FitBERT

We chose to use FitBERT to help fill in the templates given
user input, because it is an open-source, pretrained model.
According to documentation, BERT, FitBERT’s parent
package, has had success with actual MadLibs, and its
easy-to-use python tools work well when incorporated with
the other modules of the story generation algorithm. Also, its
grammar correction capabilities make it particularly useful,
and it has a low latency, which is important for real time
performance.

D. Speech Recognition
The evaluation metrics we used to evaluate speech

recognition were as follows: ability for the package to be
used on an embedded device, whether the package required
connection to the internet, ease of installation and usage, as
well as accuracy.

We evaluated several different packages including
PocketSphinx, Julius and SpeechRecognition. Below is an
evaluation of each package.

PocketSphinx is an API meant for speech recognition from
CMU. Some of the benefits that PocketSphinx provides are
that it can run on an embedded device and does not require
internet connection. It is also stable, has been designed to
have a small code footprint and attempts to reduce memory
consumption [16]. Some of the downsides to PocketSphinx
are that it requires a base library to get it running, it can be
hard to install, and it does not have the best recognition
accuracy of the packages we considered.

Julius is another open source API that we considered. Its
benefits are that it is a real time system that has a low memory
requirement (< 64 MB). However, we did not find much

https://play.aidungeon.io/

 5
18-500 Design Document: 03/02/2020

documentation for it in regards to running it on an embedded
system.

The last package we considered was a python package
called SpeechRecognition. SpeechRecognition supports
several different speech recognition engines including CMU
Sphinx, Google Speech Recognition, Google Cloud Speech
API, Microsoft Bing Voice Recognition, IBM Speech to Text
and others. It is also easily installable and can be installed on
an embedded device.

We have decided to go with the python SpeechRecognition
package for the following reasons. The first and most
important was configurability. SpeechRecognition allows the
user to choose a recognition engine which adds flexibility.
Specifically, we will be using the Google Speech Recognition
engine. This engine requires a connection to the internet, but
performs speech recognition extremely well. The Google
Speech API was shown to be the best system for speech
recognition in a study investigating speech recognition in
human robot interaction for children [8]. We recognize that a
risk factor for KATbot is that it might not always have a
stable internet connection. To mitigate this risk, we also plan
on having a local speech recognition package to fall back on
in case connectivity is lost. We plan on also using
PocketSphinx, as an engine with SpeechRecognition, in the
case of lost internet connectivity, but we chose not to use
PocketSphinx as the main speech recognition engine since the
Google Speech API is one of the best speech recognition
engines.

E. Text to Speech
We evaluated several different text to speech packages for

KATbot. These included Festival, Flite, eSpeak, say, spd-say,
google_speech, gTTS (google text to speech), and AWS
Polly. The evaluation metrics for the text to speech modules
were that they had to be able to process the input words,
generate speech quickly, and that the generated voice was
clear and understandable.

Of the packages evaluated, Festival, Flite, eSpeak, say, and
spd-say were eliminated because they all had voices that were
either robotic or unnatural.

Google_speech, gTTS, and AWS Polly all offer good
voices for the user to interact with. However, AWS Polly
requires AWS credits which we are trying to avoid so that the
users of KATbot can have a standalone product that will not
require them to pay for anything. Of the remaining two
packages, google_speech and gTTS are both python packages,
however google_speech is less up-to-date than gTTS. We
decided to go with gTTS.

gTTS was selected because it offered a good voice with
minimal latency in processing. However, it is important to
note that gTTS also requires internet connection.

F. Pitch Shifting Algorithm
We will be performing pitch shifting on the voice generated

by our text to speech package to make the voice more
appealing to the user. Pitch shifting refers to the process by
which the pitch of the audio input is increased without
changing the duration of the audio input. There are three main
approaches that we are considering. The first two involve
writing our own pitch shifting software based on existing
algorithms, and the last one involves using a python package
to perform pitch shifting.

