
1

InFrame: Final Report
18-500 - ECE Capstone

Martinez, Diego | Kilinc, Ahmet | Mercier, Ismael
Electrical & Computer Engineering, Carnegie Mellon University

Abstract–– Robotic-assisted photography is among the
most exciting technological developments in the production
industry since the invention of the camera itself. It provides new
and unique ways to capture dynamic scenes and unlock new
avenues for cinematographic creative potential. Current
photography robots on the market range from tremendously
expensive industrial robotic arms, such as Motorized Precision’s
Kira camera robot, to portable devices that allow for smooth
motion across basic scenes. However, most photography robots
have not yet leveraged breakthroughs made in the Computer
Vision space in the last decade. For these reasons, this design
blueprints InFrame, an intelligent, motorized photography
assistant that uses state of the art object detection models and
tracking algorithms to follow user-selected targets across a 3D
space, constantly keeping them InFrame.

Index Terms–– Photography, Computer Vision, Robotics,
Deep Learning, Object Detection, Tracking, Embedded Systems.

1. INTRODUCTION

AI-powered robotic systems have become the cornerstone of
technological feats unachieveable by any human, pushing
forward the boundaries of what is considered possible across
countless technology-supported fields. Specifically within the
photography and production industry, countless high-precision
robotic devices are now being utilized to improve
cinematography capabilities, such as Motorized Precision’s Kira
camera robot or the Rhino Arc II. However, few such products
available on the market make adequate usage of the many
research breakthroughs in the Computer Vision field to enhance
system operation while maintaining overall system affordability.
The additional functionality that results from applying these
Computer Vision breakthroughs enables powerful autonomy
practical for even the most advanced users, while hardware
affordability broadens the product’s user population to even the
hobbyist level.

To fill this technological gap in market-available development,
this team has decided to build the InFrame system and improve
the quality standard for affordable smart-photography systems
everywhere. The system is designed to address two primary
areas of use-cases: semi-autonomous lecture recording and
action shot capturing. Many courses at institutions like Carnegie
Mellon University record 1-3 hour long lectures where the
autonomatable task of following the target professor across a
classroom floor is currently being done by a human idling his or
her time while occasionally making acute camera adjustments.

Action shots, such as a diver jumping from a 3-meter board, are
not even being filmed until the olympic levels, creating a market
gap for all other levels of diving activity for users who want to
film themselves either during competition or period of practice.
For both of these application areas, InFrame is the simple
solution that users have long awaited.

These use-cases can be itemized into goals delineated among
three primary system components. Within the Perception
subsystem, the outlined technology must conduct object
detection, object tracking, and be relatively successful in dealing
with occlusions blocking the target from the camera system’s
field of view. Within the Hardware subsystem, a mechanism
must be built that can position a camera’s frame, record image
data, and host a computing device capable of processing
computer vision models. Lastly, to control the full stack, a
concurrent system controller alongside an intuitive user-oriented
interface must be developed. To measure success, this design
must support object detection at 80% accuracy and tracking that
allows for selection and frame-centering of a target for the
outlined use-cases without major occlusions and major lighting
changes. Furthermore, to guarantee that users view the camera
as tracking them in real-time, the design must minimize latency
between their measurable movement inputs and camera tracking
outputs to be within a 60ms upper threshold. The achievement of
these two principal metrics translate to a successful
implementation of the InFrame system’s core functionality.

This report will detail the quantitative and qualitative system
design requirements, the solutions designated for meeting these
requirements, an overview of how the product’s subsystems
interact with one-another, an itemization of design metrics
established for assessing each subsystem’s successful operation,
an overview of previously evaluated and eliminated design
alternatives, and an overview of the project management process
behind the development of the overarching InFrame system.

2. DESIGN REQUIREMENTS

For InFrame to successfully support the use-cases outlined by
this design, a set of itemized technical goals and quantitative
(wherever possible) requirements must be specified and met in
order to guarantee a successful product. These collections of
goals and requirements are delineated across the product’s
principal subsystems: System Control, Perception, and
Hardware.

2

2.1. System Control Requirements
Streamlined and comprehensive control is integral to the
maintenance of the physical InFrame system’s semi-
independent functionality while providing intuitive interfaces for
users to interact seamlessly with the overarching product
functionality. This project design works to solve this central goal
by building a system that can operate as independently as
possible once it has an objective stored locally, while generating
a human-facing interface for users to intermittently provide
these objectives without constant dependence from the remote
device in between command delivery. Therefore, this report
proposal delineates design goals and requirements between these
two subsystems: a core system manager and a user-facing
interface for inputting system commands.

Consistently, a crucial number will arise across all timing
considerations in this project: 60 ms. This is because popular
consumer electronics ratings agencies such as RTINGS.com
have conducted extensive research to prove that input lags above
50 ms start to become noticeable for humans. Hence, when a
target moves, for the system to be responsive to that “input” and
appear to track in real-time, the duration of the entire perception
stack should be kept only a bit above 50 ms since that number is
meant for gaming and a bit above that would still appear to be
happening in real-time. Thus, 60 ms becomes an ideal objective
across the various project subcomponents and their
integration[2].

