
18-500 Final Report - May 8, 2019 Page 1 of 11

Scalable Machine Learning Using FPGAs
Authors: Mark Gorelik, Theodor Johansson, Jared Rodriguez: Electrical and Computer Engineering, Carnegie Mellon

University

Abstract—A system capable of training many ma-
chine learning models quickly and at a lower price point
than modern GPUs.

Index Terms—Machine Learning, Distributed Sys-
tems, FPGA, GPU

1 INTRODUCTION

Currently, machine learning research involves solving
the dual problems of hyper-parameter optimization and
feature selection, and solutions to these problems always in-
volve expensive guess-and-check procedures. These guess-
and-check procedures always have the same form: a set of
models with different hyper-parameters is trained on vari-
ous transformations of a data set, and some procedure as-
sesses their quality when deciding which models to train
next.

The current norm is to train these models in parallel on
a GPU because CPU computing is much slower. Machine
Learning researchers tend not to have funds for their own
GPUs, so many departments use a communal cluster, which
results in crowded infrastructure and long wait times.

The goal of this project is to develop a system that can
train a large number of machine learning models in a short
amount of time at a lower price point than a GPU. We
measure this with a metric that we call ”model through-
put”: The number of models trained from start to finish
divided by the amount of time taken. We verify our system
with a written benchmark suite of models to be trained on
a nonlinear function defined in our benchmark file, using a
suite of models that are representative of the size of models
used in embedded systems.

2 DESIGN REQUIREMENTS

In order to exploit data locality, we must be training
more than one model on the same input sample on the
same FPGA at a single point in time. Our design con-
sists of a Data Source Machine, a Worker Board, and a
bus between the two. Since hyper-parameter optimization
and feature selection are memory-hard problems, our main
constraint is the throughput on the SDRAM bus on the
Worker Board. Our implementation exploits data local-
ity by training multiple models on one board: the largest
model in our benchmark suite requires 3.5MB for weights,
gradients, and intermediate space.

From the user’s point of view, our system needs to sat-
isfy the following requirements:

• User can assign a set of models to a cluster of Worker
Boards

• User can stream input data points to the cluster, and
the relevant models on relevant board will train on
those points

• User can retrieve metrics such as loss and accuracy
regarding models on any board at any time

• User can retrieve model weights from any model on
any board at any time

Our overall metrics are model throughput and model
throughput per dollar:

Let N be the number of models, T be the amount of time
taken to train every model, and C be the cost of the

system that trains the models.

Throughput =
N

T
(1)

Throughput per dollar =
N

T ∗ C
(2)

After the move to online learning, we developed a con-
tingency plan to calculate these values using simulated
cycle counts. The equation we use to calculate model
throughput is described as:

Due to our difficulty in building an integrated system,
all of the hardware metrics (and therefore, overall metrics)
that we present in this paper are calculated using simulated
cycle counts.



18-500 Final Report - May 8, 2019 Page 2 of 11

3 ARCHITECTURE OVERVIEW

3.1 Important Terminology

3.1.1 Data Pipeline

A Data Pipeline is a function that is applied to an in-
put and extracts features which are then used as input to
a neural network. Our system will have two data pipelines:
the identity transformation and the grayscale transforma-
tion. We chose these two pipelines to demonstrate that our
system can train suites of models that process different fea-
tures. In the end product, the user will be able to specify
their own data pipelines and assign their own models to
them.

3.1.2 Worker Board

A ”Worker Board” is simply an abstract term for a com-
puter (or group of computers) that connects to Ethernet
and communicates as a worker using our Transport Layer
Protocol [1]. In our implementation, a Worker Board is
a Raspberry Pi with a GPIO connection to a DE0-Nano
board.

3.1.3 Memory Handle

An efficient compute system should avoid copying data
and simply pass pointers to data wherever possible. In our
implementation, these pointers are called ”memory han-
dles”, since they also contain control signals for memory
units. In code, a memory handle is:

The memory handle struct contains information about a
region of memory that is not to be shared with any other
memory handle. What this means is that no model will
ever read to or write from another model’s weight, gra-
dient, or intermediate space. This assumption allows us
to implement write-back caches, which reduce traffic on
shared memory buses and increase model throughput.