The first algorithm for pitch shifting is Pitch Synchronous
Overlap Add (PSOLA). It relies on looking at the input
speech signal and identifying periodic amplitude peaks within
the waveform. These periodic amplitude peaks correspond to
pitch marks within the signal. Suppose the pitch period at a
certain point in the signal is Then, samples are taken from .tm
around each pitch period by multiplying the samples with a
Hanning window (of a length that will allow it to [n])hm
overlap between 50 - 75% with the next windowed pitch
period. For the mth windowed portion of the input signal,

. To shift the pitch of the input[n] h [t n] [n]xm = m m − * x
signal, a new set of pitch periods are generated such that they
are either spaced closer together or farther apart. Then, the
original frames are placed at the new pitch period, such ,tq
that the output signal has pitch period frames

spaced at the new pitch period[n] x [n t t]ym = m + m − q
[17]. This algorithm requires careful analysis of the time
domain signal to find pitch marks and pitch periods.

The second algorithm for pitch shifting is phase vocoding.
Phase vocoding relies on taking the short time fourier
transform (STFT) of the original signal, . The STFT [n,]X k
provides a method by which the frequency content at discrete
frequencies of a signal can be evaluated at periodic time
intervals. It differs from the discrete time fourier transform
(DTFT) which provides the frequency content of the entire
signal. The STFT is calculated by multiplying the input audio
signal by periodic windows to generate frames, then
calculating the DTFT of each frame. Once we have the STFT
representation of the signal we can calculate both the
magnitude and phase of each frame for each frequency. From
the magnitude and phase information of each frame, we can
calculate the instantaneous phase, or the derivative of the
phase for each frame. To perform pitch shifting we increase
the instantaneous phase at each frame for each frequency.
Reconstruction is performed by summing up sinusoids at each
frequency with the magnitude and altered instantaneous phase
at each frame. Below is a block diagram of the system as well
as relevant equations.

 6
18-500 Design Document: 03/02/2020

Fig. 3. Complete single channel of a phase vocoder analyzer. Reprinted from
Digital Processing of Speech Signals pp. 336, by Rabiner and Schafer, 1978,
retrieved from http://course.ece.cmu.edu/~ece792/ Copyright 1979 by
Pearson

X (e)| (⍵) (⍵)) | n

j⍵k = (an k
2 + bn k

2 1/2

Fig. 4. Discrete tiem instantaneous phase equation. Reprinted from Digital
Processing of Speech Signals pp. 335, by Rabiner and Schafer, 1978,
retrieved from http://course.ece.cmu.edu/~ece792/ Copyright 1979 by
Pearson

Fig. 5. Reconstruction of the output of a phase vocoder analyzer. Reprinted
from Digital Processing of Speech Signals pp. 337, by Rabiner and Schafer,
1978, retrieved from http://course.ece.cmu.edu/~ece792/ Copyright 1979 by
Pearson

The third option for pitch shifting involves using a built-in
python package called pydub. Pydub has built in functions to
take an audio input and play it back at a new sampling rate
without changing the duration of the audio input.

Of the three options, we will be implementing phase
vocoding as our pitch shifting algorithm. This is because
phase vocoding does not require detailed analysis of the time
domain signal. We are also familiar with how phase vocoding
works, which will make implementation easier.

G. Embedded Processor
The three embedded processors in the market today that

satisfy our requirements are the Raspberry Pi 3, Raspberry Pi
4, and Nvidia Jetson Nano.

The Raspberry Pi 4 has upgraded specifications, as
compared to the Raspberry Pi 3, with respect to the CPU,
GPU, and RAM. It has two HDMI ports, unlike the Raspberry
Pi 3. One HDMI port can be used with a display peripheral,
and the second for debugging and testing our design. Our
processor will need to be able to handle fast computation to
meet our latency requirements. More RAM will aid in running
the programs more quickly, reducing latency, Upgraded
hardware, more ports, more memory, and faster processing
and performance speeds cause the Raspberry Pi 4 to be a
better fit for our project than the Raspberry Pi 3.

