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Abstract: — A smart home system capable of functioning 

without connection to the internet or a central brain 

device. Modern smart home solutions largely have a 

central point of failure, being managed either by 

backend cloud server(s), by local “brain” devices, or a 

combination of the two. Should the cloud server, internet 

connection, or brain device go down, the system ceases to 

function. Our project aims to shift the interaction 

management and computing from the cloud server(s) 

and brain devices to the smart home devices themselves, 

so that the system can function without a connection to 

the internet. 

 Index Terms: 

● Brain: In modern IoT systems, the central 
processing point. Could be a backend cloud server 
or a dedicated device integrated into the smart 
home that functions as a central control. 

● Broker: Interactions are managed using an 
abstract publish / subscribe message queue. This 
message queue is managed by a central service 
(broker) that manages subscriptions and passes 
published messages to subscribers. 

● Database: Each node in the network will need to 
store information, such as sensor data, 
interactions, and user config. Database refers to 

the method by which each node will store this 
information locally. 

● Device: A node in the network that focuses on 

actuation; i.e., it causes an observable physical 
change in the environment. E.g. a smart light that 
can turn on or off, a smart coffee machine that can 
begin to make coffee, etc. 

● Interaction: An interaction is when data 
published by a sensor or shared by the system 
(such as the time) causes a device to perform an 
action. E.g. “If there is motion on my porch and 
it’s dark out, turn on the lights”. 

● Interaction Logic: The collection of interactions 
defined by the user, how they are stored within the 
system, and how they are managed so that the 
interactions happen as intended. 

● Master: The node(s) in the system that provides 
elevated functionality above other nodes, such as 
hosting the webapp or the broker. 

● Network: The collection of nodes that interact 

together to deliver the functionality typically 
described as a “smart home” 

● Node: Any piece of hardware in the smart home 
system that functions as part of the distributed 
system to deliver functionality to the user. 

● Sensor: A node in the network that focuses on the 
production and distribution of data, but not on 
causing physical change in the environment. E.g. 
a motion detector that reads data from the sensor 
and notifies the rest of the network about the 
change. 

● Sensor Data: Information collected and 
distributed by sensor nodes, intended to cause 
changes in the environment by device nodes. E.g. 
a reading from a motion detector or a light sensor. 

● System Config: The collection of data necessary 
for nodes to interact with other nodes in the 
system. E.g. network id, identity of master node, 
nodes in the network and their local ip address, etc. 

● User: The person who is interacting with the smart 
home system. E.g. a tech-savvy citizen who wants 
to automate their home without relying on the 

public cloud. 

● User Config: The collection of data necessary to 

define a user's system. E.g. the interactions list. 

● Webapp: The user-facing interface for 
monitoring and updating the smart home system. 

I. Introduction 

Since their introduction in the early 2000’s, smart 

home devices have become increasingly popular. 

Devices such as the Amazon Alexa, the Ring 

Doorbell, and the Phillips Hue lightbulb have changed 

how many people interact with their homes. The 

management of these systems is largely done using 

some combination of the following: 

1. Device sensor data is sent to a backend cloud 

server that keeps track of each device’s state. 

Depending on user defined rules, the server 

may signal the devices in the home and cause 

them to perform an action. 



2. Similar to the first method, sensor data is 

aggregated and sent to a central server. 

However this server is a device in the local 

smart home network, designated a “brain” 

device, that takes care of managing system 

interactions. 

3. Some combination of the above two methods. 

Cloud server can function as a backup of the 

brain device and a way for the user to interact 

with the system. 

This approach has a number of advantages. For 

example, it simplifies the system, as centralized 

solutions are generally easier to reason about and 
implement than distributed ones. It also becomes 

easier to add functionality to the system in the future 

by just updating the backend server, instead of 

requiring devices themselves to update. In addition, if 

any serious computation is required by the system 

(such as usage analytics), the backend can be scaled 

appropriately to provide the user a quick and seamless 

experience. 

That being said, this approach has some serious 

disadvantages, perhaps the largest of which is the 

central point of failure. If the connection to the brain 
goes down, either by failure of the brain device or if 

the system loses connection to the internet, the smart 

home ceases to function properly. Devices may no 

longer interact correctly with each other, and in 

extreme cases users may no longer be able to control 

the devices in their own homes. 

We aim to eliminate this disadvantage by shifting the 

device state storage and interaction management from 

the brain to the devices themselves. Our system aims 

to maintain the functionality of most modern smart 

home systems, namely: 

1. Users should be able to interact with the 

system to both define interactions between 

their devices and view interactions that have 

occured in the past. 

2. Devices should react as per their defined 

interactions in negligible time. 

3. Devices can be controlled by the user through 

some sort of intuitive interface, such as a web 

or phone app. 

The system should function normally even if the local 

network is disconnected from the internet, i.e., the 

above 3 requirements should function the same. 

However, if the network is down, then the user will be 

unable to monitor and interact with their devices 

outside of the local network.

 

  



II. Design Requirements 

When we first designed the system around which this 

project is centered, we had planned to have physical 

hardware to test and demonstrate on. However, about 

halfway through the project the Covid-19 crisis 

forced us to transition to remote learning. This meant 

that our project needed to pivot away from using 

hardware, and so we were forced to transition our 

system to function in the cloud. While this is 

somewhat contrary to our stated project goal, we feel 

that by limiting the nodes to only interacting with 

other nodes in the network, we can successfully 

simulate that the system is “disconnected” from the 
internet (See section IV for a more detailed 

explanation of how this changed our project). Due to 

our pivot, we had to change or get rid of some of our 

requirements. These changes are reflected in the table 

below. 

Requirement Original Specification Revised Specification Justification 

Sensor input to device 

action latency under normal 

use 

<100 ms < 10 ms Took into account the lack 

of latency of the AWS 

network 

New device commission 

time 

< 10 minutes Removed We didn’t have the time 

needed for this feature. 

Past sensor data viewable 4  years Removed Didn’t have a good way to 

test this and couldn’t 

accurately simulate storage 

sizes on AWS 

Cost per node < $75 Removed Cannot compare the cost of 

AWS compute to RPI 

compute 

Internet resiliency Device interactions should 

continue to function 

normally 

Device interactions should 

continue to function 

normally 

Could still easily prove that 

this is fulfilled 

Downtime in case of master 

node failure 
< 5 seconds < 5 seconds There was no reason to 

change this 

Downtime in case of non-

master node failure 

None None There was no reason to 

change this 

Our system’s goal is to operate fully without needing 

a connection to the internet. Therefore, the above 

requirements are derived largely from existing smart 
home solutions. The most critical of these 

requirements are “sensor input to device action latency 

under normal use” and “internet resiliency”. We 

believe these to be the most important requirements 

because the former is necessary in order to match 

current smart home solutions (at least in functionality), 

and the latter is required in order to solve the problem 

we have identified. 

Here is how we tested the above and what we found: 

● Sensor input to device action latency under 

normal use: We tested this using 
timestamps. After confirming that the 

different nodes’ system times were in sync, 

we logged (with timestamps) each time a 

sensor value was published and each time a 

device acted on an interaction. This test was 

done under our “full system load”; i.e., 5 



● nodes: 2 sensors, 2 devices, and 1 combined 
node. We defined 6 interactions and then 

picked 

● one at random. We then took the difference 

between the time that the sensor posted the 

update and the time that the device acted on 
it, and averaged it over 119 trials. This gave 

us an average of 2.76 ms, well under our 

requirement of 10ms. 

● Internet resiliency: This was more difficult 

to test automatically. We tested this one by 

confirming (both in our design and in our 

code) that the nodes only made requests to 

other nodes in the network. If this system 

were to be ported onto physical devices, 

then as long as they are on the same local 

network, our system would work. This 

fulfills our internet resiliency requirement, 
as the system does not need access to the 

internet to work. 

● Downtime in case of master node failure: 

We tested this requirement by forcing nodes 

to die, and then programmatically timing 

how long it took for the new node to become 

available. We did this by writing a script 

that did the following: 

○ Note that given the state of the 

system, we know which node will 

become the new master after a 
failover. Let’s call this node “node 

2”, and the current master node 

“node 1” 

○ Curl the webapp at the IP address 

of node 1 in a loop until it fails. 