2.1.1. Core System Manager
The core system manager’s foremost goal is to provide a
framework for managing the product’s various subsystems
simultaneously so as to avoid queuing subsystem tasks, an
outcome of sequential design that would slow down the overall
system. In order to accomplish this goal, the core system
manager has a requirement to be programmed as a collection of
concurrently operating managers, each of which pass
information (e.g. image frames, received user-commands, motor
rotation vectors) among one another. Subsequently, to improve
the effective operating speeds (e.g. effective post-processing
framerate), the core system manager must be centralized to
reduce the latency between data transmission. To support this
goal, the system should be able to transmit a single image frame
from the camera to the Perception subsystem within the same
60ms threshold it takes object tracking to output camera
adjustment directives to the motors, representing the threshold
for measureable latency to be detected by the human eye. A
single image frame was selected as it is the largest amount of
data that the system manager would have to send from one
subsystem to another within a short period of time, thereby not
adding further latency to an already time-constrained system.
Lastly, since the product will be utilized outdoors and thus
typically without reliable WiFi connection, video storage cannot
occur on the cloud and must be operated offline; the core system

manager must therefore support offline video storage with a
simple download process.

2.1.2. User-Interface for Command Delivery
Commanding the InFrame system through a user-intuitive
medium is critical to the development of a streamlined user
experience and, as a result, a well-designed product. For any
use-case InFrame is designed to deliver, both a screen for
displaying images and an ability to touch select specific
locations on said screen are critical requirements for the reason
that users interacting with the system will need to both view
object-detected targets within the camera’s field of view and
select a specific intended target. With the unnecessary
complexity integral with installing, populating, and polling an
external touch screen, a remote interface surfaces as a clear
requirement. With the added goal of supporting outdoor use
cases, communication with this remote interface cannot be
conducted through an online server (e.g. AWS instance) since
consistent WiFi connectivity cannot be relied upon outdoors.

In order to improve the responsiveness of the system to user
tracking directives, the system should be able to respond to a
user’s target selection and begin operation within 2 seconds of
making this selection on their previously object-detected frame
(e.g. an image capture with detected targets indicated/outlined).
This threshold represents the upper bound of how long the
system designers were willing to wait between requesting a
target selection and expecting the physical system to be able to
respond in some degree of affirmation.

2.2. Perception Requirements
Perception lies at the core of InFrame’s functionality. In order to
have a fully functioning system, we need an accurate and
efficient computer vision pipeline capable of object detection
and object tracking.

2.2.1. Object Detection
State-of-the-art object detection models such as YOLOv2, SSD
ResNet-18 and SSD Mobilenet-V2 achieve accuracies between
69% and 85%[1]. As such, the system requirement the team
defined is to meet at least that level of accuracy on InFrame’s
outlined use cases.

2.2.2. Object Tracking
Since tracking is such an inherent part of the system, a
requirement for the system is to never lose the target under
normal circumstances. In any case, this translates to a success
rate of at least 99% under normal circumstances with consistent
lighting and small object displacements in between frames.
Occlusions, objects changing shape and major light changes are
certainly desirable but are not required.

https://medium.com/@jonathan_hui/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359

3

2.3. Hardware Requirements
Hardware is the aspect that really makes InFrame come to life.
As such, it is imperative that each aspect of the hardware has a
specific set of requirements that need to be met to ensure a
meaningful user experience. Furthermore, each aspect of these
requirements must be tied back to the end user-experience so as
to ensure the highest quality product.

2.3.1. Tracking Speed
The pan and tilt motors must support moving fast enough to
track a professor walking from 2.5m away. At average human
walking speeds this is 40° per second. Meeting these speed
requirements ensures that users are not limited on how fast the
tracking can be.

2.3.2. Battery Life
InFrame must be able to record continuously for the duration of
a lecture or presentation. Most presentations or meetings will
have at least one intermission in a 3 hour period. Therefore the
target runtime is 3 hours. If users require a longer filming
session the batteries could easily be swapped. It should also be
noted that the battery life for most camera systems is around 3
hours, when photographers need to film for longer periods of
time they swap out the battery on their camera. This requirement
here is to have a user experience analogous to that of working
with a traditional camera system. Although the battery capacity
was not tested it was calculated and in this way proved to be
sufficient.

2.3.3. Motion
The intentions were to enable InFrame rotate continuously to
track targets anywhere around it. Due to manufacturing
complications as a result of COVID-19 it was decided to leave
out this capacity. InFrame is capable of 360° rotation, but it
cannot do so continuously. The mechanical system must be able
to support this without the potential for damage when the axes
are moved to extreme angles. Therefore there the system was
designed so there cannot be collisions between parts and the
wires may not get tangled or twisted while moving. Creating a
system that will not destroy itself over time is a requirement for
any product.

2.3.4. Profile
InFrame is easy to transport in a backpack. Access to the battery
allows for quick swapping. Like most photography equipment, it
is tripod mountable. Again, a requirement for a quality user
experience is to feel similar to standard photography equipment.

3. SYSTEM DESCRIPTION

The aforementioned requirements are the driving factor behind
InFrame’s design. Now, this report will outline the proposed
design to meet these requirements to build a successful product.

3.1. System Control Suite
3.1.1. Core System Manager Design
The core system manager will need to maintain concurrent
control of the camera products various subsystems, which
include camera control, motor control, perception (object
detection and object tracking), video storage, and
communication with the remote control interface. To minimize
the latency of data transfer between any two subsystems, such as
moving image data from the camera control to the perception
module, this design centralizes this compute on the Jetson
device itself. Given that the Jetson will be host of the system’s
heaviest computing load, the perception operations of object
tracking, this design will attempt to consolidate all other
operations that depend upon the output of this computer vision
work within this device. In order to meet the multifunctionality
of the CSM’s design and operate its core image processing
pipeline while also sending / listening for Bluetooth data and
marking data for future compilation, the system must be
programmed to operate concurrently. Moreover, since the
standard for conducting computer vision work is Python, which
already has more extensive embedded interaction libraries than
other concurrency languages, the CSM is programmed using
Python and its multithreading libraries.

3.1.2. Remote Control Interface
As was outlined in Section 2.1.2, it is imperative for an intuitive
target selection that InFrame features a remote touch screen
display. Given the ubiquity of smartphone devices, the choice
becomes clear. By pairing the InFrame system over Bluetooth to
a user’s smartphone device, InFrame becomes much more
cost-efficient, user-friendly and easy to use. Furthermore, iOS
was chosen due to iPhones’ competitive advantage in the
photography space and the fact that the InFrame team members
all have iPhones.

The remote control interface is meant so that the user can send
three types of commands: A start/stop command to start
recording frames or stop to save the resulting video, a detect
objects command so that the system may perform object
detection on the current frame and send both the frame and the
bounding boxes above a certain confidence threshold to the
phone, a select target command to specify which target the
system should start tracking, and a terminate command to signal
the CSM to fully shut down.

3.1.3. Principle of Operation
To start up the main operational sequence, the core system
manager will listen for and retrieve command information from
the communication module, to which the remote controller will
send system commands. When the user requests an image, the
system manager will ping the camera manager to capture a
frame, will forward this frame to the perception module where it
can run object detection to outline potential targets, and lastly
forward this information to the communication module for

4

transmission back to the remote interface for the user to select a
tracking target. When the user communicates with the CSM to
select a target to track, the comms module will retrieve the data,
which will be parsed in a separate thread run by the main system
manager, which will first take another picture using the camera.
This frame will be passed to the perception module, where
object tracking of the selected target will be conducted and a set
of optical flow vectors, which indicate required camera
adjustments, will be generated. This data is then delivered to the
motor manager, where they will be reformatted into angular
rotation and used to readjust the physical camera system to keep
the target in the center of the frame. The image taken by the
camera in this iteration will also be sent to the storage module,
where it will be stored for future compilation. This cycle will
repeat until the user requests to end the current filming term, at
which point the main system manager will compile the stored
frames into a video format and once again restore the system to
a state prepared for the start of another tracking and filming
term. Portions of this user interaction are outlined in further
detail in Section 4, which also contains a description of the API
this team has designed to enable the CSM and remote user
interface user to communicate with one another.

3.2. Perception Pipeline
The computer vision pipeline is mainly composed of two
subcomponents: Image pre-processing, object detection, and
object tracking. The image pre-processing component
downsamples an image so that it fits into the object detection
model. The object detection component detects objects in an
image above a certain confidence threshold. The object tracking
component, given a bounding box, tracks the movement of the
object within the bounding box from one frame to another.

3.2.1. Image Pre-Processing
The InFrame system features a Raspberry Pi Camera V2, which
is set to operate at 720p60. This is because the main camera is
used not only for object detection and tracking but also for
actually recording video, so a high quality (for video playback)
and a high frame rate (for slow motion capabilities in
post-processing editing of action shots and small displacements
in between frames for accurate tracking) is desirable. However,
720p (1280x720 pixels) is a much higher resolution that is
needed for image inference, so images are downsampled to fit
the object detection model’s input.

3.2.2. Object Detection
The object detection component of the perception pipeline will
make use of a pre-trained neural network architecture designed
for object detection and OpenCV’s Deep Neural Networks
module to load said network. The model that it will use is SSD
Mobilenet-V2, which is an architecture designed by Google AI
for on-device mobile vision applications. It is a lightweight
model that achieves 39 FPS on object detection tasks when

running on a Jetson Nano using 300x300 images[3]. It also
achieves very similar accuracy benchmarks as other
state-of-the-art object detection algorithms, as shown in figure 1
below.

Figure 1: Accuracy comparison of state-of-the-art object

detection models

3.2.3. Object Tracking
After a bounding box has been selected by the user, the
perception pipeline enters the object tracking stage. Here, the
system determines the optical flow from one frame to another in
order to track the movement of the object within the bounding
box. Optical flow is the pattern of apparent motion of image
objects between two consecutive frames caused by the
movement of an object or a camera. It is a 2D vector field where
each vector is a displacement vector showing the movement of
points from the first frame to the second. By using optical flow,
the system can determine the direction and magnitude of
movement of an object from frame to frame and use that to drive
to motors to track the subject. InFrame calculates optical flow by
calculating the vector from the center point of the previous
bounding box to the center point of the next.

In order to track objects in real-time on the Jetson Nano, several
tracking algorithms were implemented and considered.
Ultimately, because the Jetson Nano’s image comes
pre-packaged with an inference optimization library called
TensorRT which achieves speedups of up to 40x, object
detection itself proved to be the best tracker. As such, once the
user selects a target, the system saves the class ID of that target
(i.e. human, dog, skateboard, etc.) and looks for that same class
ID in future frames’ detection results. In InFrame, this means
that there can only be one instance of each class per frame,
otherwise it would randomly switch between them. This can be
easily improved by gathering features from the target bounding
box, comparing them to the features in each potential bounding
box for all the objects pertaining to that class and choosing the
one that minimizes the difference, but the team did not have
time to implement this improvement.

