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Abstract–– Robotic-assisted photography is among the      
most exciting technological developments in the production       
industry since the invention of the camera itself. It provides new           
and unique ways to capture dynamic scenes and unlock new          
avenues for cinematographic creative potential. Current      
photography robots on the market range from tremendously        
expensive industrial robotic arms, such as Motorized Precision’s        
Kira camera robot, to portable devices that allow for smooth          
motion across basic scenes. However, most photography robots        
have not yet leveraged breakthroughs made in the Computer         
Vision space in the last decade. For these reasons, this design           
blueprints InFrame, an intelligent, motorized photography      
assistant that uses state of the art object detection models and           
tracking algorithms to follow user-selected targets across a 3D         
space, constantly keeping them InFrame. 
 

Index Terms–– Photography, Computer Vision, Robotics,      
Deep Learning, Object Detection, Tracking, Embedded Systems. 
 

1. INTRODUCTION 
 

AI-powered robotic systems have become the cornerstone of        
technological feats unachieveable by any human, pushing       
forward the boundaries of what is considered possible across         
countless technology-supported fields. Specifically within the      
photography and production industry, countless high-precision      
robotic devices are now being utilized to improve        
cinematography capabilities, such as Motorized Precision’s Kira       
camera robot or the Rhino Arc II. However, few such products           
available on the market make adequate usage of the many          
research breakthroughs in the Computer Vision field to enhance         
system operation while maintaining overall system affordability.       
The additional functionality that results from applying these        
Computer Vision breakthroughs enables powerful autonomy      
practical for even the most advanced users, while hardware         
affordability broadens the product’s user population to even the         
hobbyist level. 
 
To fill this technological gap in market-available development,        
this team has decided to build the InFrame system and improve           
the quality standard for affordable smart-photography systems       
everywhere. The system is designed to address two primary         
areas of use-cases: semi-autonomous lecture recording and       
action shot capturing. Many courses at institutions like Carnegie         
Mellon University record 1-3 hour long lectures where the         
autonomatable task of following the target professor across a         
classroom floor is currently being done by a human idling his or            
her time while occasionally making acute camera adjustments.        

Action shots, such as a diver jumping from a 3-meter board, are            
not even being filmed until the olympic levels, creating a market           
gap for all other levels of diving activity for users who want to             
film themselves either during competition or period of practice.         
For both of these application areas, InFrame is the simple          
solution that users have long awaited. 
 
These use-cases can be itemized into goals delineated among         
three primary system components. Within the Perception       
subsystem, the outlined technology must conduct object       
detection, object tracking, and be relatively successful in dealing         
with occlusions blocking the target from the camera system’s         
field of view. Within the Hardware subsystem, a mechanism         
must be built that can position a camera’s frame, record image           
data, and host a computing device capable of processing         
computer vision models. Lastly, to control the full stack, a          
concurrent system controller alongside an intuitive user-oriented       
interface must be developed. To measure success, this design         
must support object detection at 80% accuracy and tracking that          
allows for selection and frame-centering of a target for the          
outlined use-cases without major occlusions and major lighting        
changes. Furthermore, to guarantee that users view the camera         
as tracking them in real-time, the design must minimize latency          
between their measurable movement inputs and camera tracking        
outputs to be within a 60ms upper threshold. The achievement of           
these two principal metrics translate to a successful        
implementation of the InFrame system’s core functionality. 
 
This report will detail the quantitative and qualitative system         
design requirements, the solutions designated for meeting these        
requirements, an overview of how the product’s subsystems        
interact with one-another, an itemization of design metrics        
established for assessing each subsystem’s successful operation,       
an overview of previously evaluated and eliminated design        
alternatives, and an overview of the project management process         
behind the development of the overarching InFrame system. 
 