Take a timestamp 

○ Curl the webapp at the IP address 

of node 2 in a loop until it 

succeeds. Take a timestamp 

○ Print the difference between the 

two times. 

Doing the above procedure and averaging 

our results over 20 trials, we found that on 

average, the system experiences 8.668 

seconds of downtime. Unfortunately, this is 

greater than our requirement of 5 seconds. 
We believe that this is largely because the 

nodes are hosted on a virtual machine over 

which we don’t have full control. As such, 

spinning up new applications is expensive, 

and could explain why we were unable to 

reach our 5 second goal. 

● Downtime in case of a non-master node 

failure: This was tested by randomly 

bringing down non-master nodes in the 

system. We confirmed through interaction 

logs that other devices continued 
functioning normally and logged the dead 

node’s death. Moreover, any interactions 

that were defined that did not include the 

dead node continued to function as normal. 

This makes sense, since we designed the 

system to be compartmentalized so as to 

limit the effect of failures. This fulfills our 

requirement of having no system downtime 

in the event of a non-master node failure. 

  



III. Architecture and/or Principle of Operation 

As stated earlier, our original architecture (see 

right) was not possible for us to build after our 

transition to remote work. Originally, we had 

planned to use Raspberry Pis as the compute 

platforms for each of the devices, WiFi as the 

networking platform, and build custom PCBs on 

top of the Raspberry Pis. With this, we could run 

software for the Interaction Layer on the Raspberry 

Pis, communicate with other devices using MQTT 

over WiFI and store system data on the Raspberry 

Pis. 

We needed to change this drastically for the project 

to continue remotely, since we were unable to test 

and develop hardware when we were all separated 

from one another. Because of this, we chose to 

transition our work to the cloud, and develop on a 

similarly powerful cloud instance to the Raspberry 

Pis that we had planned to use. It was important to 

us that what we were working on could at some 

point be transitioned to these Raspberry Pis. 

Providing a way of interacting with hardware while 

working with hardware was still a challenge for us 

however. We decided to emulate the hardware using 
a seperate web app also hosted in the cloud. We 

wanted to give the developer, us, the same ability to 

control the environment around the hardware and test 

the system without 

using actual hardware. The transition of the system 

and the final architecture of the system is outlined in 

the diagram below. 

 

  



IV. Design Trade Studies 

 

A. Hardware Platform of System 

Limitations: 
a. Hardware platform needs to be able 

to host MQTT broker as per 

interaction layer 

b. Hardware needs to support a local 

database 

Our system had two options in regards to which 

platform the smart devices should be built upon: 

Raspberry Pi’s or NodeMCU’s. While the 

ESP8266, the NodeMCU model we could use, 

would work well for our application, it is 

manufactured in China. Usually, this would not 

be a problem, but recent events concerning the 

Covid-19 Novel Coronavirus make the shipping 
time for this component unpredictable. As such 

we decided to go with the Raspberry Pi, 

specifically the model 4, as it is already in 

inventory. 

 

When deciding on which router to use, we 

considered our 100 ms device interaction latency 

requirement. The way an interaction will occur 

within our system is as follows: sensor node 

polls hardware (software, hardware), sends 

updated data to broker (network latency), broker 
determines subscriber(s) to send the data to 

(software), the broker sends the data to the 

subscriber node (network latency), and the 

device node then acts on that data (software, 

hardware). The code required to implement the 

software portions of this interaction is of 

negligible size, and with the raspberry pi 4 

processors will run in milliseconds. However, 

the network latency introduces a potential 

bottleneck. According to [3], typical wireless 

network latency is around 20 ms. Since we have 

2 data transfers over the network (see section 5, 
system design), a typical homeowner would see 

40 ms of latency. Our goal in selecting a router 

was to pick one that can at least satisfy this 

requirement, so as to replicate the typical user’s 

network setup. 

A typical TCP packet consists of 40 bytes, and 

an MQTT message has 9 bytes of overhead 

(excluding payload). We intend to allot space for 

a 64 byte payload, amounting to 113 bytes of 

data per transfer. To transfer 113 bytes of data 

twice within 100 ms, we need to transfer 226 
bytes per 100 ms = 2260 bytes per second = 2.26 

KBps = 18.08 Kbps. Since most modern routers 

function in Mbps connection speeds, not Kbps, 

any router we select should be able to meet the 

“20 ms latency” cited in [3]. 

