
A lot has changed since our first design proposal. Our initial reaction to working from home was
that we should continue with our original project idea, and have somebody at school ship us the
hardware that we ordered. This idea is impractical because we do not know if it is possible to
get our hardware delivered to us, and if so, how long it would take. This will leave two thirds of
the team without the platform they need to build the system on, which we feel is too big a risk.

Web application controller:
A web application will be used to monitor and control the system. Users will be able to add a
new device to the network, examine system state, and define device interactions. The web
application will not deviate much, if at all, from the original plan. The backend will still
communicate to the databases on the devices to poll system state and declare system
interactions.

Interaction Layer:

The interaction layer consists of data storage and communication between the devices.
Given that this is largely abstractable from the hardware, and interfaces through the hardware
with an interface (see the hardware layer discussion below), the interaction layer can function
largely the same as we had initially planned.

One change to the system is that we will now be using qemu (a processor simulator)
running on an AWS instance to simulate the raspberry pi’s. The reason for this is that our team
has some familiarity with qemu, and qemu provides an excellent way to simulate hardware for
free. We chose AWS because while AWS, Azure, and GCP all provide comparable functionality
and cost, we are most familiar with AWS.

The main changes to the interaction layer are our requirements.

● Device commissioning: Since we no longer can have all devices on the same physical
network, and will be using virtualized devices in the cloud, we need to hardcode the IP
addresses of the devices. As such, we will not be developing a “commissioning” process
to add new devices to the system.

● Internet resiliency: Since we are simulating “local” devices in the public cloud, we can’t
manually disconnect them from the internet and show that the functionality remains.
While cloud service providers like AWS offer subnet abilities to simulate a local network
and disconnect it from the rest of the public internet, we feel that we can demonstrate
this requirement without using subnets. Instead, we can demonstrate that all incoming /
outgoing network calls are from / to devices in our “network”.

● Sensor input to device action latency: We previously required this to be <100ms.
However, given that the public cloud has unpredictable latency, we will also be removing
this requirement. In particular, as everything moves to virtual during the pandemic, public
cloud services could see greater strain, leading to potentially more unpredictable
latencies.

Hardware Layer:
Since acquiring hardware will be uncertain with classes in this state, we plan on virtually
simulating hardware using a webapp. This will encompass a software interface for the
interaction layer to connect with and a webapp that is connected to that interface. The
interaction layer will use the same function calls as it would to the hardware previously, but
through this virtual interface. This will allow us to do all of the demos and testing virtually so that
we can all work remotely.

Since we will no longer be able to accurately test latency, we are removing latency as a
requirement for the hardware.

We are adding interface and web app requirements to the hardware part however. Once we
further delineate the interaction and hardware layers, the requirements for those two are very
clear. For example, if the interaction layer calls the gpio library, the requirements for the
hardware interface would be all of the functionality of the gpio library.

In the hardware webapp, we will need the ability to have intuitive interactions with these
devices, display multiple devices on the page at once, and easily control the virtual “home
environment” around the devices.

We will also look into ordering smart devices and using their APIs as interfaces for our virtual
devices. This would allow us to have the physical demo without having to develop circuitry
remotely.

New sources of risk:
A major risk of switching to the smart devices and using their APIs would be that we might not
have a way to get the smart devices with the current situation, meaning that we would not be
able to use them. To mitigate this, we are planning on developing all of this with the goal of a
hardware webapp but feel out how long it would take for these devices to get shipped to us.

Revised Gantt Chart:

