
18-500 Final Project Report: 03/02/2020 
 

1 

 
Abstract— A smart home system capable of functioning without 

connection to the internet or a central brain device. Modern smart 
home solutions largely have a central point of failure, being 
managed either by backend cloud server(s), by local “brain” 
devices, or a combination of the two. Should the cloud server, 
internet connection, or brain device go down, the system ceases to 
function. Our project aims to shift the interaction management 
and computing from the cloud server(s) and brain devices to the 
smart home devices themselves, so that the system can function 
without a connection to the internet. 
 
Index Terms:  
• Brain: In modern IoT systems, the central processing point. 

Could be a backend cloud server or a dedicated device 
integrated into the smart home that functions as a central 
control. 

• Broker: Interactions are managed using an abstract publish 
/ subscribe message queue. This message queue is managed 
by a central service (broker) that manages subscriptions and 
passes published messages to subscribers. 

• Database: Each node in the network will need to store 
information, such as sensor data, interactions, and user 
config. Database refers to the the method by which each 
node will store this information locally. 

• Device: A node in the network that focuses on actuation; i.e., 
it causes an observable physical change in the environment. 
E.g. a smart light that can turn on or off, a smart coffee 
machine that can begin to make coffee, etc. 

• Interaction: An interaction is when data published by a 
sensor or shared by the system (such as the time) causes a 
device to perform an action. E.g. “If there is motion on my 
porch and it’s dark out, turn on the lights”. 

• Interaction Logic: The collection of interactions defined by 
the user, how they are stored within the system, and how 
they are managed so that the interactions happen as intended. 

• Master: The node(s) in the system that provides elevated 
functionality above other nodes, such as hosting the webapp 
or the broker. 

• Network: The collection of nodes that interact together to 
deliver the functionality typically described as a “smart 
home” 

• Node: Any piece of hardware in the smart home system that 
functions as part of the distributed system to deliver 
functionality to the user. 

• Sensor: A node in the network that focuses on the 
production and distribution of data, but not on causing 
physical change in the environment. E.g. a motion detector 
that reads data from the sensor and notifies the rest of the 
network about the change. 

• Sensor Data: Information collected and distributed by 
sensor nodes, intended to cause changes in the environment 
by device nodes. E.g. a reading from a motion detector or a 
light sensor. 

• System Config: The collection of data necessary for nodes 
to interact with other nodes in the system. E.g. network id, 
identity of master node, nodes in the network and their local 
ip address, etc. 

• User: The person who is interacting with the smart home 
system. E.g. a tech-savvy citizen who wants to automate 
their home without relying on the public or private cloud. 

• User Config: The collection of data necessary to define a 
user's system. E.g. the interactions list. 

• Webapp: The user-facing interface for monitoring 
and updating the smart home system. 

 

I. INTRODUCTION 
INCE their introduction in the early 2000’s, smart home 

devices have become increasingly popular. Devices such as 
the Amazon Alexa, the Ring Doorbell, and the Phillips Hue 
lightbulb have changed how many people interact with their 
homes. The management of these systems is largely done using 
some combination of the following: 

1. Device sensor data is sent to a backend cloud server 
that keeps track of each device’s state. Depending 
on user defined rules, the server may signal the 
devices in the home and cause them to perform an 
action. 

2. Similar to the first method, sensor data is aggregated 
and sent to a central server. However this server is 
a device in the local smart home network, 
designated a “brain” device, that takes care of 
managing system interactions. 

3. Some combination of the above two methods. 
Cloud server can function as a backup of the brain 
device and a way for the user to interact with the 
system. 

This approach has a number of advantages. For example, it 
simplifies the system, as centralized solutions are generally 
easier to reason about and implement than distributed ones. It 
also becomes easier to add functionality to the system in the 
future by just updating the backend server, instead of requiring 
devices themselves to update. In addition, if any serious 
computation is required by the system (such as usage analytics), 
the backend can be scaled appropriately to provide the user a 
quick and seamless experience. 