We chose to use the TPlink C1200 router 

because it fits in our budget and is powerful 

enough to satisfy the latency requirements 

outlined above. 

The previous design trade studies were for the 

original system however. In the final system, 

after our pivot, we faced these same design 
questions but couldn’t solve them in the same 

way. We knew that the best only way to continue 

this project would be to host it in the cloud. We 

chose AWS because we were all at least vaguely 

familiar with the workflow and felt comfortable 

with it. We choose python as our development 

language for the same reasons, familiarity and 

comfort. We didn’t feel like there was anything 

we needed to do in this system that couldn’t be 

done with python. 

For the Hardware Emulator,  in place of the 

actual hardware, we chose Django and the 

Django REST Framework because we were 

familiar with it, and also because it is extremely 

fast and easy to develop with. This remained true 

throughout this project, since we never 

experienced an issue with Django that took 

longer than an hour to fix, and never had a 

feature that we wanted to add that took more 

than a day of work to figure out. 

B. Database Platform of System 

Our system will use a database to store 

information locally on each of the nodes. A lot of 
thought went into whether we should have a 

shared distributed database, a local database on 

each device, or a combination of the two. To 

begin this comparison, let us look at the 

information that needs to be stored in the system: 
1. For each node in the network: 

a. Serial number 

b. IP address 

c. Whether it is the master node 

(hosting webapp and broker) 

d. Whether it is a sensor or a device 



e. Whether it is up and running, and if 

not when it last was 

f. Display name and description to 

display on the webapp 

2. Defined interactions 

a. Trigger sensor 

b. Target device 

c. Condition 

d. Action 

e. Display name and description to 

display on the webapp 

3. Sensor data 

a. Value 

b. Timestamp 

Initially, we considered storing everything of the 

above in a shared distributed database. This would 

greatly simplify interactions, as all nodes could 

read the shared data, and state would become 

“centralized”. However, this introduced 2 major 

problems. The first problem is that often in 

distributed databases, you have master node(s) 

that can write to the database, and slave node(s) 

that function as replicas of the data. Since our 

system is intended to be used in home settings, the 
number of devices will be limited, and so there 

will be a small number of master nodes through 

which all devices must write. Given that our 

timing requirements require polling with 

frequency greater than 100 ms, this would 

necessitate a write over the network to the shared 

database once every 100 ms per sensor. Besides 

the fact that this unnecessarily clogs up the user’s 

network, it introduces a pointless bottleneck into 

the system. A second problem with this approach 

is that sensor data for each sensor would exist on 

all of the nodes. We felt this level of replication is 
unnecessary, and forces us to use more storage 

than is otherwise needed. 

This motivated us to shift towards a combined 

approach. Of the above data, items 1 and 2 would 

be defined in a shared database, and item 3 would 

exist locally on each sensor node. The sensors 

could publish the data to the broker as it is 

produced, and store it locally. If historical data is 

ever needed, it can be requested from that sensor. 

At first glance, this approach seems to fix all the 

problems of the first one. However, we were 
unable to make a strong argument for the 

existence of a shared database storing items 1 and 

2. 

Our reasoning behind this is as follows: items 1 

and 2 consist of a (relatively) small amount of 

data, and this data will not be written to 

frequently. These items will largely be changed 

only when a user logs into the web interface to 
change their configurations, which is unlikely to 

happen more than a few times a day. As such, it 

doesn’t really necessitate the overhead and 

complexity involved in using a distributed 

database. Instead, we decided it would be far 

simpler (and equally effective) to have each node 

store a local replica of items 1 and 2, and have 

sensor nodes also store item 3. Whenever items 1 

and 2 are updated (through the master node), it 

will send an update to the other nodes, and they 

will update their local database’s version of the 

configuration. 

Throughout this process, we considered a number 

of distributed and local databases, including 

Redis, Apache Cassandra, MongoDB, Hbase, and 

SQLite. However, our decision to shy away from 

a distributed database made our criteria shift a 

little bit. In terms of storage footprint, read 

speeds, and simplicity of use, SQLite won over 

the others. In addition, it could more easily run on 

the single board computers required by the rest of 

our system, as compared to some of the other 

options (such as Cassandra) that require the JVM. 

