
Edge Computing For Smart Home Devices

Authors: Richard Deng: Electrical and Computer Engineering, Carnegie Mellon University

 Niko Gupta: Electrical and Computer Engineering, Carnegie Mellon University

 Rip Lyster: Electrical and Computer Engineering, Carnegie Mellon University

Abstract: — A smart home system capable of functioning

without connection to the internet or a central brain

device. Modern smart home solutions largely have a

central point of failure, being managed either by

backend cloud server(s), by local “brain” devices, or a

combination of the two. Should the cloud server, internet

connection, or brain device go down, the system ceases to

function. Our project aims to shift the interaction

management and computing from the cloud server(s)

and brain devices to the smart home devices themselves,

so that the system can function without a connection to

the internet.

 Index Terms:

● Brain: In modern IoT systems, the central
processing point. Could be a backend cloud server
or a dedicated device integrated into the smart
home that functions as a central control.

● Broker: Interactions are managed using an
abstract publish / subscribe message queue. This
message queue is managed by a central service
(broker) that manages subscriptions and passes
published messages to subscribers.

● Database: Each node in the network will need to
store information, such as sensor data,
interactions, and user config. Database refers to

the method by which each node will store this
information locally.

● Device: A node in the network that focuses on

actuation; i.e., it causes an observable physical
change in the environment. E.g. a smart light that
can turn on or off, a smart coffee machine that can
begin to make coffee, etc.

● Interaction: An interaction is when data
published by a sensor or shared by the system
(such as the time) causes a device to perform an
action. E.g. “If there is motion on my porch and
it’s dark out, turn on the lights”.

● Interaction Logic: The collection of interactions
defined by the user, how they are stored within the
system, and how they are managed so that the
interactions happen as intended.

● Master: The node(s) in the system that provides
elevated functionality above other nodes, such as
hosting the webapp or the broker.

● Network: The collection of nodes that interact

together to deliver the functionality typically
described as a “smart home”

● Node: Any piece of hardware in the smart home
system that functions as part of the distributed
system to deliver functionality to the user.

● Sensor: A node in the network that focuses on the
production and distribution of data, but not on
causing physical change in the environment. E.g.
a motion detector that reads data from the sensor
and notifies the rest of the network about the
change.

● Sensor Data: Information collected and
distributed by sensor nodes, intended to cause
changes in the environment by device nodes. E.g.
a reading from a motion detector or a light sensor.

● System Config: The collection of data necessary
for nodes to interact with other nodes in the
system. E.g. network id, identity of master node,
nodes in the network and their local ip address, etc.

● User: The person who is interacting with the smart
home system. E.g. a tech-savvy citizen who wants
to automate their home without relying on the

public cloud.

● User Config: The collection of data necessary to

define a user's system. E.g. the interactions list.

● Webapp: The user-facing interface for
monitoring and updating the smart home system.

I. Introduction

Since their introduction in the early 2000’s, smart

home devices have become increasingly popular.

Devices such as the Amazon Alexa, the Ring

Doorbell, and the Phillips Hue lightbulb have changed

how many people interact with their homes. The

management of these systems is largely done using

some combination of the following:

1. Device sensor data is sent to a backend cloud

server that keeps track of each device’s state.

Depending on user defined rules, the server

may signal the devices in the home and cause

them to perform an action.

2. Similar to the first method, sensor data is

aggregated and sent to a central server.

However this server is a device in the local

smart home network, designated a “brain”

device, that takes care of managing system

interactions.

3. Some combination of the above two methods.

Cloud server can function as a backup of the

brain device and a way for the user to interact

with the system.

This approach has a number of advantages. For

example, it simplifies the system, as centralized

solutions are generally easier to reason about and
implement than distributed ones. It also becomes

easier to add functionality to the system in the future

by just updating the backend server, instead of

requiring devices themselves to update. In addition, if

any serious computation is required by the system

(such as usage analytics), the backend can be scaled

appropriately to provide the user a quick and seamless

experience.

That being said, this approach has some serious

disadvantages, perhaps the largest of which is the

central point of failure. If the connection to the brain
goes down, either by failure of the brain device or if

the system loses connection to the internet, the smart

home ceases to function properly. Devices may no

longer interact correctly with each other, and in

extreme cases users may no longer be able to control

the devices in their own homes.