When comparing the Raspberry Pi 4 to the Jetson Nano,
most of the specifications are very similar. However, the CPU
on the Raspberry Pi 4 has a slightly faster clock and uses 20%
less power than the CPU on the Nano. It is important that we
reduce power consumption wherever possible since this
product will be battery powered. In addition, at $99, the Nano
is almost double the price of the Raspberry Pi 4, which is
important to consider under a constrained budget of $600. The
reason for this price difference is due to the powerful GPU on
the Nano, which is not needed for this project.

H. Microphone
We had several different choices for a microphone system

for KATbot. The options included a head mounted
microphone, a table microphone, and a studio microphone.
Head mounted microphones are good for spoken dialogue
systems because the microphone is placed very close to the
user’s mouth. Similarly studio microphones are designed to
best capture human voice and have been shown to produce
the best audio inputs for automatic speech recognition systems
[9]. Despite offering high quality audio inputs to our system
we have decided against a head mounted microphone and a
studio microphone in order to maintain KATbot as a
standalone product. Both types of microphones also restrict
the user from moving around while interacting with the robot.

The other option that we considered was a conference table
microphone with omnidirectional input that can be housed
within KATbot. Despite the fact that the table microphone
will provide a worse audio signal input to speech recognition
it will be able to fit within the robot and can have both
omnidirectional pickup and pickup from a distance. This
works well for KATbot as it will allow the user to move
around while interacting with the robot.

I. Displays
It is important to have displays that meet the requirements,

but draw minimal current to reduce power consumption. In
addition, to meet our requirements, we needed displays that
could communicate eye shape/movement or text or effectively
to the user, and this does not require high resolution. Finally,
it was important that any display that we choose can interface
well with our embedded processor. We chose to use LCD
screens, as opposed to LED screens, for our product since

 7
18-500 Design Document: 03/02/2020

off-the-shelf LCD screens have the capability to remove
backlight, and therefore reduce power consumption. Although
OLED screens use less power than LCD screens, we could not
find any OLED screens with dimensions big enough for this
project.

V. SYSTEM DESCRIPTION

A. Text to Speech
We will be using text to speech as the primary way of

communicating with the user. We will be using Google’s text
to speech package called gTTS. gTTS has a simple API which
takes in a string and converts it to an output file. When the
Raspberry Pi in KATbot receives the next line of dialogue
from the story generation algorithm, it will contain two pieces
of information. The first is the dialogue to be said and the
second piece is the expected user input. The expected user
inputs include various parts of speech and {yes or no}. When
KATbot receives the next line of dialogue from the story
generation algorithm, KATbot will say it and then cue the
user by playing a sound to indicate that they should respond
along with an indication for what type of input we require. We
will indicate input types by altering the pitch of the KATbot’s
voice. Sample dialogue might include: “Are you still there
sound cue <<yes or no>>?” or “There once was a dog
who was **sound cue** <<noun>>.” The items in angle
brackets indicate the system speaking in a lower pitch.

B. Pitch Shifting and Voices
One important part of our project is the voice of KATbot.

KATbot will have two “voices,” a higher pitched voice during
narration and a lower pitched voice to cue the user for an
input. gTTS synthesizes text to an adult female voice, so we
will use the original lower pitched gTTS output for the cueing
and pitch shift the voice during narration.

To generate the narration voice we will be pitch shifting the
TTS output upward by 2 semitones. We arrived at this amount
through shifting the TTS voice over a range of pitch shifts and
choosing the most appealing voice. We will be writing our
own pitch-shifting code using a phase vocoding algorithm
which is outlined in the trade studies. Phase vocoding
involves operations on discrete signals and is comprised
mostly of multiplication of samples by a window,
multiplication of samples by cosines and sines, and other
mathematical operations that can be implemented via matrix
math. We will be using NumPy, a scientific computing
package, to perform mathematical operations on the input
signal when implementing phase vocoding.

C. Speech Recognition
We will be using python’s SpeechRecognition package with

Google’s speech recognition API as the speech recognition
engine. This API has commands that will listen through the
system’s microphone, automatically recognize speech and end

its recognition when it hears silence. KATbot will be
“listening” for user speech only after we have probed the user
for input as mentioned above. Once the user has given the
input, the speech processing algorithm will pass the input to
the story generation algorithm which will generate the next
line of dialogue.

D. Embedded Processor
The robot will house a Raspberry Pi 4, which will be the

main processor that will communicate with the peripherals
and handles the speech processing, text to speech, robot arm
motion planning, and user-facing display algorithms. With
four USB ports, a 40 pin GPIO header, 2 HDMI ports, and a
four-pole audio port, it has the necessary ports needed for all
the peripherals in this project. In addition, with a quad core
Cortex A72 CPU and 4GB of RAM, it has sufficient
processing power for the necessary algorithms.

E. Robot Body
The custom-made robot will have a laser-cut acrylic frame

with a 3D-printed and/or cloth shell. It will house the
processor, peripherals, and batteries. To house all of these
components, the robot body’s dimensions will be 8 inches by
8 inches by 10 inches and the robot’s head’s dimensions will
be 6 inches by 6 inches by 9 inches.

Fig. 6. Dimensions of the Custom-made Robot

F. Robotic arms
The robot will have two one-degree-of-freedom arms. Each

arm will be about 6 inches long. To meet the torque
requirement of 2.04 kg/cm for the motors for the robot arms,
we will use servo motors, since standard servo motors provide
a torque of 4.4 kg/cm at 4.8 volts.

 8
18-500 Design Document: 03/02/2020

Fig. 7. CAD of the Robot Arm Frame

G. Peripherals

1. Microphone

We will use a conference table microphone with
omnidirectional pickup pattern and a 11.5 foot pickup
distance that will connect to the Raspberry Pi via USB. We
have decided on this microphone because we believe that the
users of KATbot will be interacting with it at a similar
distance to that which a conference microphone can pickup.
An omnidirectional microphone also helps if the user decides
to move around while interacting with the robot.

2. Speaker

For our speakers we have decided to use a set of speakers
from a previous 18-500 group. We have decided to use them
because they are small enough to fit in the base of the robot
and will work for our purposes. Since they come from a
previous 18-500 group, we do not have to purchase speakers
for this project which reduces the cost of KATbot.

3. Text and Eyes Displays

The display for the text will be on the body of the robot. It
will be 3 inches by 5 inches. The robot will have two 2.3
inches by 1.4 inches displays for the eyes. The text display
will be connected to the Raspberry Pi via USB and the eye
displays will communicate with the Raspberry Pi using SPI
protocol.

H. Story Generation Algorithm
The storytelling algorithm that KATbot uses has three main

components. The first is generating the barebones templates
for the stories. By using templates, we can have more control
over cohesion and a fixed story length since we are building
off of actual short stories. To customize the story, we will
remove all the keywords that drive the narrative and fill them
in as we go instead. The next component is the user input,
which the algorithm will receive word by word from the
speech recognition module. The last component is word

prediction, which builds off of the user input to complete the
sentences and tailor the story.

 9
18-500 Design Document: 03/02/2020

Fig. 8. Storytelling Generation Model

 10
18-500 Design Document: 03/02/2020

1. Template Generation

The templates will be based on Aesop’s Fables. We have a
collection of 177 fables that are each about 5-7 sentences
long. The vocabulary is approximately at preK-3rd grade
level. For the scope of this project, the robot will match this
level by using a similar vocabulary list for filling in the blank
and customizing the story. For the minimum viable product
(MVP), all template generation will be done manually.
Creating the templates has three main steps:

a. Marking words for user input and FitBERT input. There
should be at most one of each input type for each sentence or
clause. User input blanks should be prompted by some
context, so the user will have some basis in choosing words.
FitBERT input blanks should have some relationship with the
user input, so that the user can feel like they are in charge of
the story while maintaining cohesion.

b. Rewording text, if needed, for more clear word
relationships. This includes changing parts of speech and
matching phrases throughout the story for more cohesion.
This step helps FitBERT make more educated decisions when
filling in the blanks.

c. Restructuring text for more context. For optimal
performance, any algorithm or user input should be near the
end of the sentence so there is more context for choosing a
word. For cases where the key words are concentrated at the
beginning, the sentence structure should be rearranged for this
purpose.