3.2 System Design

Figure 1 in Appendix A shows our Top-Level Block Di-
agram. Our architecture is divided into three components:
Software, Bus, and Hardware, which were chosen so that
work could be efficiently divided between all three group
members.

3.2.1 Software

The software side includes the point of interaction be-
tween the user and the system. This is where the user will
define the datasets to be used, the transformations to be
applied to the inputs, and the models that will be trained.
This information is sent via a Python API to a Workload
Manager, which assigns models and data pipelines using
Algorithms 1 and 2 below.

We chose to use a Python API for interaction between
the user and the system because an API would be easy for
us to write and will explicitly satisfy all of the user-level
requirements listed in section (2).

The Workload Manager will facilitate interactions with
the Worker Boards using the Transport Layer Protocol we
wrote and described in [1]. The Workload Manager is in
charge of assigning data pipelines and models to boards,
using Algorithms 1 and 2 below.

Algorithm 1: Allocation of data pipelines to
boards to ensure equitable distribution

Result: Data pipelines will be assigned to boards
in an equitable fashion.

for dp in data pipelines do
calculate proportion of models assigned to dp;

end
for board in available boards do

calculate proportion of model managers assigned to board;
end
for dp in data pipelines do

while dp.proportion of managers
dp.proportion of models do

Assign dp to the first available board;

available boards = available boards[1:];

dp.proportion of managers +=
board.proportion of managers;

end

end

The algorithm above assigns data pipelines to boards
in an equitable manner, meaning that data pipelines with
more work that needs to be done will have more comput-
ing power assigned to them. This necessity manifests in the
attribute that a data pipeline with Pm percent of models
that need to be trained is assigned to boards whose model
managers sum up to around Pm percent of model managers
in the system. This design decision was made because it
will maximize model throughput: in order to do so, work
must be divided equitably in the system.



18-500 Final Report - May 8, 2019 Page 3 of 11

Algorithm 2: Allocation of models to boards to
minimize unused resources
Result: Models will be assigned to boards in a

way that will reduce the amount of idle
resources.

for dp in data pipelines do
untrained models = dp.models;
sort untrained models in decreasing order by size;
while untrained models not empty do

for model in untrained models do
if board has space for model then

assign model to board;
end

end

end

end

In accomplishing the same goal of maximizing model
throughput, we wrote the Algorithm 2 to pack as many
models as possible on a single board at once. In order to
maximize model throughput, we must allow as few model
managers to be idle as possible at any point in time, and
thus we must maximize utilization of the model managers
on a board. Since we are constrained by both model mem-
ory requirements and the number of model managers on a
given board, our algorithm will simply assign models to a
board until either (a) the board runs out of model man-
agers or (b) all of the models remaining require more mem-
ory than is available on the given board. Unfortunately, we
were not able to implement these algorithms in time. As
a result, the current code alternates assignment between
the available boards, making sure all boards have an even
amount of models.

3.2.2 Bus

The bus manages the physical connection and data
transfer between the data source machine and the Worker
Boards. Packets are routed via TCP/IP over Ethernet con-
nected to an unmanaged switch organized in a star topol-
ogy.

For high throughput, the Worker Boards use a gigabit
Ethernet connection. The current boards do not have an
Ethernet PHY chip, instead connecting to a Raspberry Pi
via SPI bus operating at the maximum clock speed avail-
able for reliable transfer. The SPI bus acts as the main
bottleneck, not reaching the potential throughput of the
Ethernet connection, but is still fast enough to support
necessary data transfer.

3.2.3 Hardware

Originally, we planned to support convolutional and
other supporting layers (i.e. MaxPool, Flatten) in our sys-
tem. After the move to online learning, we realized that
the amount of work that would entail, and we decided to
move convolutional layers out of scope and focus on build-
ing the architecture before implementing complex convo-

lution operations. Our final system does not support the
convolutional and supporting layers.

The core component of the Hardware System is the
FPGA board that performs computation. The definition
of ”Worker Board” includes a Raspberry Pi that interfaces
with the Ethernet bus and IP network, but the Raspberry
Pi is included in the Bus component of the project because
the Hardware component is very complex and we need
to distribute work equally between group members. The
FPGA board interacts with the Raspberry Pi over GPIO,
which is to be implemented as part of the Bus component
of the project.