When we pivoted to have the system in the cloud, 

we wanted to replicate as much of the 

functionality of the initial system design, rather 

than fully leverage all that is available on modern 

cloud hosting services. As such, we kept the 

database design choice the same after pivoting the 

project, so that the interaction layer could still be 

hosted on actual hardware (with minor 

modifications to the code). 

When choosing a backend web framework, we 

decided to go between Flask and ExpressJS. Both 

are simple and lightweight, relatively easy to set 
up and deploy. Ultimately, we chose to go with 

Flask because it would be easier to integrate with 

the interaction layer. Since the interaction layer is 

written in Python, if we went with ExpressJS like 

originally planned, we would have had to find a 

way to connect the interaction layer python 

library with a javascript function. Using Flask, on 

the other hand, entailed only importing the 

interaction layer library at the top of the backend 

script, thus making our lives much easier.  



V. System Description 

Logically, our system consists of three parts, the hardware layer, the interaction layer, and the UI web app. Having a 

system that we could easily split into three different distinct parts made splitting up work easy and helped us 

integrate with each other much simpler. This section delves into more detail about each of those sections of our 

system and discusses how these layers interact. 

A. Hardware Systems 

In the final iteration of the hardware layer, physical hardware was emulated using a webapp and a hardware 

library utilized by the interaction layer. The emulator app was made using Django, a common Python web 

framework, SQLite, and 

a REST API. The 
following diagram is an 

illustration of the 

components of the 

hardware layer and their 

interconnects. 

 

1. The first part of this layer is the Emulator Web App. This was created using Django and the 

Django REST Framework to allow the library, the second part of this layer of the system, to 

communicate with the Emulator easily. Instead of creating a custom UI for developers to interact 

with the emulator, we decided to use the built in Django admin page because it already had a 

simple and easy to use way to display all this information. We stored all information about each 

device and sensor in the SQLite database connected to the emulator and used the REST 

framework to communicate with the library. 

2. The library was created using Python and utilized the requests framework to communicate with 

the Emulator. The library was initialized and interacted with using a JSON string that the device 

instance gives to the library. The JSON string outlines all characteristics of the device, including 

sensors, pins connected to hardware, actuators, and value types, so that the Emulator and any 

future hardware can easily interface with this library. The different pieces of hardware (sensors 

and actuators) are stored in a library object for the interaction layer, so that if the device has 

multiple pieces of hardware it can access all of them using the library object.  

B. Interaction Layer Systems 

a. Device interactions: Interactions are managed using MQTT. The master node in the system runs 

the broker, and all sensors and devices connect as clients. Sensors publish to sensor-specific 
MQTT topics, and devices subscribe to topics required by user-defined interactions 

This interaction looks like this: 

Note that the broker process may be running on any device or sensor, including potentially the 

device or sensor involved in the transaction. Sensors poll the hardware for updates every 50 ms, 

and if the value has changed from the previous poll (greater than a delta defined in the sensor spec 

as acceptable jitter), it publishes this information to an MQTT topic of the form 

“[device_serial_number]/data_stream”. Devices with interactions tied to a sensor subscribe to that 

sensor’s publishing topic; if multiple sensors are involved in a single interaction, the device can 

subscribe using wildcards. When the sensor publishes a changed value, the device will receive it 

through the broker, and if it matches what was defined in the interaction, it will cause a change in 

the hardware (such as a light turning on or off). 
Data packets sent to and from the broker will be a json of the following form: 

{ 

    ‘device_serial_number’ : unsigned long, 



    ‘data’ : primitive type (specific to the device doing the transmitting)} 

 

b. Local device storage: Devices will store config and sensor data in a local SQLite database. 

c. Hosting the webapp: See “master selection” below. One master node will exist in the system, and 

will host the webapp. Users can access the webapp to interact with the system. 

d. Master Selection: The master will be selected by looking at the devices that are currently in the 

network and up (based off the heartbeats), and selecting the node with the numerically lowest 

serial number. 