We aim to eliminate this disadvantage by shifting the

device state storage and interaction management from

the brain to the devices themselves. Our system aims

to maintain the functionality of most modern smart

home systems, namely:

1. Users should be able to interact with the

system to both define interactions between

their devices and view interactions that have

occured in the past.

2. Devices should react as per their defined

interactions in negligible time.

3. Devices can be controlled by the user through

some sort of intuitive interface, such as a web

or phone app.

The system should function normally even if the local

network is disconnected from the internet, i.e., the

above 3 requirements should function the same.

However, if the network is down, then the user will be

unable to monitor and interact with their devices

outside of the local network.

II. Design Requirements

When we first designed the system around which this

project is centered, we had planned to have physical

hardware to test and demonstrate on. However, about

halfway through the project the Covid-19 crisis

forced us to transition to remote learning. This meant

that our project needed to pivot away from using

hardware, and so we were forced to transition our

system to function in the cloud. While this is

somewhat contrary to our stated project goal, we feel

that by limiting the nodes to only interacting with

other nodes in the network, we can successfully

simulate that the system is “disconnected” from the
internet (See section IV for a more detailed

explanation of how this changed our project). Due to

our pivot, we had to change or get rid of some of our

requirements. These changes are reflected in the table

below.

Requirement Original Specification Revised Specification Justification

Sensor input to device

action latency under normal

use

<100 ms < 10 ms Took into account the lack

of latency of the AWS

network

New device commission

time

< 10 minutes Removed We didn’t have the time

needed for this feature.

Past sensor data viewable 4 years Removed Didn’t have a good way to

test this and couldn’t

accurately simulate storage

sizes on AWS

Cost per node < $75 Removed Cannot compare the cost of

AWS compute to RPI

compute

Internet resiliency Device interactions should

continue to function

normally

Device interactions should

continue to function

normally

Could still easily prove that

this is fulfilled

Downtime in case of master

node failure
< 5 seconds < 5 seconds There was no reason to

change this

Downtime in case of non-

master node failure

None None There was no reason to

change this

Our system’s goal is to operate fully without needing

a connection to the internet. Therefore, the above

requirements are derived largely from existing smart
home solutions. The most critical of these

requirements are “sensor input to device action latency

under normal use” and “internet resiliency”. We

believe these to be the most important requirements

because the former is necessary in order to match

current smart home solutions (at least in functionality),

and the latter is required in order to solve the problem

we have identified.

Here is how we tested the above and what we found:

● Sensor input to device action latency under

normal use: We tested this using
timestamps. After confirming that the

different nodes’ system times were in sync,

we logged (with timestamps) each time a

sensor value was published and each time a

device acted on an interaction. This test was

done under our “full system load”; i.e., 5

● nodes: 2 sensors, 2 devices, and 1 combined
node. We defined 6 interactions and then

picked

● one at random. We then took the difference

between the time that the sensor posted the

update and the time that the device acted on
it, and averaged it over 119 trials. This gave

us an average of 2.76 ms, well under our

requirement of 10ms.

● Internet resiliency: This was more difficult

to test automatically. We tested this one by

confirming (both in our design and in our

code) that the nodes only made requests to

other nodes in the network. If this system

were to be ported onto physical devices,

then as long as they are on the same local

network, our system would work. This

fulfills our internet resiliency requirement,
as the system does not need access to the

internet to work.

● Downtime in case of master node failure:

We tested this requirement by forcing nodes

to die, and then programmatically timing

how long it took for the new node to become

available. We did this by writing a script

that did the following:

○ Note that given the state of the

system, we know which node will

become the new master after a
failover. Let’s call this node “node

2”, and the current master node

“node 1”

○ Curl the webapp at the IP address

of node 1 in a loop until it fails.

Take a timestamp

○ Curl the webapp at the IP address

of node 2 in a loop until it

succeeds. Take a timestamp

○ Print the difference between the

two times.

Doing the above procedure and averaging

our results over 20 trials, we found that on

average, the system experiences 8.668

seconds of downtime. Unfortunately, this is

greater than our requirement of 5 seconds.
We believe that this is largely because the

nodes are hosted on a virtual machine over

which we don’t have full control. As such,

spinning up new applications is expensive,

and could explain why we were unable to

reach our 5 second goal.