5

3.3. Hardware Design

Figure 2: Hardware Interaction Diagram

3.3.1. Battery Management - Voltage Regulator
The 18V from the power tool battery is converted to
necessary 5V 4A voltage for the Jetson and the 4.8-7.2v
needed for the servo motors using a switching regulator. This
is done with a custom PCB that was not manufactured due
complications with the pandemic.

3.3.2. Power Tool Battery
A power tool battery has been selected because it will be
easier and safer to work with than just LithiumPolymer
batteries since it already comes with the protective charge and
discharge circuitry. A Milwaukee Tool 18V 6.0Ah battery has
been selected because it provides sufficient power for the
desired runtime while still remaining economical. Standard
photography equipment uses interchangeable batteries so in
doing the same InFrame shares a similar user experience.

3.3.3. Servo Motor Driver
This circuit will be a simple logic level shifter that will allow
control of the 4.8V-7.2V servo’s with the 3.3V Jetson gpio
pins. An optocoupler is used to isolate and protect the Jetson
from any potential voltage spikes coming from the servo
motors. This board will also have a power passthrough from
the battery manager to the servo motors. This circuit will be
on the same PCB as the voltage regulators.

3.3.4. Servos
This option was chosen due to the ease of controlling a servo
motor since they require less hardware and simpler control
signals than other motors. In addition to this, servo motors
offer greater torque for their size as a result of their internal
gearing system. For panning motion, the system will use a
continuous rotation metal geared servo motor that will enable
360° rotation. For tilting, the system will use a 180° metal
geared servo which will allow movement without worry about
collisions since it cannot go past the set limit.

3.3.5. Camera
The system will use a 1080P30FPS camera that will be easily
integrated with the Jetson through a CSI MIPI interface that is
built-in. This camera has a high enough FPS where we can
constantly keep the GPU running the tracking algorithm and
also film a quality video. 1080P30FPS is the typical “high
quality video” resolution seen in most online streaming.
Providing the highest quality possible is a key aspect of any
photography equipment.

3.3.6. WiFi and Bluetooth Module
The system will feature an Intel 8265NGW Dual Band WiFi
and Bluetooth 4.2 module that will enable wireless
communication for the Jetson. It plugs directly into the
Jetson’s M.2 connector and works with supported software.
This will allow for easy Bluetooth communication between
InFrame and the iOS Device.

3.3.7. Nvidia Jetson Nano
The Jetson is the most affordable embedded single board
computer that offers high computer vision performance with
its NVIDIA GPU. See section 6.1 for more details.

3.4. Mechanical Design

Figure 3:Physical System Design

3.4.1. Motion
To properly track a target, InFrame must be able to pan and
tilt the camera. This motion will be achieved with servo
motors. A continuous rotation servo motor will allow InFrame
to track targets in full 360° motion. Due to pandemic
complications, a slip ring was not integrated into the panning
mechanism and therefore it is unable to turn continuously and
is restricted to just 360°. A 360° tilt will not be possible
because the tilt arm would collide with the rest of the system
so it has been limited to 180° tilting. To be able to track a
person moving at average walking speeds from 2.5m away
(test case for a lecture) InFrame must be able to move at 40°
per second. This is easily achievable with most servo motors.

6

3.4.2. Profile
To be able to comfortably transport Inframe in a backpack,
the system should be limited to a maximum of 6.25” x 4.5” x
5.5”. There will also be an easily accessible battery slot to be
able to quickly swap batteries. In addition, inFrame will also
feature a standard tripod screw so that users may mount it to a
tripod like most camera systems.

4. SYSTEM INTERACTION

A detailed diagram of the way that information is passed
across the different components of the system is included in
Appendix 1 (section 10.1). It outlines the different serial
communication protocols used to communicate between the
software component in charge of initializing and managing a
specific hardware component and said hardware component,
as well as the main purpose of each of the different
subcomponents of the entire system. In addition, on the right
side of the diagram, there is a detailed look at the different
commands that can be sent from the iOS device to interface
with the InFrame system.

This diagram gives a very general overview of how different
parts of the system work together to create the fully
functioning InFrame system. In order to illustrate two
common uses of InFrame, this report will now dive into how
the target selection and target tracking scenarios work.

4.1 Sequence Diagram for Tracking Target Selection

A detailed diagram of the target selection sequence is
included in Appendix 2 (section 10.2). Here, a user uses the
iOS device to request the Jetson Nano to perform object
detection. Then, the iOS app draws the resulting bounding
boxes on top of the current frame. Finally, a user can select
one of these bounding boxes and its ID is sent back to the
Jetson to move forward with tracking.

4.2 Sequence Diagram for Object Tracking

A detailed diagram of the object tracking sequence is included
in Appendix 3 (section 10.3). Here, after a user has selected a
bounding box and the Jetson Nano received the appropriate
bounding box ID, it can continuously use the camera and
perception managers to keep track of the object within the
bounding box and compute the optical flow from frame to
frame. This optical flow can then be translated by the motor
manager to actionable movement and InFrame can effectively
track a subject in 3D space.

4.3 Communication Protocol: CSM & Remote Interface
In order to clarify and organize interactions between the CSM
computing host and the Remote Interface, the following API
was designed.

Remote Interface → CSM
“Start” - Signals the CSM to begin its target selection process
by taking an image of its current view, annotating the image
with detected target options, and returning this frame and
detection information.