Here is an example of a fable turned into a template:

Original Template

A Nightingale sitting on the
top of an oak, singing her
evening song, was spied by
a hungry Hawk, who
swooped down and seized
her. The frightened
Nightingale prayed the
Hawk to let her go.

“If you are hungry,” said
she, “why not catch some
large bird? I am not big
enough for even a
luncheon.”

“Do you happen to see
many large birds flying
about?” said the Hawk.
“You are the only bird I
have seen to-day, and I
should be foolish indeed to
let you go for the sake of
larger birds that are not in
sight. A morsel is better
than nothing.”

A Nightingale sitting on the
top of an **USER-R** ,
singing her **FB-R** song,
was spied by a Hawk that was
USER-R, who swooped
down and seized her.

“If you are hungry,” said the
Nightingale, “why not catch
some **USER-1** bird? I am
not
FB-1 enough for even a
luncheon.”

“Do you happen to see many
FB-1 birds **USER-R**
about?” said the Hawk.
“You are the only bird I have
seen today, and if I let you go
for the sake of **FB-1**
birds that are not in sight, I
would be **USER-R**. A
FB-1A bird is better than
nothing.”

Fig. 9. Example template from “The Hawk and the Nightingale”

Each input is either ‘USER’ or ‘FB’ (FitBERT) and the
relationships between words are indicated with numbers or
‘R’ for standalone words. A number followed by ‘A’ indicates
antonyms, and just a number indicates a synonym or the same
word.

2. FitBERT input

FitBERT is the open-source, fill-in-the-blanks version of
BERT (Bidirectional Encoder Representations from
Transformers). It works by taking in a list of words and a
sentence with a blank and ranking the words in order of best
fit into the sentence. Then, it outputs the full sentence with the
word inserted. For KATbot’s algorithm, the input will be the
templated sentence or sentence phrase with any user inputs
already entered (i.e. one blank left). There are two cases of
FitBERT inputs. First, the input is not dependent on user input
and is random to set the tone of the story (for story variety). In
this case, the list of words will be the entire corpus matching
that part of speech, taken from a preK to 3rd grade vocabulary
list. Second, the input is dependent on user input and tries to
promote cohesion. In this case, the list will be either be the

 11
18-500 Design Document: 03/02/2020

user input and a select number of synonyms or a list of
antonyms, based on what kind of input the word blank needs.
Once FitBERT has selected a word, it will be fed through
FitBERT’s grammar correction algorithm to handle any
discrepancies in conjugation.

3. User Input

The start of the sentence will be spoken by KATbot, and the
missing input will be denoted with a change in voice and its
part of speech. If the user needs more clarification of the part
of speech, there will be a command word indicated in the
directions that the user can use for more information. Once
the user says a word, the word will be compared to the desired
part of speech. Small grammatical mistakes will be forgiven,
such as singular vs. plural or a mistake in verb conjugation.
These mistakes will be handled with FitBERT’s grammar
correction tool. If there is no match in part of speech, KATbot
will output an error statement and give the user another
chance. Upon completion of the story we will ask the user if
they would like to hear the story in full, tell another story or
end the session.

Our user experience will look like the following chart:

Fig. 10. User Flow Chart

Once all inputs, user and FitBERT, have been provided, the
full sentence will be delivered to the text to speech module
and KATbot will finish saying the sentence. While doing so,
the algorithm can go ahead and start filling in any FitBERT
inputs for the following sentences.