 That being said, this approach has some serious 
disadvantages, perhaps the largest of which is the central point 
of failure. If the brain goes down, either by failure of the brain 
device or if the system loses connection to the internet, the 
smart home ceases to function properly. Devices may no longer 

Edge Computing For Smart Home Devices 

Author: Nikolas Gupta: Electrical and Computer Engineering (ECE), Carnegie Mellon University 
(CMU); Ripley Lyster: ECE,CMU; Richard Deng: ECE, CMU 

S 



18-500 Final Project Report: 03/02/2020 
 

2 

interact correctly with each other, and in extreme cases users 
may no longer be able to control the devices in their own homes. 

 We aim to eliminate this disadvantage by shifting the 
device state storage and interaction management from the brain 
to the devices themselves. Our system aims to maintain the 
functionality of most modern smart home systems, namely: 

1. Users should be able to interact with the system to 
both define interactions between their devices and 
view interactions that have occured as far as 4 years 
in the past. 

2. Devices should react as per their defined 
interactions within 0.1 seconds. 

3. Devices can be controlled by the user through some 
sort of intuitive interface, such as a web or phone 
app. 

 The system should function normally even if the local 
network is disconnected from the internet, i.e., the above 3 
requirements should function the same. However, if the 
network is down, then the user will be unable to monitor and 
interact with their devices outside of the local network. 
  



18-500 Final Project Report: 03/02/2020 
 

3 

 

II. DESIGN REQUIREMENTS 
Our system’s goal is to operate fully without needing 

a connection to the internet. Therefore, the above requirements 
are derived largely from existing smart home solutions. 

The most critical of these requirements are “sensor 
input to device action latency under normal use” and “internet 
resiliency”. We believe these to be the most important 
requirements because the former is necessary in order to match 
current smart home solutions (at least in functionality), and the 
latter is required in order to solve the problem we have 
identified. 

Here is how we intend to test the above to demonstrate 
that our system meets the requirements: 

• Sensor input to device action latency under 
normal use: Using a high - speed camera 
(iPhone X can shoot at 240 fps, ~4 ms per 
frame) we will film a sensor being triggered 
and the resulting interaction. Assuming the 
system is running normally (master is up), 
this should be under 100 ms.  

• New device commission time: We will make 
an extra device that is not connected to the 
network. Using a simple set of instructions, 
the average user should be able to pair it into 
the system in less than 10 minutes (we will 
test with at least 10 people). 

• Past sensor data viewable: We do not intend 
to run our system for 4 years to demonstrate 
the storage capacity. Rather, we will provide 
detailed calculations of our data schema and 
frequency of “saving data”, along with 
equations showing how much data can 
realistically be expected to be stored in 4 
years. Our system should have a strictly 
larger amount of storage than that. 

• Internet resiliency: We will purchase a 
simple router that we will use to simulate a 
user’s home network. This router will be 
disconnected from the internet during our 
demo, and the device interactions should 
work as defined in our requirements. 

• Downtime in case of master node failure: 
Given a set of a sensor and a device node, 
with an interaction defined between the two, 
the device should react to sensor input 
within 100 ms under normal operation. We 
will disconnect the master node and 
continuously provide input to the sensor, 
demonstrating that the device reacts after no 
more than 5 seconds. 

Downtime in case of a non-master node failure: This can be 
tested similarly to the master node failure case. Given a set of 
a sensor A  and a device node, and a separate sensor node B 
(that is not a master), given continuous input to A, the device 
should react even if B is disconnected.

 
 

  

Requirement Specification Justification 
Sensor input to device 
action latency under 
normal use 

<100 ms < 0.1s considered “instantaneous” by the FCC [2]. 

New device 
commission time 

< 10 minutes After conducting interviews of friends and family about their smart 
home device usage and commission times, we found that on average 
devices took around 10 minutes to set up from unboxing to use. More 
detailed results can be found at [1]. 