“Select:LEFT;TOP;RIGHT;BOTTOM” - Sends the CSM the
boundaries of the intended target’s bounding box border
locations. Each element indicated in all capitalization
represents an integer value of the bounding box border’s
location in terms of a pixel value on the image. This
command starts a CSM target tracking and filming term.

“Finish” - Signals the CSM to end its current target tracking
term, compile the frames it has accrued, and prepare for the
next starting instruction from the user.

“Terminate” - Signals for the CSM to terminate all
operations, compile its current footage (if the term has not yet
been terminated), and shut the system down.

CSM → Remote Interface
Detections (Format: .JSON)
{
 “frame”:

{ filename, image, width, height},
“detections”:

[{Instance, ClassID, Confidence, Left, Right, Top,
Bottom}, ...]

}

5. METRICS & VALIDATION

To measure the system’s overarching ability to meet its
outlined goals, the following section details the testing
methods and resultant degrees of success for each
requirement pertaining to InFrame’s subsystems.

5.1 Subsystem Testing

5.1.1. Object Detection
In order to gauge the effectiveness of the object detection
model of choice, a suite of tests cases using images found
online was put together. This suite was designed around the
most common use cases that InFrame is meant to support and
is therefore spread out evenly across 3 common use cases: 40
images of lecturers, 40 of runners and 40 of skateboarders.

7

By using a binary success metric here (successful if it
detected the target in each image), the system achieved 92.5%
accuracy on lecturers, 77.5% accuracy on runners and 85%
accuracy on skateboarders when running the SSD
Mobilenet-V2 object detection model. By averaging these
results, an average of 85% accuracy is obtained, which
successfully meets the target requirement of 80%.

5.1.2. Object Tracking
Object tracking is a critical aspect of InFrame’s functionality
(its raison d’etre, if you will). Because of this, the team set out
to meet the lofty requirement of never losing the target under
normal circumstances (or a success rate greater than at least
99% to account for some minor errors), which means no
occlusions, lighting changes or object shape changes. This
metric was tested by building a suite of 10 test sequences,
each one minute long and shot using a frame rate of 60 FPS --
meaning a total of 1200 frames to track. This test suite
includes 6 “normal” test cases, as well as 4 “reach” tests. The
latter tests include occlusions, lighting changes and major
object shape changes and as such aren’t required but are good
to have to measure the extent of the system’s capabilities.

By having the software draw bounding boxes around the
target in each frame, successful tracking was manually
verified on each frame. Out of the 720 frames of the 6 easy
tests, 718 were successfully tracked, which translates to a
99.7% success rate. For the reach tests, out of the 480 frames,
417 were successfully tracked (86.9%)! Again, the
requirement for the reach tests was essentially 0% because
these tests include very major occlusions, very dark
environments quickly turning very bright, objects completely
changing shape, and other very hard-to-track scenarios, so
such a high accuracy here is very impressive.

Finally, the last requirement for object tracking is to be able
to track any possible target that is within our outlined use
cases. This requirement however isn’t met in the team’s final
implementation of the InFrame system. This is because the
final optimization done on the perception pipeline doesn’t use
bounding box features to track the target. Rather, it saves the
class itself (human, dog, etc) and looks for that same class at
each frame. If at any certain frame there’s more than one
instance of a class, the system would randomly track one of
them, so there can currently only be one of each class per
frame. This can be improved by saving bounding box features
and looking for the most similar bounding box within a
certain class (i.e. the system looks for a human but also the
human that looks most like the one selected initially) but the
team did not have time to implement this last feature.

5.1.3. Battery Management Circuit
Unfortunately, due to COVID19 complications the battery
system was not tested. These are the proposed tests. Once the

voltage regulator has been manufactured it would then be
connected to the battery and a 15W dummy load would be
applied and the output power would be recorded over time to
see what sort of dropoff the battery and regulator system
produce. These measurements would be taken on the battery
voltage and the regulator voltage. It is expected that the
battery voltage will drop but the regulator would maintain
This needs to be proven. The total time the battery is able to
sustain this load without discharging the lipo cells to their
dead voltage would be recorded. This needs to be proven to
be at least 3.5 hours. Once it has been determined that there
are no strange voltage spikes in this system the Jetson and
motors may be connected and again timed to ensure the
battery lasts as long as expected.

5.1.4. Motor Control
The motor's speed was tested to prove they are fast enough to
track targets. The motors were timed using software timers
and the angle turned was measured for several operating
points. A maximum operating speed of 100°/s was measured.
Motor accuracy was determined by moving the motors
clockwise and counterclockwise 10 times and the offset angle
was measured. The motors were within 5-7° of the target for
each test. This met our 10° accuracy requirement.

5.1.5. Camera
Testing the camera is as simple as proving that the desired
resolution can be achieved at the required frame rate. It is
important to determine if there are any dropped frames or
similar issues. This can be done by running the camera at the
desired settings for a period of time and making sure the
images look as they should.

5.1.6. Bluetooth Commands
Data transmission of user-inputted commands from the iOS
interface to the Jetson CSM is critical to the utilization of the
remote user-interface. To ensure that these commands are
going through properly, the system’s communication was first
tested under ideal conditions with no active threads
controlling InFrame’s other subsystems by sending a
Bluetooth message to the Jetson and viewing if its contents
can be printed on its terminal. Then, to better model expected
conditions, the transmission and retrieval of the Bluetooth
message signaling the CSM to stop recording was tested
while the various other subsystems are running on concurrent
threads. These tests all yielded positive results, with the CSM
system functioning robustly and exactly as intended.