The Hardware System itself has four core components
that are synthesized onto the FPGA chip. There is a Data
Pipeline Router, which facilitates interaction with the Soft-
ware System over the Bus System. The Data Pipeline
Router interacts with a bank of Model Managers, which
individually control the training process for a single model.
The Model Managers and Data Pipeline Router both have
connectivity to the Memory Management Unit, which fa-
cilitates reads and writes to both the M9K blocks and the
SDRAM chip in a universal address space. Each Model
Manager will expose its connections to the MMU to a port
on the FPU Bank, which will control the matrix compu-
tations involved in training a model and will drive signals
going to the MMU.

In our ideal solution, there is more than one model per
data pipeline assigned to a given board. Thus, it makes
the most sense to have the Data Pipeline Router write in-
put samples to on-chip memory and simply expose memory
handles to the relevant Model Managers, thereby eliminat-
ing redundant writes, saving memory, and ultimately in-
creasing model throughput.

There are too many memory handles in the system
to have each connected to SDRAM or M9K control sig-
nals. Therefore, it makes sense to have the MMU contain
SDRAM and M9K controllers that iterates round-robin
over memory handles and service requests in serial. This is
a necessary feature of the system, and there is no reason-
able workaround. The SDRAM chips on the DE0-Nano can
store 32MB, whereas our largest model takes approximately
3.5MB for weights, gradients, and intermediate storage.
Storing multiple models on one board will not be an is-
sue.

Our FPU system should be agnostic to the number of
FPUs that can be synthesized onto the hardware. Since we
want to have the model managers idling for as little time
as possible, our design contains one FPU Job Manager per
Model Manager on the board.

4 DESIGN TRADE STUDIES

4.1 Board Selection

Our system needs an FPGA chip with headers for
GPIO. There are many such available chips, but since we
care about the price of our setup, we aimed to buy the



18-500 Final Report - May 8, 2019 Page 4 of 11

simplest boards that we could. The DE0-Nano turned out
to be one of the better options because it was cheap ($69),
contains hardware that we are familiar with (Cyclone IV
chip), and are stocked by the ECE department. The DE10-
Nano board was another good option because it remains
low-price ($110) and has a built-in network stack, but the
uncertainty of learning to use this physical layer posed a
risk. At the end, we decided that it was safer to write a
GPIO transport protocol between a Raspberry Pi and a
DE0-Nano board.

4.2 Transfer Protocol

The system requires bidirectional data transfer between
the Worker Boards and the host software. Our first con-
sideration was to use a CAN bus, however the low data
throughput led us to reconsider and settle for Ethernet.
Currently each board requires an Ethernet controller for
each Worker Board, raising the cost of individual workers
in exchange for the large boost in throughput.

Between the Raspberry Pi and the workers, a simpler
protocol was necessary. The initial protocol featured a 16-
bit wide, asynchronous bus for data transfer to the worker,
with an 8-bit wide bus for data from the worker. Early
tests and library research revealed that the Raspberry Pi
had lower expected throughput due to the time required
to toggle individual pins. Further considerations involved
libraries native to the Raspberry Pi, namely I2C and SPI.
SPI has the higher throughput of the two, and therefore is
present in the current design.

4.3 Software

One of the main design choices for the Software portion
of the project was deciding what language to write our code
in. We agreed on using Python for several reasons, primar-
ily due to familiarity with coding languages and level of
complexity. Python and C were the immediate front run-
ners since all three of us had equal familiarity in both those
languages as opposed to Java or other high level program-
ming languages. Although C programs execute faster than
Python programs, it is much easier to write code in Python
due to syntax and memory management, which is an im-
portant factor as as user will also be expected to write some
code in order to add their ML models to their respective
pipelines. Additionally, Python is much easier to debug
and error check as opposed to C, making it easier for both
ourselves and our users to validate the correctness of the
code.

4.4 Matrix serialization

Initially, our plan was to implement convolution opera-
tions to support Convolutional, MaxPool, and Flatten Lay-
ers that enable image processing. In order to use the fastest
memory access patterns, we needed to access memory in
straightforward incremental walks from one address to an-
other. In the convolution forward, backward, and gradient

operations, these could be made faster if the next mem-
ory location to be accessed (i.e. the next output channel)
was at the current index in memory plus one word. For
4-dimensional filter tensors which are indexed by [output
channels][input channels][height][width], this meant storing
the tensor in column-major order. We made this decision
uniform across the system, and all tensors (regardless of
dimension) are stored in column-major order.

4.5 Scratch Memory

For any forward/backward/update pass, temporary
memory regions must be allocated for the output of each
layer, gradients of outputs, and weight and bias gradi-
ents for applicable layers. Our initial implementation
placed these values in SDRAM, but after seeing our fi-
nal model throughput, we decided to try using M9K for
these scratch spaces. Below is a graph of the cycle counts
for SDRAM and M9K scratch spaces, showing different
counts based on the number of models present on the board.

Using M9K memory for scratch space will always use fewer
cycles than SDRAM, and the cycle counts increase with
a smaller slope than does the SDRAM-only implementa-
tion. At the beginning, we opted against this approach
so that we would have on-chip memory to spare for the
packet buffer, but it has become clear that further utilizing
on-chip memory is necessary to increase model throughput.

5 SYSTEM DESCRIPTION

Our system is complex, so it is easiest to describe how
the system components work together throughout the pro-
cess of model training, which begins when the end user
starts making calls to our Python API as described in Fig-
ure 3.

5.1 Software

First, the user defines the following:

• Data Sets

• Data pipelines

• Models and their relationships to pipelines



18-500 Final Report - May 8, 2019 Page 5 of 11

• An information retrieval process

Before the Workload Manager can distribute any data
pipelines or models to Worker Boards, it needs information
on how many boards are in the network and how to address
them. The Worker Finder will expose a database of ac-
tive Worker Boards and their IP addresses to the Workload
Manager. It will find active Worker Boards by broadcast-
ing UDP packets to the IP network on which the Worker
Boards are listening and record any responses it receives.
This occurs once, before training time.

Before the training loop executes, the Workload Man-
ager component of the software system will assign each data
pipeline to available Worker Boards, which it discovers by
interacting with the Worker Finder component of the soft-
ware system. Using the Transport Layer Protocol defined
in [1], the Workload Manager will assign a set of models
to each Worker Board. During the execution of the train-
ing loop, the Workload Manager will stream data points in
batches to relevant workers, where they will be queued in
software on a Raspberry Pi before being sent over GPIO
to the Data Pipeline Router on the FPGA. After train-
ing completes, the user’s code will call API routes that re-
trieve model weights and metrics from the Worker Boards
as shown in the code in Figure 3.

5.2 Software Metrics

5.2.1 Network Model Serialization Latency

This latency describes the amount of time it takes for
the software side to parse through a model and serialize it
to the format that we had specified in the Transport Layer
Protocol. Below are the timings for each of the thirty mod-
els we defined for our test bench. The average serialization
time was 0.026 seconds with a standard deviation of 0.018
seconds. Models that have more or larger linear layers tend
to have larger serialization times.

5.3 Bus

The Worker Finder broadcasts discovery messages
across the bus, listening for responses to tally available
Worker Boards. Each Worker Board responds with the
number of available Model Managers it hosts. The Worker
Finder then contributes the received data to the Worker

Manager to divide the workloads. Once training begins,
the bus facilitates all communication between the host and
Worker Boards.

5.4 Bus Metrics

5.4.1 Throughput

With a single Worker Board, the Raspberry Pi and
the hardware SPI client cooperate to translate the mes-
sage from the speed of the gigabit connection to the speed
of the FPGA internal clock. Due to limitations of the
GPIO headers on the Raspberry Pi, the SPI operates at
a maximum rate of 15.6 MHz. Furthermore, additional
overhead in computation limit the effective transfer rate to
12.8 Mbps, or 1.6 MB/s.

5.4.2 Transmission Latency

This latency describes the amount of time it takes to
send a serialized model over the bus and store it in mem-
ory on the Worker Board. Larger models were sent more
efficiently due to overhead on the Raspberry Pi per model.

5.5 Hardware

There are four core components of the Hardware Sub-
system: The Data Pipeline Router, the Model Manager,
the Memory Management Unit, and the FPU Bank.