Past sensor data 
viewable 

4  years Typical device lifetime is 2-4 years. Given a typical sensor, all of its 
historical data should be viewable from the webapp. 

Cost per node < $75 Smart home devices typically < $75, some are a bit over. E.g Phillips 
Hue ($55), Alexa Echo ($50), Ring doorbell cam ($100). 

Internet resiliency Device interactions 
should continue to 
function normally 

If the home router disconnects from the internet, the system should still 
function normally. 

Downtime in case of 
master node failure 

< 5 seconds Based off user research we conducted, users were willing to wait 5 
seconds for a webpage to load before they gave up. As such, we require 
that in the worst case (failure case), a new master node is elected and 
made functional in under 5 seconds. 

Downtime in case of 
non-master node 
failure 

None The only functionality lost if a non-master node goes down should be 
the interactions that device is involved in. I.e. if a sensor goes down, 
any interaction relying on that sensor’s input cannot work, as the sensor 
is not functional. 



18-500 Final Project Report: 03/02/2020 
 

4 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 

 
  

Figure 1: Overall System Diagram 



18-500 Final Project Report: 03/02/2020 
 

5 

IV. DESIGN TRADE STUDIES 

A. Hardware Platform of System 
Limitations: 

1. Hardware platform needs to be able to host 
MQTT broker as per interaction layer 

2. Hardware needs to support a local database 
Our system had two options in regards to which platform 

the smart devices should be built upon: Raspberry Pi’s or 
NodeMCU’s. While the ESP8266, the NodeMCU model we 
could use, would work well for our application, it is 
manufactured in China. Usually, this would not be a problem, 
but recent events concerning the Covid-19 Novel Coronavirus 
make the shipping time for this component unpredictable. As 
such we decided to go with the Raspberry Pi, specifically the 
model 4, as it is already in inventory. 

When deciding on which router to use, we considered our 
100 ms device interaction latency requirement. The way an 
interaction will occur within our system is as follows: sensor 
node polls hardware (software, hardware), sends updated data 
to broker (network latency), broker determines subscriber(s) to 
send the data to (software), the broker sends the data to the 
subscriber node (network latency), and the device node then 
acts on that data (software, hardware). The code required to 
implement the software portions of this interaction is of 
negligible size, and with the raspberry pi 4 processors will run 
in milliseconds. However, the network latency introduces a 
potential bottleneck. According to [3], typical wireless 
network latency is around 20 ms. Since we have 2 data 
transfers over the network (see section 5, system design), a 
typical homeowner would see 40 ms of latency. Our goal in 
selecting a router was to pick one that can at least satisfy this 
requirement, so as to replicate the typical user’s network 
setup. 

A typical TCP packet consists of 40 bytes, and an MQTT 
message has 9 bytes of overhead (excluding payload). We 
intend to allot space for a 64 byte payload, amounting to 113 
bytes of data per transfer. To transfer 113 bytes of data twice 
within 100 ms, we need to transfer 226 bytes per 100 ms = 
2260 bytes per second = 2.26 KBps = 18.08 Kbps. Since most 
modern routers function in Mbps connection speeds, not Kbps, 
any router we select should be able to meet the “20 ms 
latency” cited in [3]. 

We chose to use the TPlink C1200 router because it fits in 
our budget and is powerful enough to satisfy the latency 
requirements outlined above. 

B. Database Platform of System 
Our system will use a database to store information locally 

on each of the nodes. A lot of thought went into whether we 
should have a shared distributed database, a local database on 
each device, or a combination of the two. To begin this 
comparison, let us look at the information that needs to be 
stored in the system: 

1. For each node in the network: 
1. IP address 
2. Last seen heartbeat 
3. Serial number 
4. Whether it is a master node (hosting webapp 

or broker) 

2. Network ID 
3. Defined interactions 
4. Sensor data 

 
Initially, we considered storing everything of the 

above in a shared distributed database. This would greatly 
simplify interactions, as all nodes could read the shared 
data, and state would become “centralized”. However, this 
introduced 2 major problems. The first problem is that 
often in distributed databases, you have master node(s) that 
can write to the database, and slave node(s) that function 
as replicas of the data. Since our system is intended to be 
used in home settings, the number of devices will be 
limited, and so there will be a few number of master nodes 
through which all devices must write. Given that our timing 
requirements require polling with frequency greater than 
100 ms, this would necessitate a write over the network to 
the shared database once every 100 ms per sensor. Besides 
the fact that this unnecessarily clogs up the user’s network, 
it introduces a pointless bottleneck into the system. A 
second problem with this approach is that sensor data for 
each sensor exists on all nodes. We felt this level of 
replication is unnecessary, and forces us to use more 
storage than is otherwise needed. 

This motivated us to shift towards a combined 
approach. Of the above data, items 1-3 would be defined in 
a shared database, and item 4 would exist locally on each 
sensor node. The sensors could publish the data to the 
broker as it is produced, and store it locally. If historical 
data is ever needed, it can be requested from that sensor. 
At first glance, this approach seems to fix all the problems 
of the first one. However, we were unable to make a strong 
argument for the existence of a shared database storing 
items 1-3. 

Our reasoning behind this is as follows: items 1-3 
consist of a (relatively) small amount of data, and this data 
will not be written to frequently. These items will largely 
be changed only when a user logs into the web interface to 
change their configurations, which is unlikely to happen 
more than a few times a day. As such, it doesn’t really 
necessitate the overhead and complexity involved in using 
a distributed database. Instead, we decided it would be far 
simpler (and equally effective) to have each node store a 
local replica of items 1-3, and have sensor nodes also store 
item 4. Whenever 1-3 are updated (through the master 
node), it will send an update to the other nodes, and they 
will update their local database’s version of the 
configuration. 

Throughout this process, we considered a number of 
distributed and local databases, including Redis, Apache 
Cassandra, MongoDB, Hbase, and SQLite. However, our 
decision to shy away from a distributed database made the 
criteria shift a little bit. In terms of storage footprint, read 
speeds, and simplicity of use, SQLite won over the others. 
In addition, it could more easily run on the single board 
computers required by the rest of our system, as compared 
to some of the other options (such as Cassandra) that 
require the JVM. 

  



18-500 Final Project Report: 03/02/2020 
 

6 

V. SYSTEM DESCRIPTION 

A. Hardware Systems 
The hardware system is made up of a smart alarm clock, 

smart coffee pot, a smart bulb, and three sensor devices. All 
devices will be built on top of the Raspberry Pi platform. The 
devices will communicate over wifi using a consumer wifi 
router. 
1) Smart Alarm Clock/Coffee Pot/Bulb 

The smart devices will be built using a solderable raspberry 
pi hat that will connect to the gpio pins on the raspberry pi. 
These will be simplified smart devices to simulate realistic 
smart devices used by consumers today. The smart coffee pot, 
in particular, will be created by “hacking” a consumer coffee 
pot with a relay switch and controlling that relay with a 
raspberry pi.  
2) Sensor Devices  

The sensor devices will be created using a solderable hat on 
the raspberry pi. The device will have light and motion 
sensors, and if it is easier to get those packaged with other 
sensors, other sensors as well. 

B. Interaction Layer Systems 
1) Device interactions 

Interactions will be managed using MQTT. The master 
node in the system will run the broker, and all sensors and 
devices will connect as clients. Sensors will publish to sensor-
specific topics, and devices will subscribe to topics required 
by user-defined interactions.  