e. Config updates: Whenever the user changes configuration (i.e. adds a node to the network, defines 

a new interaction), all nodes in the network should be informed of this change so they can update 

their local copy of the config. This is implemented on top of our MQTT layer. All nodes subscribe 

to a topic named “config_updates”. Whenever there is a config change, the master node publishes 

to this channel, and the nodes update their local version of the config. 

f. Device heartbeats: This will be implemented on top of our MQTT layer. Initially we were 

planning on implementing the heartbeats by having each node publish to heartbeats topic, and all 

nodes reacting to these updates. However, we realized that this added potentially unnecessary 

bandwidth use and complexity. We discovered two interesting MQTT features that allowed us to 

pivot this design decision in a different direction: 

i. Topic will messages: when an MQTT client connects to the broker, it can specify a “will” 

message for a specific topic. If the client ever disconnects without going through the 

proper disconnect procedure with the broker, the broker assumes the node has died, and 

publishes that message to the will topic. What this means is that all nodes can subscribe 

to the “heartbeats” topic, and publish a will message to that topic. That way, the only 

time a heartbeat gets sent is when a node dies. This significantly reduces network 

bandwidth usage, and accomplishes the same goal with greater precision (nodes will 
know immediately when another node has died, as opposed to when they next expect a 

heartbeat message to be published). 

ii. On_disconnect async callbacks: many client-side MQTT libraries provide async callback 

functionality, allowing the client code to register callback functions that are invoked 

when certain things happen. One such callback, named on_disonnect in the client library 

we chose to use, allows you to register a callback that is invoked if the connection with 

the broker is unintentionally broken. What this means is that if the master node ever dies, 

all other nodes will be immediately notified and can begin the master failover procedure 

locally. 

C. Webapp systems 



a. The frontend will be built using React. Light, fast, and easy to prototype with, React can also be 

containerized easily using Docker, making it extremely portable. There shall be a home page, used 

a dashboard to view other pages, a devices page to view devices in the system, a page for each 

device, an interactions page to view interactions in the system, and a page for each interaction. On 

the interactions page, there should also be a form to create new interactions. 

b. Backend-Express 

The backend of the web application will be built using Flask. Simple, lightweight, and minimal, 

Flask covers all of the systems backend requirements without anything extra. Models can be easily 

implemented using JSON, which makes integration with the rest of the system seamless. Since the 

interaction layer is written using Python, using a Python based backend seemed appropriate for the 

smoothest integration.  

i. Communicates to system via REST api 

c. Mounted on Raspberry Pi using a Docker container 

  



VI. Project Management: Change to new Gantt chart 

A. Schedule 

 

 

B. Team Member Responsibilities 

 The breakdown of work aligned with our experience. Richard worked on the UI webapp, since he has a 

large amount of experience with web app development, Niko took charge of the interaction layer since he has 

experience with computer systems and operating systems, and Rip worked on the hardware and the hardware  

library since he has experience with embedded systems and hardware. The pivot tested all of our skills, since we had 

to work on everything in a completely new context. 
 

C. Budget 

Preliminary Budget 

Name Quantity Unit Price Total Price 

Raspberry Pi 4 model B 6 55 330 

TPLink C1200 Router 1 50 50 

Mr. Coffee Coffee Maker 1 25 25 



PIR Motion Sensor 3 2 6 

DS18B20+ 3 5 15 

Mini USB Microphone 2 5 10 

Final Budget 

Name Quantity Unit Price ($) Total Price ($) 

AWS T2 Micro Instance 1230 (hrs) 0.0162 20 

AWS T2 Micro Instance refers to the type of machine we rented from Amazon Web Services (AWS). Our system 

used many instances at the same time (sometimes up to 7 or 8), which is why there are 1230 hours logged. We count 

1 hour as 1 instance running for 1 hour, so, if 7 nodes were running for 2 hours total, in this period we would have 

logged 2 * 7 = 14 hours. 

D. Risk Management 

In the Gantt chart, we scheduled two weeks for 

integration. After hearing many warnings from past 

groups, we know the danger of not allocating enough 

time to put together the pieces of our project.  

In designing our demo system around a morning 

routine, we have narrowed the scope of our project. 

This tightens the focus of the group, lessening the 

chance that non-essential work is done, which is 

important given how long the project is active for. 