VI. Validation Plan

A. Component Testing

1. Machine Learning

For part of speech detection, the 90% accuracy goal will be
tested with a random test dataset of words of a preK to 3rd
grade vocabulary level and a random subset of sentences from
the story templates to provide context. This component will be
tested for both syntactic and semantic accuracy, by checking
if the word input matches the general part of speech that is
asked for (e.g. ‘dog’ for noun) as well as if it makes logical
sense in the sentence (e.g. action verbs vs. linking verbs).

For synonym generation, the 85% accuracy level will be
conducted similarly with a random test dataset of words from
a preK to 3rd grade vocabulary list. Accuracy will be judged
by cross listing the generated synonyms and antonyms with
those from a thesaurus.

2. Speech Recognition Word Error Rate

WER is defined as the number of substitutions, insertions,
and deletions over the total number of words to be recognized.
To measure how well our speech recognition system is doing
we will count substitutions, insertions and deletions while
users interact with KATbot and calculate WER per session.

3. User Interface

Since this product is aimed for children, it is extremely
important to have a clean and engaging user interface. The
user interface includes the robot’s aesthetics, robotic arms, the
displays, and the audio output. All of these factors tie in
together to create a friendly and interactive robot. We will
validate this with the user satisfaction survey, which is
described below.

B. System Testing

1. System Latency

For system latency, the 4 - 6 second maximum latency will
be tested by measuring the total amount of time between when
the user has finished responding to a prompt from the system
to when the system starts saying the next line of dialogue.

Below is a table of latency estimates from our own testing.
We are still missing measurements for synonym generation,
FitBERT fill in the blank latency, and data transfer latency
from the Raspberry Pi to the laptop and back. To get the pitch
shifting latency we used a python package and measured how
long it took to run, however we will be writing our own pitch
shifting algorithm, so the current value is just an estimate.

 12
18-500 Design Document: 03/02/2020

Table 1. Latency estimates for KATbot system

Component Time Measurement method

Part of Speech
Detection for
user input

0.07242 sec Average over 6 inputs
with one correct and
one wrong input for
each of 3 random
sentences

Text to Speech
Processing
Latency

0.012 sec Average over 6 trials of
taking text input and
writing to an audio
output file for a 17
word sentence.

Pitch Shifting 0.003 sec Average over 6 trials of
pydub pitch shifting
program

2. Power

The goal of running for 30 - 45 minutes on battery power
will be tested by interacting with KATbot for at least that
long. We will also be doing power calculations for all
components within KATbot to ensure that it can run for the
required period of time with the batteries that we have chosen.
We will measure the power draw of all components, and then
buy batteries with enough power to meet the 30 - 45 minutes
requirement.

So far, we have calculated the power draw of individual
components to estimate power consumption. Before buying
batteries, we will measure power consumption for a more
accurate result.

Table 2. Current, Voltage, and Power Calculations for Hardware

Component Current
Draw

Voltage Power
Consumption

Raspberry Pi 4 1A 5V 5W

Text Display 0.25A 5V 1.25W

Eyes Displays 20uA (10uA
each)

3.3V 66uW

Servo Motor 0.09A* 4.8V 0.43W

Speaker 0.25A 5V 1.25W

Microphone 0.5mA 5V 2.5mW

*For the servo motor, the current draw is dependent on
whether it is in use. For these calculations, we assumed that
the robot arm moves no more than 5 seconds for every
minute. The current draw in an idle state is 7mA. The current
draw when moving can go upto 1A. The current listed above
is the amortized current draw.

Our estimated power consumption is 7.9W.

3. Story Cohesion

Story cohesion will be evaluated relative to the original
stories that the templates are derived from, Aesop’s Fables,
and versions of the templated stories with random inputs.
There are five variables related to narrative cohesion that we
will look for during this evaluation: logical sense, themes,
genre, narrator, and style [18]. We will find volunteer graders
to keep bias out of the testing process. First, each of the fables
will be rated on a scale for each of these variables. Then, we
will generate pseudo random stories, and ask the graders to
evaluate them, to mimic the lowest possible cohesion we can
attain. To simulate randomness, we will take random inputs
from vocabulary lists to fill our story templates, still matching
part of speech, as opposed to an actual user or an algorithm
making educated choices. The last group of stories will be
created by a separate group of users that will generate them
using KATbot. The story cohesion score that we will aim for
with this last group will fall within the range of the random
input score and the original story score.