Note that the broker process may be running on any device 
or sensor, including potentially the device or sensor involved 
in the transaction. Sensors will poll the hardware for updates 
every 50 ms, and if the value has changed from the previous 
poll (greater than a delta defined in the sensor spec as 
acceptable jitter), it will publish this information to an mqtt 
topic of the form “[device_serial_number]/[type_of_data]”. 
Devices with interactions tied to a sensor will subscribe to that 
sensor’s publishing topic; if multiple sensors are involved in a 
single interaction, the device can subscribe using wildcards. 
When the sensor publishes a changed value, the device will 
receive it through the broker, and if it matches what was 
defined in the interaction, it will cause a change in the 
hardware (such as a light turning on or off). 
Data packets sent to and from the broker will be a json of the 
following form: 
{ 
    ‘device_serial_number’ : unsigned long, 
    ‘Type_of_data’ : string, 
    ‘payload’ : json (specific to the type of data being 
transmitted) 
} 
 
 
2) Local device storage 

Devices will store config data, heartbeats, and sensor data in 
a local SQLite database. 
3) Hosting the Webapp 

See “master selection” below. A master node will be 
elected, and that node will host the webapp. Users can access 
the webapp to interact with the system. 

4) Master Selection 
The master will be selected by looking at the devices that 

are currently in the network and up (based off the heartbeats), 
and selecting the node with the numerically lowest serial 
number. 
5) Config updates 
Whenever the user changes configuration (i.e. adds a node to 
the network, defines a new interaction), all nodes in the 
network should be informed of this change so they can update 
their local copy of the config. This will be implemented on top 
of our MQTT layer. All nodes will subscribe to a topic named 
“config_updates”. Whenever there is a config change, the 
master node will publish to this channel, and the devices will 
update their version. 
6) Device Heartbeats 
This will be implemented on top of our MQTT layer. All 
nodes will publish to a topic of the form 
“[device_serial_number]/heartbeat”. The master node will 
subscribe to these topics, and receive heartbeats from the 
nodes. It will then publish the collection of heartbeats, along 
with its own heartbeat, to a “heartbeats” topic. All nodes are 
subscribed to this topic, and will update the information 
locally. While this introduces a level of redundancy, it makes 
it so that if a master fails, all nodes are aware of other nodes in 
the system that are up, so that they can communicate to elect a 
new master. 

C. Webapp Systems 
The frontend will be built using React. Light, fast, and easy 

to prototype with, React can also be containerized easily using 
Docker, making it extremely portable. 

1. Devices 
2. Interaction 
3. Registering devices 
4. Registering interactions 
5. Sign up 

The backend of the web application will be built using 
ExpressJS. Simple, lightweight, and minimal, ExpressJS 
covers all of the systems backend requirements without 
anything extra. Models can be easily implemented using 
JSON, which makes integration with the rest of the system 
seamless. 

Communicates to system via REST API. Mounted on 
Raspberry Pi using a Docker container. 



18-500 Final Project Report: 03/02/2020 
 

7 

VI. PROJECT MANAGEMENT

A. Team Member Responsibilities 
Richard is responsible for the system’s web application.  
Niko is responsible for the high-level device interactions. 
Rip is responsible for lower level interactions. 

 

B. Budget 
 

C. Risk Management 
In the Gantt chart, we scheduled two weeks for integration. 

After hearing many warnings from past groups, we know the 
danger of not allocating enough time to put together the pieces 
of our project.  

In designing our demo system around a morning routine, we 
have narrowed the scope of our project. This tightens the focus 
of the group, lessening the chance that non-essential work is 
done, which is important given how long the project is active 
for. 
 
 
 

Name Quantity Unit 
Price 

Total 
Price 

Raspberry Pi 4 model B 6 55 330 
TPLink C1200 Router 1 50 50 
Mr. Coffee Coffee Maker 1 25 25 
PIR Motion Sensor 3 2 6 
DS18B20+ One Wire Digital Temperature 
Sensor  

3 5 15 

Mini USB Microphone 2 5 10 

Figure 2: Our Project Gantt Chart 