E.  Sudden changes 

When we were all instructed to move home, all three 

of us were quite shocked. We were on spring break in 

Florida when we realized that we had to pivot our 

project. Since we were all together, planning how to 

pivot could be done in person. We analyzed the three 

big parts of the project, and figured out how each part 

would change.  

The web application interface used to control the 

system didn’t change. Instead of the web application 

running on a device in the system, it would now run 

on an AWS server. This ultimately didn’t change the 

design of the web application at all. The web 

application development plan resumed with no 

further obstacles. 

The interface layer needed to communicate with both 

the web application as well as the hardware layer. 

Since we no longer had physical devices, the 

interaction-hardware connection needed to be 

changed. Additionally, since the web application UI 

is hosted on an AWS server now, the interaction 

layer needs to communicate differently with the web 

app.  

Finally, we pivoted from using real physical devices 

to using a hardware emulator. Instead of building the 

smart devices using raspberry pi’s, we built an api 

that simulates the hardware IO. If the interaction 
layer needed the value of a certain sensor, it would 

call the api with the device’s id. If the interaction 

layer wanted to change the value of a device (e.g. a 

lightbulb or a coffee pot), it would call a different 

endpoint on the api with the target id and target 

value. Pivoting to an api instead of real physical 

devices let us test the system remotely. If we didn’t 

pivot this part, we would have to all be at the same 

place to integrate or test the interaction layer and the 

hardware layer. 

One particularly important reason for choosing to 

implement a fixed api to govern interactions between 
the interaction and hardware layers is that it improves 

portability. If we were to someday port this system 

onto physical devices, the hardware library’s api 

could remain the same, while the implementation 



could be rewritten. This would allow the interaction 

layer to continue functioning with minimal changes. 

  



VII. Related Work 

One interesting project done in edge computing was 

done by Tanmay Chakraborty and Soumya Kanti 

Datta in late 2017 [4]. They identified the biggest 

problem in the IoT space as fragmentation caused by 
having many competing IoT device producers all 

producing similar products using different 

communication protocols. This has lead to a world 

where it’s difficult for users to get their devices to 

work together, which impedes the development of 

unified smart home systems. 

The solution they proposed (and implemented) is an 

architectural prototype that “exploits the concepts of 

edge computing, virtual IoT devices, and the internet 

of things to create an interoperable home automation 

solution” [4]. While not directly the project that we 

worked on, it’s interesting to see that others are 
looking into how to take advantage of edge 

computing to improve home IoT systems. 

Another interesting project, “Vigilia”, was done in 

late 2018 [5]. This project aimed instead at making 

smart home systems more secure. In particular, they 

focused on “shrinking the attack surface of smart 
home IoT systems by restricting the network access 

of devices” [5]. They did this by creating an open 

framework to limit network access only permissed 

devices. 

Our project was also partially driven by privacy; we 

identified central storage of smart home data by a 3rd 

party as a potential security risk, and aimed to create 

a system where smart device data never leaves the 

closed home system. It’s interesting to see how others 

have approached solving the security problems posed 

by the growing IoT industry. 

 

  



VIII. Summary 

Our system was able to meet most of our adjusted 

specifications. Our latency requirement was 10ms, but 

our slowest test over twenty trials was  just under 3ms. 

The system also met the internet resiliency 

requirement. This specified that the system shall work 

even when not connected to the outside internet. We 

tested this by placing all nodes in the system in a 

private security group, thereby restricting any traffic 

from any source outside the system and isolating the 

network.  

A requirement we failed to meet was the master 

failover timing requirement. We specified that once 

the master node fails, a new master shall rise within 5 

seconds. After 20 trials, the mean failover recovery 

time was over 8 seconds: 3 seconds more than our 

requirement. After timing how long it takes an AWS 

T2 micro server to spin up, we realized that we might 

have set an unrealistic requirement, as it often takes 

more than 5 seconds to boot up an instance to a state 

the webapp can run on.  

To improve our system if we had more time, we would 

transfer the system to real hardware instead of 

software emulators. Basically, if we had more time 

and could meet up in person, we would have 

implemented the hardware devices on Raspberry Pi’s 

instead of AWS cloud instances. Everything else about 

the project would remain the same. 
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