5.1.7. CSM Data Flow
The primary purpose of the CSM is to coordinate all
interactions between the various system components and act
as the product’s control flow operator. For this reason, the
CSM has to live within the same timing objectives as the
overall system. Specifically, the CSM should, independently,

8

be able to transfer data from the camera manager to the motor
manager within the 60 ms upper bound this report has
established early in Section 2.1. To accomplish this task,
without any heavy Perception code running, the CSM was
simulated repeatedly retrieving data from the camera module,
pushing it to the motor module, and recording the time it
takes to accomplish this cycle. The results of this experiment
yielded an independent operating time of 3.76*10-3ms
between passing sample data in through the Camera module
(without operating the physical system itself) and this data
being sent to the Motor module without the intermediary
Perception processing (this is taking place while both the
Communications and Storage modules are running
concurrently). This result is tremendously encouraging and
far below the ideal 60ms objective!

However, as a follow up, a second experiment was conducted
to test the CSM under concurrent loads more closely
representing its expected working conditions. Specifically, the
same time interval was calculated once again; however, in
this test, the Perception code was additionally being run. This
test was done with 10 seconds of filming, over 5 iterations.
Overall, this test reports 170ms of time between each frame.

This second experiment posed significantly slower operation
than the previous, going beyond the 60ms objective the
project had set. After further experimentation, it was found
that the primary reason for this slowdown is Python’s
principal means of running concurrent code: the Python
Global Interpreter Lock (GIL). This data structure implements
what can only be described as a rudimentary concurrency
model, the likes of which could be designed by a university
student taking their first distributed systems class.

After researching means of improving the system, this team
has found two possible solutions. The first solution would be
to rewrite the entirety of the CSM in a more concurrency
friendly programming language, such as Golang, whose
planning and structure supports the kind of multithreading
work this project demands. This method would additionally
require establishing methods for modularizing the Perception
code so as to be called from a compiler-based language like
Golang. The second solution would be to implement
multiprocessing, an alternative Python library that is often
used by developers to represent parallel systems in the
language. Although this approach would not be the optimal
approach, it will likely improve the higher-load operating
speeds the CSM will experience. Unfortunately, with the
scheduling delays brought upon by COVID-19, fully
implementing and debugging either of these approaches did
not become possible. Preliminary code was written for the
multiprocessing alternative; however, this team did not
consider this prototype to be robust enough for merging into
the project’s final master branch.

In addition, it should be acknowledged that a secondary
source of slowdown in the fully functioning system is the
operation of the physical camera. Beyond the unavoidable
delay in between the camera is able to take individual frames,
driving the device seems to take a measurable amount of the
Jetson’s resources. Beyond a typical approach of scaling up
the hardware by purchasing a better camera, this report could
improve upon this camera utilization by creating an
independent PCB driving the camera or designing a new
camera system entirely for the more specialized purpose of
recording and downloading single frames with as little
wait-time as possible. With both approaches drastically
expanding the scope of the project, these alternatives would
need to be accomplished over a longer period of time than a
single Capstone course.

5.1.8. Image Transmission
With the size of a typical InFrame image being significantly
greater than that of the String instruction commands, the
transmission of Bluetooth commands will be a relatively
lighter case compared to that of a full frame. The testing of
this functionality will be done simply by serializing and
delivering an image, a collection of pixel coordinates
(representing all possible object-detected outline boxes), and
a collection of ID values associated with each box via
Bluetooth from the Jetson to a paired iPhone. This test was
conducted for over 5 repetitions to be received and displayed
on the iPhone within a target 2 second period. These tests
resulted in an average measured time of 443 ms across the
entire testing suite. Therefore, the testing of image
transmission is classified to be a success.

5.2 Integration Testing
As a result of COVID19, the team’s integration efforts were
significantly impacted. Integration of the full system was
achieved on a software level, but the team was not able to
fully integrate the software stack with the system hardware.
The extent of this integration was to a point in which a clear
set of inputs and outputs is verified to/from the software so
that integrating the hardware is a matter of simply plugging
things in. However, it was not possible to perform full system
testing.

Nevertheless, the team did everything in their power to test
integration. Lecture recordings were mimicked by having
Diego running the full software stack on his Jetson and
sending the optical flow output, as well as a video recording
of him moving from side to side to Ismael so he could test the
motor’s response to said movement. In order to verify
successful functionality under this limited test, the team used
the optical flow output from Diego’s movement on the motors
that Thor had, looking to see if the camera moved in ways
consistent with Diego’s movement. This test proved to be

9

successful and the team is confident that they could integrate
software and hardware easily in the future, allowing them to
 properly test the full system as outlined below.

5.2.1. Lecture Recording
When the project is completed final testing may be
performed. To test usability and functionality, someone not
part of the team will be performing these tests. First this test
user will set up InFrame in a lecture at the front of the class.
They will have to go through the initialization process of
picking a target, the professor, and then starting the recording
and offloading of the video.

5.2.2. Action Shot: 3m Diver
To test the athletic event scenario a user will set up InFrame
to track him/herself as they dive off of a 3m diving board and
then recover the footage after the dive. To decide how to best
improve and move forward with InFrame multiple test users
will be selected so that their feedback may be used.