● Downtime in case of a non-master node

failure: This was tested by randomly

bringing down non-master nodes in the

system. We confirmed through interaction

logs that other devices continued
functioning normally and logged the dead

node’s death. Moreover, any interactions

that were defined that did not include the

dead node continued to function as normal.

This makes sense, since we designed the

system to be compartmentalized so as to

limit the effect of failures. This fulfills our

requirement of having no system downtime

in the event of a non-master node failure.

III. Architecture and/or Principle of Operation

As stated earlier, our original architecture (see

right) was not possible for us to build after our

transition to remote work. Originally, we had

planned to use Raspberry Pis as the compute

platforms for each of the devices, WiFi as the

networking platform, and build custom PCBs on

top of the Raspberry Pis. With this, we could run

software for the Interaction Layer on the Raspberry

Pis, communicate with other devices using MQTT

over WiFI and store system data on the Raspberry

Pis.

We needed to change this drastically for the project

to continue remotely, since we were unable to test

and develop hardware when we were all separated

from one another. Because of this, we chose to

transition our work to the cloud, and develop on a

similarly powerful cloud instance to the Raspberry

Pis that we had planned to use. It was important to

us that what we were working on could at some

point be transitioned to these Raspberry Pis.

Providing a way of interacting with hardware while

working with hardware was still a challenge for us

however. We decided to emulate the hardware using
a seperate web app also hosted in the cloud. We

wanted to give the developer, us, the same ability to

control the environment around the hardware and test

the system without

using actual hardware. The transition of the system

and the final architecture of the system is outlined in

the diagram below.

IV. Design Trade Studies

A. Hardware Platform of System

Limitations:
a. Hardware platform needs to be able

to host MQTT broker as per

interaction layer

b. Hardware needs to support a local

database

Our system had two options in regards to which

platform the smart devices should be built upon:

Raspberry Pi’s or NodeMCU’s. While the

ESP8266, the NodeMCU model we could use,

would work well for our application, it is

manufactured in China. Usually, this would not

be a problem, but recent events concerning the

Covid-19 Novel Coronavirus make the shipping
time for this component unpredictable. As such

we decided to go with the Raspberry Pi,

specifically the model 4, as it is already in

inventory.

When deciding on which router to use, we

considered our 100 ms device interaction latency

requirement. The way an interaction will occur

within our system is as follows: sensor node

polls hardware (software, hardware), sends

updated data to broker (network latency), broker
determines subscriber(s) to send the data to

(software), the broker sends the data to the

subscriber node (network latency), and the

device node then acts on that data (software,

hardware). The code required to implement the

software portions of this interaction is of

negligible size, and with the raspberry pi 4

processors will run in milliseconds. However,

the network latency introduces a potential

bottleneck. According to [3], typical wireless

network latency is around 20 ms. Since we have

2 data transfers over the network (see section 5,
system design), a typical homeowner would see

40 ms of latency. Our goal in selecting a router

was to pick one that can at least satisfy this

requirement, so as to replicate the typical user’s

network setup.

A typical TCP packet consists of 40 bytes, and

an MQTT message has 9 bytes of overhead

(excluding payload). We intend to allot space for

a 64 byte payload, amounting to 113 bytes of

data per transfer. To transfer 113 bytes of data

twice within 100 ms, we need to transfer 226
bytes per 100 ms = 2260 bytes per second = 2.26

KBps = 18.08 Kbps. Since most modern routers

function in Mbps connection speeds, not Kbps,

any router we select should be able to meet the

“20 ms latency” cited in [3].

We chose to use the TPlink C1200 router

because it fits in our budget and is powerful

enough to satisfy the latency requirements

outlined above.

The previous design trade studies were for the

original system however. In the final system,

after our pivot, we faced these same design
questions but couldn’t solve them in the same

way. We knew that the best only way to continue

this project would be to host it in the cloud. We

chose AWS because we were all at least vaguely

familiar with the workflow and felt comfortable

with it. We choose python as our development

language for the same reasons, familiarity and

comfort. We didn’t feel like there was anything

we needed to do in this system that couldn’t be

done with python.

For the Hardware Emulator, in place of the

actual hardware, we chose Django and the

Django REST Framework because we were

familiar with it, and also because it is extremely

fast and easy to develop with. This remained true

throughout this project, since we never

experienced an issue with Django that took

longer than an hour to fix, and never had a

feature that we wanted to add that took more

than a day of work to figure out.

B. Database Platform of System

Our system will use a database to store

information locally on each of the nodes. A lot of
thought went into whether we should have a

shared distributed database, a local database on

each device, or a combination of the two. To

begin this comparison, let us look at the

information that needs to be stored in the system:
1. For each node in the network:

a. Serial number

b. IP address

c. Whether it is the master node

(hosting webapp and broker)

d. Whether it is a sensor or a device

e. Whether it is up and running, and if

not when it last was

f. Display name and description to

display on the webapp

2. Defined interactions

a. Trigger sensor

b. Target device

c. Condition

d. Action

e. Display name and description to

display on the webapp

3. Sensor data

a. Value

b. Timestamp

Initially, we considered storing everything of the

above in a shared distributed database. This would

greatly simplify interactions, as all nodes could

read the shared data, and state would become

“centralized”. However, this introduced 2 major

problems. The first problem is that often in

distributed databases, you have master node(s)

that can write to the database, and slave node(s)

that function as replicas of the data. Since our

system is intended to be used in home settings, the
number of devices will be limited, and so there

will be a small number of master nodes through

which all devices must write. Given that our

timing requirements require polling with

frequency greater than 100 ms, this would

necessitate a write over the network to the shared

database once every 100 ms per sensor. Besides

the fact that this unnecessarily clogs up the user’s

network, it introduces a pointless bottleneck into

the system. A second problem with this approach

is that sensor data for each sensor would exist on

all of the nodes. We felt this level of replication is
unnecessary, and forces us to use more storage

than is otherwise needed.

This motivated us to shift towards a combined

approach. Of the above data, items 1 and 2 would

be defined in a shared database, and item 3 would

exist locally on each sensor node. The sensors

could publish the data to the broker as it is

produced, and store it locally. If historical data is

ever needed, it can be requested from that sensor.

At first glance, this approach seems to fix all the

problems of the first one. However, we were
unable to make a strong argument for the

existence of a shared database storing items 1 and

2.

Our reasoning behind this is as follows: items 1

and 2 consist of a (relatively) small amount of

data, and this data will not be written to

frequently. These items will largely be changed

only when a user logs into the web interface to
change their configurations, which is unlikely to

happen more than a few times a day. As such, it

doesn’t really necessitate the overhead and

complexity involved in using a distributed

database. Instead, we decided it would be far

simpler (and equally effective) to have each node

store a local replica of items 1 and 2, and have

sensor nodes also store item 3. Whenever items 1

and 2 are updated (through the master node), it

will send an update to the other nodes, and they

will update their local database’s version of the

configuration.

Throughout this process, we considered a number

of distributed and local databases, including

Redis, Apache Cassandra, MongoDB, Hbase, and

SQLite. However, our decision to shy away from

a distributed database made our criteria shift a

little bit. In terms of storage footprint, read

speeds, and simplicity of use, SQLite won over

the others. In addition, it could more easily run on

the single board computers required by the rest of

our system, as compared to some of the other

options (such as Cassandra) that require the JVM.

When we pivoted to have the system in the cloud,

we wanted to replicate as much of the

functionality of the initial system design, rather

than fully leverage all that is available on modern

cloud hosting services. As such, we kept the

database design choice the same after pivoting the

project, so that the interaction layer could still be

hosted on actual hardware (with minor

modifications to the code).

When choosing a backend web framework, we

decided to go between Flask and ExpressJS. Both

are simple and lightweight, relatively easy to set
up and deploy. Ultimately, we chose to go with

Flask because it would be easier to integrate with

the interaction layer. Since the interaction layer is

written in Python, if we went with ExpressJS like

originally planned, we would have had to find a

way to connect the interaction layer python

library with a javascript function. Using Flask, on

the other hand, entailed only importing the

interaction layer library at the top of the backend

script, thus making our lives much easier.

V. System Description

Logically, our system consists of three parts, the hardware layer, the interaction layer, and the UI web app. Having a

system that we could easily split into three different distinct parts made splitting up work easy and helped us

integrate with each other much simpler. This section delves into more detail about each of those sections of our

system and discusses how these layers interact.

A. Hardware Systems

In the final iteration of the hardware layer, physical hardware was emulated using a webapp and a hardware

library utilized by the interaction layer. The emulator app was made using Django, a common Python web

framework, SQLite, and

a REST API. The
following diagram is an

illustration of the

components of the

hardware layer and their

interconnects.

1. The first part of this layer is the Emulator Web App. This was created using Django and the

Django REST Framework to allow the library, the second part of this layer of the system, to

communicate with the Emulator easily. Instead of creating a custom UI for developers to interact

with the emulator, we decided to use the built in Django admin page because it already had a

simple and easy to use way to display all this information. We stored all information about each

device and sensor in the SQLite database connected to the emulator and used the REST

framework to communicate with the library.

2. The library was created using Python and utilized the requests framework to communicate with

the Emulator. The library was initialized and interacted with using a JSON string that the device

instance gives to the library. The JSON string outlines all characteristics of the device, including

sensors, pins connected to hardware, actuators, and value types, so that the Emulator and any

future hardware can easily interface with this library. The different pieces of hardware (sensors

and actuators) are stored in a library object for the interaction layer, so that if the device has

multiple pieces of hardware it can access all of them using the library object.

B. Interaction Layer Systems

a. Device interactions: Interactions are managed using MQTT. The master node in the system runs

the broker, and all sensors and devices connect as clients. Sensors publish to sensor-specific
MQTT topics, and devices subscribe to topics required by user-defined interactions

This interaction looks like this:

Note that the broker process may be running on any device or sensor, including potentially the

device or sensor involved in the transaction. Sensors poll the hardware for updates every 50 ms,

and if the value has changed from the previous poll (greater than a delta defined in the sensor spec

as acceptable jitter), it publishes this information to an MQTT topic of the form

“[device_serial_number]/data_stream”. Devices with interactions tied to a sensor subscribe to that

sensor’s publishing topic; if multiple sensors are involved in a single interaction, the device can

subscribe using wildcards. When the sensor publishes a changed value, the device will receive it

through the broker, and if it matches what was defined in the interaction, it will cause a change in

the hardware (such as a light turning on or off).
Data packets sent to and from the broker will be a json of the following form:

{

 ‘device_serial_number’ : unsigned long,

 ‘data’ : primitive type (specific to the device doing the transmitting)}

b. Local device storage: Devices will store config and sensor data in a local SQLite database.

c. Hosting the webapp: See “master selection” below. One master node will exist in the system, and

will host the webapp. Users can access the webapp to interact with the system.

d. Master Selection: The master will be selected by looking at the devices that are currently in the

network and up (based off the heartbeats), and selecting the node with the numerically lowest

serial number.

e. Config updates: Whenever the user changes configuration (i.e. adds a node to the network, defines

a new interaction), all nodes in the network should be informed of this change so they can update

their local copy of the config. This is implemented on top of our MQTT layer. All nodes subscribe

to a topic named “config_updates”. Whenever there is a config change, the master node publishes

to this channel, and the nodes update their local version of the config.

f. Device heartbeats: This will be implemented on top of our MQTT layer. Initially we were

planning on implementing the heartbeats by having each node publish to heartbeats topic, and all

nodes reacting to these updates. However, we realized that this added potentially unnecessary

bandwidth use and complexity. We discovered two interesting MQTT features that allowed us to

pivot this design decision in a different direction:

i. Topic will messages: when an MQTT client connects to the broker, it can specify a “will”

message for a specific topic. If the client ever disconnects without going through the

proper disconnect procedure with the broker, the broker assumes the node has died, and

publishes that message to the will topic. What this means is that all nodes can subscribe

to the “heartbeats” topic, and publish a will message to that topic. That way, the only

time a heartbeat gets sent is when a node dies. This significantly reduces network

bandwidth usage, and accomplishes the same goal with greater precision (nodes will
know immediately when another node has died, as opposed to when they next expect a

heartbeat message to be published).

ii. On_disconnect async callbacks: many client-side MQTT libraries provide async callback

functionality, allowing the client code to register callback functions that are invoked

when certain things happen. One such callback, named on_disonnect in the client library

we chose to use, allows you to register a callback that is invoked if the connection with

the broker is unintentionally broken. What this means is that if the master node ever dies,

all other nodes will be immediately notified and can begin the master failover procedure

locally.

C. Webapp systems

a. The frontend will be built using React. Light, fast, and easy to prototype with, React can also be

containerized easily using Docker, making it extremely portable. There shall be a home page, used

a dashboard to view other pages, a devices page to view devices in the system, a page for each

device, an interactions page to view interactions in the system, and a page for each interaction. On

the interactions page, there should also be a form to create new interactions.

b. Backend-Express

The backend of the web application will be built using Flask. Simple, lightweight, and minimal,

Flask covers all of the systems backend requirements without anything extra. Models can be easily

implemented using JSON, which makes integration with the rest of the system seamless. Since the

interaction layer is written using Python, using a Python based backend seemed appropriate for the

smoothest integration.

i. Communicates to system via REST api

c. Mounted on Raspberry Pi using a Docker container

VI. Project Management: Change to new Gantt chart

A. Schedule

B. Team Member Responsibilities

 The breakdown of work aligned with our experience. Richard worked on the UI webapp, since he has a

large amount of experience with web app development, Niko took charge of the interaction layer since he has

experience with computer systems and operating systems, and Rip worked on the hardware and the hardware

library since he has experience with embedded systems and hardware. The pivot tested all of our skills, since we had

to work on everything in a completely new context.

C. Budget

Preliminary Budget

Name Quantity Unit Price Total Price

Raspberry Pi 4 model B 6 55 330

TPLink C1200 Router 1 50 50

Mr. Coffee Coffee Maker 1 25 25

PIR Motion Sensor 3 2 6

DS18B20+ 3 5 15

Mini USB Microphone 2 5 10

Final Budget

Name Quantity Unit Price ($) Total Price ($)

AWS T2 Micro Instance 1230 (hrs) 0.0162 20

AWS T2 Micro Instance refers to the type of machine we rented from Amazon Web Services (AWS). Our system

used many instances at the same time (sometimes up to 7 or 8), which is why there are 1230 hours logged. We count

1 hour as 1 instance running for 1 hour, so, if 7 nodes were running for 2 hours total, in this period we would have

logged 2 * 7 = 14 hours.

D. Risk Management

In the Gantt chart, we scheduled two weeks for

integration. After hearing many warnings from past

groups, we know the danger of not allocating enough

time to put together the pieces of our project.

In designing our demo system around a morning

routine, we have narrowed the scope of our project.

This tightens the focus of the group, lessening the

chance that non-essential work is done, which is

important given how long the project is active for.

E. Sudden changes

When we were all instructed to move home, all three

of us were quite shocked. We were on spring break in

Florida when we realized that we had to pivot our

project. Since we were all together, planning how to

pivot could be done in person. We analyzed the three

big parts of the project, and figured out how each part

would change.

The web application interface used to control the

system didn’t change. Instead of the web application

running on a device in the system, it would now run

on an AWS server. This ultimately didn’t change the

design of the web application at all. The web

application development plan resumed with no

further obstacles.

The interface layer needed to communicate with both

the web application as well as the hardware layer.

Since we no longer had physical devices, the

interaction-hardware connection needed to be

changed. Additionally, since the web application UI

is hosted on an AWS server now, the interaction

layer needs to communicate differently with the web

app.

Finally, we pivoted from using real physical devices

to using a hardware emulator. Instead of building the

smart devices using raspberry pi’s, we built an api

that simulates the hardware IO. If the interaction
layer needed the value of a certain sensor, it would

call the api with the device’s id. If the interaction

layer wanted to change the value of a device (e.g. a

lightbulb or a coffee pot), it would call a different

endpoint on the api with the target id and target

value. Pivoting to an api instead of real physical

devices let us test the system remotely. If we didn’t

pivot this part, we would have to all be at the same

place to integrate or test the interaction layer and the

hardware layer.

One particularly important reason for choosing to

implement a fixed api to govern interactions between
the interaction and hardware layers is that it improves

portability. If we were to someday port this system

onto physical devices, the hardware library’s api

could remain the same, while the implementation

could be rewritten. This would allow the interaction

layer to continue functioning with minimal changes.