5.5.1 Data Pipeline Router

The connectivity of the Data Pipeline Router.



18-500 Final Report - May 8, 2019 Page 6 of 11

There are three core interactions between the Worker Board
and the Data Source machine: model and pipeline assign-
ment, input data streaming, and metric/weight retrieval.
These use cases will be fulfilled by the Data Pipeline
Router, which facilitates interactions between the Worker
Board and any other components in the system.

Before training, a set of data pipelines are assigned to
each Worker Board. It is possible to train models from
different pipelines on the same board, but extra bus band-
width would have to be used to stream input data from two
sources to the board, so this is a less efficient decision than
to simply train many models from the same Data Pipeline
on one Worker Board.

After being assigned a Data Pipeline, the Data Pipeline
Router will have a set of models assigned to it. Each of
these models will have initial weights sent to it by the
Workload Manager – this decision was made to allow for
custom weight initialization methods and to avoid having
to implement pseudo-random number generators in hard-
ware. Upon receiving a model on the bus, the Data Pipeline
Router will write the initial weights to off-chip SDRAM and
expose a memory handle to a free Model Manager. The
Model Manager is then assigned to the given model, and
will be sent input data samples for the given model as they
arrive.

Once models have been assigned, the Worker will start
to receive training samples from the Workload Manager.
The Data Pipeline ID is sent in the same packet as its cor-
responding sample, so the Data Pipeline Router will know
which models need to be trained on a given input. Upon re-
ceiving the sample, the Data Pipeline Router will write it to
on-chip M9K memory (for single-cycle read), and will pass
a memory handle pointing to it to each Model Manager that
is training on the given Data Pipeline. The relevant Model
Managers will then perform a forward/backward/update
step using the given input.

5.5.2 Model Manager

The Model Manager FSM.

Upon receiving an input sample, a Model Manager will
train on it according to the Stochastic Gradient Descent

algorithm. Specifically, the model will perform a forward
pass (calculating intermediate layers and model outputs),
a backward pass (calculating weight gradients), and an up-
date pass (updating weights based on their gradients). In
doing so, the Model Manager will set control signals to its
port in the FPU Bank, which will perform matrix calcula-
tions.

Connectivity between a Model Manager and a port on the
FPU Bank.

5.5.3 FPU Bank

The FPU Job Manager FSM. The FPU Bank itself is not
a state machine – it is merely a shell around a bank of

FPU Job Managers.

The FPU Bank has one port for each model manager and
services requests that come in through these ports using a
bank of FPU Job Managers, which each have an assigned
Model Manager. Every Job Manager will be capable of per-
forming any FPU operation that the Model Managers can
request. In doing so, the Job Manager will drive the mem-
ory control signals in the memory handles exposed to it in
order to read and write from necessary regions in memory.

The following FPU operations are supported:

z = Wx+ b (linear forward) (3)



18-500 Final Report - May 8, 2019 Page 7 of 11

∂L

∂x
= W ∗ ∂L

∂z
(linear backward) (4)

∂L

∂W
= x ∗ ∂L

∂z
(linear weight gradient) (5)

W = W + λ
∂L

∂W
(linear weight update) (6)

∂L

∂b
= 1 (linear bias gradient) (7)

b = b+ λ
∂L

∂b
(linear bias update) (8)

z = ReLU(x) (ReLU forward) (9)

∂L

∂X
= ReLU bw(

∂L

∂z
) (ReLU backward) (10)

L =
∑
i

(yi − ŷi)
2 (MSE forward) (11)

∂L

∂ŷ
= −2(

∑
i

(yi − ŷi)) (MSE backward) (12)

This list has changed since our Design Review Document
in that we have removed convolutional, max pool, and flat-
ten layers, but also in that we have switched Cross Entropy
and Softmax for Mean Squared Error, which is much easier
to implement in hardware.

5.5.4 MMU

The Hardware System Memory Hierarchy. The MMU has
no control FSM, and is simply a shell around the Memory

Port Managers and the SDRAM/M9K controllers.