6. DESIGN TRADE STUDIES & TRADEOFFS

6.1 Main Compute
The largest bottleneck for InFrame is the image processing
pipeline. It is imperative that the computer vision be
performed as quickly as possible to leave enough time for
motors to update within the 60ms alloted for each cycle of
tracking. Additionally, this computation has to be hosted
locally to support outdoor use cases. The decision to use a
Jetson as opposed to other popular single board computers
such as the Raspberry Pi comes down to how much
processing power each board has. The NVIDIA Jetson Nano
outperforms any RPI board substantially in a computer vision
application. This is because the Jetson has a GPU which the
RPI lacks. There are not many SBC’s that offer GPU
capabilities and the Jetson Nano is the only one reasonably
within the project budget.

6.2 Core System Manager
On the core system manager (CSM) end, one major point of
discussion was rooted in the language that the Jetson Nano
would be programmed in. With the heavily concurrent design
requirements for the CSM, another language considered for
deployment was Golang, a modern programming language
designed to support scalable distributed systems. Although
developing in Golang would facilitate debugging, improve
code clarity, and overall make the CSM codebase more
manageable, Golang’s primary shortcoming is its relative lack
of GPIO and embedded interfacing support when compared to
Python, for which heavily supported libraries for GPIO
(interfacing with motors) and CSI (interfacing with camera)
have already been developed. Furthermore, since the
computer vision work on the perception manager must

already be written in Python due to the powerful CV-based
libraries it supports, consolidating the full software stack to a
single programming language improves the quality and
consistency of the overall codebase. Lastly, as described
earlier in Section 5.1.7, research was conducted to replace the
concurrency libraries to be used in Python with a language
supported multiprocessing framework. This post-
implementation research found the multiprocessing approach
to likely improve the independent speeds achieved by the
CSM; however, due to COVID-19 scheduling delays, there
was not enough time to robustly implement this alternative
approach to CSM control flow.

6.3 Remote Interface
In the process of selecting the medium for the system’s
remote control interface, several options were first considered
before deciding upon an iOS framework. First, a webapp was
evaluated as a potential remote control alternative due to the
project team members’ past experiences doing such
development and the opportunities it offers for livestreaming
footage over WiFi onto an AWS instance. However, with an
intended use case of outdoor filming and the resulting
inability to rely on a consistent WiFi connection, the
possibility of webapp system control was abandoned in favor
of a hardware device that can communicate with the camera
system directly without a middleman remote server. With the
additional need for an easily interfaceable touch screen, the
options were limited to developing an iOS or an Android user
interface. In selecting between these two devices, although
Android development is facilitated with its no-investment
development cost as opposed to the iOS development-
subscription system, all InFrame team members have iOS
devices, wish to use this device post-development, and have
space within the project budget to afford this relatively low
subscription cost.

6.4 Wireless Communication
As the need for a remote user interface arose, selecting a
wireless communication protocol (WCP) for data transfer
between the interface and the core system manager became a
critical portion of the design. Although Bluetooth eventually
arose as the optimal WCP, this design process additionally
evaluated communication over a WiFi protocol. This
alternative would allow for higher image transfer rates at
roughly 11Mbps, while Bluetooth only offers roughly
800Kbps. This boost in speed would have been utilized to
enable WiFi-based live streaming of camera feed and camera
control. However, this alternative was found to be
unnecessary as the project team classified livestreaming as an
additional feature to be beyond the project scope and intended
MVP. Additionally, the process of setting up the Jetson Nano
as a WiFi-connectable device would, on the user’s end, staple
an additional period of setup time that would exceed the 20
second requirement this project is committing to. For these

10

reasons, WiFi-hosting on the Jetson Nano was abandoned in
favor of a lighter, more low-power Bluetooth communication
protocol. As a result, users view possible targets to follow on
an image snapshot representing what the camera system can
see and detect at the time when the user requests to start the
target selection process.

6.5 Object Tracking
The most interesting tradeoff decision for the perception
pipeline was the choice of tracker. There are currently many
different tracking algorithms available in OpenCV, all with
varying degrees of accuracy, speed and even ability to detect
failure. The two most worth noting though are those at the
opposite ends of the “tracking spectrum”. The fastest tracker
available is the Minimum Output Sum of Squared Error
(MOSSE) tracker, which uses adaptive correlation for object
tracking. It is robust to variations in lighting, scale, pose, and
non-rigid deformations. While it does run very fast, achieving
an average frame rate of 5.98 FPS on the Jetson Nano, it
doesn’t work very well. In a suite of 20 tests, it lost the target
19 times.

On the other side of the spectrum, there is the Discriminative
Correlation Filter with Channel and Spatial Reliability
(CSRT) tracker, which uses a spatial reliability map to adjust
filter support to the part of the selected region from the frame
for tracking. It runs much slower than MOSSE, achieving
only 1.19 FPS on the Jetson Nano, and while it does work
somewhat better, it is still not reliable enough to be used as
the sole tracker in a system whose main purpose is tracking --
losing the target in 14/20 of the test cases.

Now, because even the fastest tracker was still about 3x
slower than out 60 ms (16.6 FPS) requirement, the team
looked into using the fastest tracker available (MOSSE) and
improving it by running object detection every certain number
of frames to “reset” the bounding box before it accumulates
error and loses the target. This improvement worked very
well, achieving an average frame rate of 4.83 FPS (a slow
down of only about 1 FPS from standalone MOSSE), but
losing the target on only 1 out of our 20 test cases.