VII. Related Work

One interesting project done in edge computing was

done by Tanmay Chakraborty and Soumya Kanti

Datta in late 2017 [4]. They identified the biggest

problem in the IoT space as fragmentation caused by
having many competing IoT device producers all

producing similar products using different

communication protocols. This has lead to a world

where it’s difficult for users to get their devices to

work together, which impedes the development of

unified smart home systems.

The solution they proposed (and implemented) is an

architectural prototype that “exploits the concepts of

edge computing, virtual IoT devices, and the internet

of things to create an interoperable home automation

solution” [4]. While not directly the project that we

worked on, it’s interesting to see that others are
looking into how to take advantage of edge

computing to improve home IoT systems.

Another interesting project, “Vigilia”, was done in

late 2018 [5]. This project aimed instead at making

smart home systems more secure. In particular, they

focused on “shrinking the attack surface of smart
home IoT systems by restricting the network access

of devices” [5]. They did this by creating an open

framework to limit network access only permissed

devices.

Our project was also partially driven by privacy; we

identified central storage of smart home data by a 3rd

party as a potential security risk, and aimed to create

a system where smart device data never leaves the

closed home system. It’s interesting to see how others

have approached solving the security problems posed

by the growing IoT industry.

VIII. Summary

Our system was able to meet most of our adjusted

specifications. Our latency requirement was 10ms, but

our slowest test over twenty trials was just under 3ms.

The system also met the internet resiliency

requirement. This specified that the system shall work

even when not connected to the outside internet. We

tested this by placing all nodes in the system in a

private security group, thereby restricting any traffic

from any source outside the system and isolating the

network.

A requirement we failed to meet was the master

failover timing requirement. We specified that once

the master node fails, a new master shall rise within 5

seconds. After 20 trials, the mean failover recovery

time was over 8 seconds: 3 seconds more than our

requirement. After timing how long it takes an AWS

T2 micro server to spin up, we realized that we might

have set an unrealistic requirement, as it often takes

more than 5 seconds to boot up an instance to a state

the webapp can run on.

To improve our system if we had more time, we would

transfer the system to real hardware instead of

software emulators. Basically, if we had more time

and could meet up in person, we would have

implemented the hardware devices on Raspberry Pi’s

instead of AWS cloud instances. Everything else about

the project would remain the same.

References:

[1] User study on device commissioning times (Note names anonymized for privacy)

Person Device Commission time (minutes)

1 Tp link smart bulb 3

1 Amazon Alexa 10

2 Amazon Alexa 8

3 Ring camera 5-10

3 Sonos smart speaker (wifi pairing) 5-10

3 Ecobee thermostat (same pairing

process as sonos)

5-10

4 Amazon Alexa 10-15

5 Smart security Camera 10

6 Amazon Alexa 10

7 Smart Bulb 10

[2] https://ecfsapi.fcc.gov/file/6520222942.pdf

[3] Sui, Kaixin, et al. Characterizing and Improving WiFi Latency in Large-Scale Operational Networks.

Characterizing and Improving WiFi Latency in Large-Scale Operational Networks.

http://zmy.io/files/mobisys16-WiFiSeer.pdf

[4] T. Chakraborty and S. K. Datta, "Home automation using edge computing and Internet of Things," 2017 IEEE

International Symposium on Consumer Electronics (ISCE), Kuala Lumpur, 2017, pp. 47-49, doi:
10.1109/ISCE.2017.8355544.

https://ieeexplore.ieee.org/abstract/document/8355544

[5] R. Trimananda, A. Younis, B. Wang, B. Xu, B. Demsky and G. Xu, "Vigilia: Securing Smart Home Edge

Computing," 2018 IEEE/ACM Symposium on Edge Computing (SEC), Seattle, WA, 2018, pp. 74-89, doi:

https://ecfsapi.fcc.gov/file/6520222942.pdf
http://zmy.io/files/mobisys16-WiFiSeer.pdf
https://ieeexplore.ieee.org/abstract/document/8355544

10.1109/SEC.2018.00013.

https://ieeexplore.ieee.org/document/8567658

https://ieeexplore.ieee.org/document/8567658