Finally, the Memory Management Unit (MMU) services
write and read requests to and from both on-chip M9K
memory blocks and off-chip SDRAM. Every memory han-
dle that exists in the Data Pipeline Router and Model Man-
agers will have a memory handle port, which interfaces with

the MMU. Each memory handle port has a memory port
controller, which maintains a small memory cache. If the
address coming in points to a place within the cache, then
the read or write will be made from or to the cache in
the memory port handler. Since there are no regions in
memory that will have two components writing to them, it
is safe to implement a lazy cache write policy, where the
entire cache is written only once a request comes in that
misses the cache. This way, we hope to reduce bus traffic
on the SDRAM and speed up matrix computation.

The MMU will have two controllers that interface with
actual memory: the M9K controller and the SDRAM con-
troller. Because of the actual constraints defined by the
specifications for M9k and SDRAM components, there can
only be one controller for each of these, so they will iterate
round-robin over ports and service requests in an atomic
and serial manner.

5.6 Hardware Metrics

5.6.1 Model Assignment Latency

Model Assignment Latency is measured as the time
delta between an ASN MODEL packet begin presented
to the Data Pipeline Router and a model manager
reaching the ASSIGNED state after having the model
assigned to it. This is a one-time cost, so it has
very little effect on the model throughput compared
to recurring costs like Model Train Latency. For
our model suite, assignment latency varies from 0.1
to 27 milliseconds with an average of 6 milliseconds.

5.6.2 Model Training Latency

Model Training Latency is the largest cost in our sys-
tem because it will be encountered once for every batch to
be trained, or 12,500 times in our benchmark suite. Model
Training Latency varies depending on the number of layers
in a model, the size of each model, and the number of mod-
els being trained in parallel. The minimum latency found
was 1.4 milliseconds (Only one small model being trained
on a board) and 1,860 milliseconds (Eight models being
trained in parallel, with the largest model determining la-
tency for the entire group).



18-500 Final Report - May 8, 2019 Page 8 of 11

Model Training Latency is the main determiner of
Model Throughput for the entire system. We found that
our Model Train Latency is minimized when only two
models were being trained on a board, meaning that the
SDRAM sees a lot more usage than we expected. Our
caching system helps decrease the amount of traffic on the
SDRAM bus, but not as much as we hoped.

5.7 Overall System Metrics

5.7.1 Model Throughput

In the end, we found that our CPU and GPU bench-
marks had significantly higher model throughputs than our
FPGA system.

Our model throughput peaked when we were training
two models simultaneously.

We were hoping that the model throughput would peak
at a higher value, and when more models were being trained
on a board at once. The bottleneck in the final system is
the throughput on the SDRAM bus, which causes our FPU
operations to stall. We expected that the SDRAM Con-
troller spend much more time stalling than was actually
observed, and thus would allow increasing model managers

to increase the model throughput linearly. In reality, the
SDRAM Bus reached its peak utilization when only two
model managers were operating on a board at once. We
can reduce congestion on the bus by using M9K memory
as scratch space as described in subsection 5 of the Design
Trade Studies section, but getting the most out of the M9K
would require more optimizations than we have time for.
We have produced preliminary cycle counts for a 5x5 Linear
Layer that uses M9K memory for all scratch space, but the
speedup is not enough to make our system’s model through-
put comparable to those of the CPU and GPU. Since M9K
blocks are divisible in 8192-Kb blocks which are each dual-
ported, the M9K memory has much more potential than
what we are able to utilize by changing scratch space ad-
dresses to the M9K region of memory.

6 PROJECT MANAGEMENT

6.1 Schedule

Our Gantt chart is located in Figure 2. Our schedule
changed from the design review in that wehad to lengthen
many tasks, for example, the FPU Bank development.
Many things turned out to be harder than we expected,
and we had to accomodate by cutting into our planned
integration time.

6.2 Team Member Responsibilities

The project responsibilities are divided into three pri-
mary groups: Software, Bus Protocol, and Hardware. Mark
Gorelik is in charge of the Software portion, and focuses on
the Bus as a secondary responsibility. Jared Rodriguez is
the lead engineer on the Bus Protocol, and has Hardware as
a secondary responsibility. Theodor Johansson took point
on the Hardware portion of the project, and is focusing on
the Software aspect as a secondary task. As the semester
went on, Jared had increasing difficulty debugging the SPI
bus due to lack of equipment, and getting this bus work-
ing became the sole target of his effort. Along the way,
Theodor realized that he could not implement all opera-
tions necessary for Convolutional Layers alone, which were
ambitious to begin with. Thus, we restricted the FPU oper-
ations list to include only what was necessary to implement
linear feedforward neural networks.