4. User Satisfaction

An important part of our project is user satisfaction. Our
project was inspired by an MIT robotics group’s interactive
storytelling robot so we want to be able to match their metrics.
They evaluated their robot on several different characteristics
which we would like to match. This included 87.5% of users
liking the stories, 100% wanting to play again, 87.5%
believing that the robot was friendly, 87.5% believing the
robot’s stories were interesting, and 100% of the users rating
the robot’s stories as understandable. We plan to implement
this system testing by giving the users surveys after each use
and having them rank how they felt about each of the above
categories on a scale from 1 to 10.

 13
18-500 Design Document: 03/02/2020

VI. PROJECT MANAGEMENT

A. Schedule
Figure 11 below is the Gantt chart of our project. It includes

a schedule with the division of tasks per person, pair, and over
the whole team for the whole semester.

B. Team Member Responsibilities
Ashika is in charge of story creation and will construct all

the machine learning based algorithms. Jade is responsible for
the speech processing aspect and will handle both collecting
audio input and the text-to-speech capabilities. Abha will
build the physical robot, including integrating the peripherals
and working on the robot arms.

Jade and Ashika will work on integrating the speech
processing and story creation modules together, Abha and
Ashika will work on displaying the sentences on the robot’s
display, and Jade and Abha will work on text to speech with
the speakers in the robot. Everyone will work on testing their
individual components as they go, and everyone will work
together to test and evaluate the whole system.

C. Budget
Figure 12 below is the bill of materials for KATbot.

Overall, our spending consists mostly of buying peripherals
for the robot itself as well as raw materials to design the robot.

D. Risk Management

1. Story Creation

There are a few different potential points of failure for the
story creation. The first is that the sentences have too little
cohesion to work as a short story. To handle this risk, we are
limiting user input to one word per sentence or sentence
phrase, and choosing input blanks that are independent of the
previous sentences. This way, the bulk of the personalization
process stems from the algorithm, not the user. If the
algorithm is unable to fill in the blanks well enough for
cohesion, we can use templates that have fewer blanks
initially. The other potential problem comes up when
processing user input. If the user provides a word that fits the
part of speech we are looking for but does not actually make
sense with context (semantically), the robot may accept the
input but output a nonsensical story. To handle this, we will
need to strike a balance between specificity when asking for a
word type and keeping the number of potential inputs large
for more user control.

2. Internet Connection

The packages we have decided to use for speech
recognition and text to speech require internet connection.
Because speech is the method of user input and output for our

system, we need to ensure that if a stable internet connection
is not available, we need to have backups. To reduce this risk,
we will be installing speech recognition and text to speech
packages in KATbot. Specifically, we will be using
PocketSphinx for speech recognition and Flite for text to
speech.

 14
18-500 Design Document: 03/02/2020

IX. References

[1] Westlund, J. K. (n.d.). Storytelling Companion.
Retrieved from
http://robotic.media.mit.edu/portfolio/storytelling-co
mpanion/

[2] Fish, M. and Pinkerman, B. 2003. Language skills in
lowSES rural Appalachian children: Normative
development and individual differences, infancy to
preschool. J. Appl. Dev. Psychol., 235, 539-565.

[3] Duranti, A. and Goodwin, C. 1992. Rethinking
context: Language as an interactive phenomenon.
Cambridge University Press.

[4] Kory, J., & Breazeal, C. (2014). Storytelling with
Robots: Learning Companions for Preschool
Children’s Language Development. In P. A. Vargas
& R. Aylett (Eds.),

[5] Jiang, C., Wang, Z., & Yu, J. (2015). An Expressive
Eye Model: Using Eye Movement to Show Ocular
Emotional Expression. IFAC-PapersOnLine, 48(28),
1456–1461. doi: 10.1016/j.ifacol.2015.12.338

[6] Ruder, S. (n.d.). Part-of-speech tagging. Retrieved
from
http://nlpprogress.com/english/part-of-speech_taggin
g.html

[7] Hagiwara, M. 2008. A supervised learning approach
to automatic synonym identification based on
distributional features. In Proceedings of the 46th
Annual Meeting of the Association for
Computational Linguistics: Human Language
Technologies, pp. 1–6, Columbus, Ohio, USA.