Near the end of the semester, it was discovered that the Jetson
Nano comes pre-packaged with an SDK called TensorRT,
which optimizes neural network inference performance up to
40x. By switching the inference code to use the libraries from
that SDK, object detection was running at an average speed of
almost 14 FPS, with a max of nearly 35 FPS. Because of this
significant speedup to the object detection part of the pipeline,
the detection model itself was used as the tracker (the whole
point of using object tracking is that it’s supposed to be faster
than running object detection at every frame). This
improvement not only resulted in significant speedup of the
perception pipeline, but by switching from tracking

algorithms to deep learning models, occlusions, lighting
changes and many or reach cases started to work much better
than expected. In our suite of 20 test cases, the object
detection tracker never lost the target.

6.6 Object Detection
The choice of object detection model boiled down to the
fastest and lightest model which could meet the 80% accuracy
requirement on the system’s use cases. Running heavy models
on more capable cloud instances was considered but quickly
discarded since the system should be independent of a
Wide-Area Network so that it can be used outdoors. The
fastest object detection model on the Jetson Nano was SSD
MobileNet-V2 and as outlined in section 5.1.1, it achieved an
accuracy of 85% on our use cases. Other heavier models such
as ResNet-18 were considered and actually did perform a bit
better in terms of accuracy but ran inference so slowly on the
Jetson Nano that they were not viable options.

While going over the design of the perception pipeline, a
major point of discussion was on whether InFrame’s tracking
capabilities should be based on object or face detection.
Object detection works with high-level features such as shape
and relative size, while face detection depends on more
minute details such as colour, structure and shading.
However, some research suggests that object detection could
be generalized to distinguish between different faces as well.
Furthermore, at ranges of up to 15m from the camera, faces
start to become very similar. As such, it was decided that
InFrame would use state-of-the-art object detection to
differentiate between different objects. Rather than
recognizing a person and assigning an ID to them as you
would with facial detection (in such a way that you could say
“track Bob”), InFrame detects everything as an object and
leaves it up to the user to select what the target is (by using
bounding boxes rather than IDs).

7. PROJECT MANAGEMENT

7.1 Schedule
A detailed look at InFrame’s team schedule is included in
Appendix 4 (section 10.4).

7.2 Team Member Responsibilities
Diego Martinez is responsible for the design and
implementation of the computer vision software and its
integration with the rest of the system.
Ismael Mercier is responsible for all electronics hardware as
well as mechanical hardware.
Ike Kilinc is responsible for the core system manager, the
remote interface on iOS, all data transfer and coordination
across the system, and pushing forward software integration.

11

7.3 Budget
Attached below are all the parts identified as necessary for
InFrame. The total cost is $406.41 which is well within the
allocated budget.

Part Name Cost

Tilt Servo
Maxmoral 2pcs MG90S 9g
Metal Gear Pro Servo $9.99

Pan Servo
Metal Gear Micro Servo /
Continuous Rotation $16.99

Camera
Raspberry Pi Camera
Module V2 - 8MP, 1080p $28.20

Battery
Waitley M18 18V 6.0Ah
Replacement Battery $42.98

Central Compute Jetson Nano Developer Kit $99

Battery Adapter
Milwaukee 49-24-2371
M18 Power Source $33

3D Printing Material Matte black plastic $26.99

WiFi/Bluetooth
Module Intel 8265NGW $30

Figure 4: Parts List & Overall Budget

8. RELATED WORK

The Rhino Arc II is a 4-axis motorized system designed for
amateur to professional photographers that was recently
crowdsourced on Kickstarter. Much like InFrame, it too has
pan and tilt motors, interchangeable batteries and a remote
control interface. However, the key difference between the
Arc II and InFrame is that InFrame has object tracking
capabilities and is itself an end-to-end solution that does not
require an external camera.

The Arc II does have some very elegant features and modes
of operation that InFrame could benefit from. These include

keyframe support and variable speed curves in between
keyframes, the ability to adjust zoom and focus and a built-in
interface to control the system alongside the remote interface.
Because of this, InFrame is designed in a scalable and
maintainable way so that adding features like these in the
future is straightforward to achieve.

Figure 5: Rhino Arc II

9. REFERENCES

1. Zhao, Z.-Q., Zheng, P., Xu, S.-T., & Wu, X. (2019).
Object Detection With Deep Learning: A Review.
IEEE Transactions on Neural Networks and
Learning Systems.

2. Demers, C. (2019, February 28). Input Lag of TVs.
Retrieved from
https://www.rtings.com/tv/tests/inputs/input-lag.

3. Jetson Nano: Deep Learning Inference Benchmarks.
(2019, April 25). Retrieved from
https://developer.nvidia.com/embedded/jetson-nano-
dl-inference-benchmarks.

4. Wang, C., Galoogahi, H. K., Lin, C.-H., & Lucey, S.
(2018). Deep-LK for Efficient Adaptive Object
Tracking. 2018 IEEE International Conference on
Robotics and Automation (ICRA).

12

10. APPENDIX
10.1 Appendix 1: System Communication Diagram

13

10.2 Appendix 2: Target Selection Sequence Diagram

14

10.3 Appendix 3: Target Tracking Sequence Diagram

15

10.4 Appendix 4: Team Gantt Chart for Project Management