6.3 Budget

A full breakdown of the prices of each part can be found
in Table 1 in the Appendix, but there are several notes
about these values. The total cost of the system is assum-
ing that no parts are able to be acquired from academic
or other types of discounts. This is an important value to
have because it is what it would cost a researcher to repli-
cate our system. On that note, we were fortunate enough to
be able to use two DEO-Nanos provided by the university
for free as well as purchase the remaining two FPGAs with
the academic listed price ($61), reducing our total cost to



18-500 Final Report - May 8, 2019 Page 9 of 11

Item Cost Quantity Total Cost
DE0-Nano Development and Education Board $79 2 $188

Raspberry Pi 2B $35 2 $70
NETGEAR 5-Port Gigabit Switch $33 1 $33

8-Pack 5-foot Cat5e Ethernet Cable $16 1 $16
Total $XXXX

Table 1: Costs of hardware

$311. We believe that we will use a certain portion of the
remaining budget on AWS credits in order to train our test
set of models on different GPUs as a form of benchmarking
and validation against our FPGA implementation. Addi-
tionally, because our project is designed to allow a variation
of the number of boards connected to the Network Switch,
the price can be reduced significantly by opting to work
with fewer boards.

6.4 Risk Management

After spring break, it was made clear that we would
have no more physical work sessions in the HH1307 where
we have easy access to resources to build the circuits needed
for the SPI bus implementation. As a result, we produced
a contingency plan that we could use to calculate model
throughput given simulated cycle counts needed for model
assignment time and model train time.

In the end, we did not get the SPI bus working in time
for us to completely integrate the system. Thus, all of the
hardware metrics in this paper are from simulated test-
benches.

7 RELATED WORK

There are a couple of hardware solutions such as
Google’s Tensor Processing Unit (TPU) [6] and the Intel
Neural Compute Stick [5], and these fill similar niches to
that of our project. However the TPU is built for deploy-
ing rather than training models. The Intel Neural Compute
Stick is expensive at $75, and we believed we could achieve
higher model throughput than this solution.

8 SUMMARY

While our software and bus components met their re-
quirements in preparing data for use by the hardware
component, the SDRAM bottleneck reduced our model
throughput below the benchmarks we set early in the
project. We could increase the model throughput of our
system by utilizing M9K memory more, but we did not
have time to do so.

8.1 Lessons Learned

An FPGA-based solution to hardware computation
should be dead simple (i.e. implement the bare minimum
number of operations) and should essentially represent a
fast memory architecture for making vectorized computa-
tion.
When using extra hardware like the Raspberry Pi, some
specifications do not represent real capability. The maxi-
mum speed for the SPI clock was much higher than that
capable of sending data.

9 Bibliography

References

[1] Mark Gorelik, Theodor Johansson, and
Jared Rodriguez. Transport Layer Proto-
col. https://docs.google.com/document/d/
1I2FRMwITUbSbkqIw w6eQ5OyxKJneer853 xG-
VAFtx5I/edit

[2] Mark Gorelik. Software Code.
https://github.com/CMU-18-500-
TeamTensor/Benchmarks

[3] Jared Rodriguez. Bus Code. https://github.com/CMU-
18-500-TeamTensor/SPI-Bus

[4] Theodor Johansson. Hardware
Code. https://github.com/CMU-18-500-
TeamTensor/HardwareWorker

[5] Intel, Inc. Intel Neural Compute Stick.
https://software.intel.com/en-us/neural-compute-stick

[6] Google, Inc. Cloud Tensor Processing Units (TPUs).
https://cloud.google.com/tpu/docs/tpus

10 Appendix



18-500 Final Report - May 8, 2019 Page 10 of 11

Figure 1: The Top-Level Block Diagram for the System.



18-500 Final Report - May 8, 2019 Page 11 of 11

Figure 2: Gantt Chart



18-500 Final Report - May 8, 2019 Page 12 of 11

Figure 3: Example code detailing exactly how the user will interact with the Python API.