[8] Këpuska, V., & Bohouta, G. (2017). Comparing
Speech Recognition Systems (Microsoft API, Google
API And CMU Sphinx). International Journal of
Engineering Research and Applications, 07(03),
20–24. doi: 10.9790/9622-0703022024

[9] Kennedy, J., Lemaignan, S., Montassier, C.,
Lavalade, P., Irfan, B., Papadopoulos, F., Belpaeme,
T. (2017). Child Speech Recognition in
Human-Robot Interaction. Proceedings of the 2017
ACM/IEEE International Conference on
Human-Robot Interaction - HRI 17. doi:
10.1145/2909824.3020229

[10] Yeung, G., & Alwan, A. (2018). On the Difficulties
of Automatic Speech Recognition for
Kindergarten-Aged Children. Interspeech 2018. doi:
10.21437/interspeech.2018-2297

[11] Children and Age-Appropriate Attention Spans.
(2016, September 22). Retrieved from
https://www.speechtherapycentres.com/children-and-
age-appropriate-attention-spans/

[12] Bull, M., & Aylett, M. (1998). An analysis of the
timing of turn-taking in a corpus of goal-oriented
dialogue. In Proceedings of the fifth international
conference on spoken language processing (ICSLP
‘98), Sydney, Australia, (Vol. 4, pp. 1175–1178).

[13] Jeffrey, C. (2019, December 6). AI driven text
adventure game give players true non-linear
gameplay. Retrieved from
https://www.techspot.com/news/83072-ai-driven-text
-adventure-game-give-players-true.html

[14] McCoy, N. (2016, October 27). Evaluating NLTK
Taggers Tutorial. Retrieved from
https://natemccoy.github.io/2016/10/27/evaluatingnlt
ktaggerstutorial.html

[15] Comparison of Python NLP libraries:
ActiveWizards: data science and engineering lab.
(n.d.). Retrieved from
https://activewizards.com/blog/comparison-of-pytho
n-nlp-libraries/

[16] Shmyrev, N. (n.d.). Building an application with
PocketSphinx. Retrieved from
https://cmusphinx.github.io/wiki/tutorialpocketsphin
x/

[17] Moulines, E., & Charpentier, F. (1990).
Pitch-synchronous waveform processing techniques
for text-to-speech synthesis using diphones. Speech
Communication, 9(5-6), 453–467. doi:
10.1016/0167-6393(90)90021-z

[18] Hargood, Charlie, Millard, David and Weal, Mark
(2011) Measuring Narrative Cohesion: A Five
Variables Approach. Narrative and Hypertext
Workshop at Hypertext 11.

http://robotic.media.mit.edu/portfolio/storytelling-companion/
http://robotic.media.mit.edu/portfolio/storytelling-companion/
http://nlpprogress.com/english/part-of-speech_tagging.html
http://nlpprogress.com/english/part-of-speech_tagging.html
https://natemccoy.github.io/2016/10/27/evaluatingnltktaggerstutorial.html
https://natemccoy.github.io/2016/10/27/evaluatingnltktaggerstutorial.html
https://activewizards.com/blog/comparison-of-python-nlp-libraries/
https://activewizards.com/blog/comparison-of-python-nlp-libraries/
https://cmusphinx.github.io/wiki/tutorialpocketsphinx/
https://cmusphinx.github.io/wiki/tutorialpocketsphinx/

 15
18-500 Design Document: 03/02/2020

Fig. 11. Gantt Chart

 16
18-500 Design Document: 03/02/2020

Fig. 12. Bill of Materials