2. DESIGN REQUIREMENTS 
 

For InFrame to successfully support the use-cases outlined by         
this design, a set of itemized technical goals and quantitative          
(wherever possible) requirements must be specified and met in         
order to guarantee a successful product. These collections of         
goals and requirements are delineated across the product’s        
principal subsystems: System Control, Perception, and      
Hardware. 
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2.1. System Control Requirements 
Streamlined and comprehensive control is integral to the        
maintenance of the physical InFrame system’s semi-       
independent functionality while providing intuitive interfaces for       
users to interact seamlessly with the overarching product        
functionality. This project design works to solve this central goal          
by building a system that can operate as independently as          
possible once it has an objective stored locally, while generating          
a human-facing interface for users to intermittently provide        
these objectives without constant dependence from the remote        
device in between command delivery. Therefore, this report        
proposal delineates design goals and requirements between these        
two subsystems: a core system manager and a user-facing         
interface for inputting system commands. 
 
Consistently, a crucial number will arise across all timing         
considerations in this project: 60 ms. This is because popular          
consumer electronics ratings agencies such as RTINGS.com       
have conducted extensive research to prove that input lags above          
50 ms start to become noticeable for humans. Hence, when a           
target moves, for the system to be responsive to that “input” and            
appear to track in real-time, the duration of the entire perception           
stack should be kept only a bit above 50 ms since that number is              
meant for gaming and a bit above that would still appear to be             
happening in real-time. Thus, 60 ms becomes an ideal objective          
across the various project subcomponents and their       
integration[2]. 
 
2.1.1. Core System Manager 
The core system manager’s foremost goal is to provide a          
framework for managing the product’s various subsystems       
simultaneously so as to avoid queuing subsystem tasks, an         
outcome of sequential design that would slow down the overall          
system. In order to accomplish this goal, the core system          
manager has a requirement to be programmed as a collection of           
concurrently operating managers, each of which pass       
information (e.g. image frames, received user-commands, motor       
rotation vectors) among one another. Subsequently, to improve        
the effective operating speeds (e.g. effective post-processing       
framerate), the core system manager must be centralized to         
reduce the latency between data transmission. To support this         
goal, the system should be able to transmit a single image frame            
from the camera to the Perception subsystem within the same          
60ms threshold it takes object tracking to output camera         
adjustment directives to the motors, representing the threshold        
for measureable latency to be detected by the human eye. A           
single image frame was selected as it is the largest amount of            
data that the system manager would have to send from one           
subsystem to another within a short period of time, thereby not           
adding further latency to an already time-constrained system.        
Lastly, since the product will be utilized outdoors and thus          
typically without reliable WiFi connection, video storage cannot        
occur on the cloud and must be operated offline; the core system            

manager must therefore support offline video storage with a         
simple download process. 
 
2.1.2. User-Interface for Command Delivery 
Commanding the InFrame system through a user-intuitive       
medium is critical to the development of a streamlined user          
experience and, as a result, a well-designed product. For any          
use-case InFrame is designed to deliver, both a screen for          
displaying images and an ability to touch select specific         
locations on said screen are critical requirements for the reason          
that users interacting with the system will need to both view           
object-detected targets within the camera’s field of view and         
select a specific intended target. With the unnecessary        
complexity integral with installing, populating, and polling an        
external touch screen, a remote interface surfaces as a clear          
requirement. With the added goal of supporting outdoor use         
cases, communication with this remote interface cannot be        
conducted through an online server (e.g. AWS instance) since         
consistent WiFi connectivity cannot be relied upon outdoors. 
 
In order to improve the responsiveness of the system to user           
tracking directives, the system should be able to respond to a           
user’s target selection and begin operation within 2 seconds of          
making this selection on their previously object-detected frame        
(e.g. an image capture with detected targets indicated/outlined).        
This threshold represents the upper bound of how long the          
system designers were willing to wait between requesting a         
target selection and expecting the physical system to be able to           
respond in some degree of affirmation. 
 
2.2. Perception Requirements 
Perception lies at the core of InFrame’s functionality. In order to           
have a fully functioning system, we need an accurate and          
efficient computer vision pipeline capable of object detection        
and object tracking. 
 
2.2.1. Object Detection 
State-of-the-art object detection models such as YOLOv2, SSD        
ResNet-18 and SSD Mobilenet-V2 achieve accuracies between       
69% and 85%[1]. As such, the system requirement the team          
defined is to meet at least that level of accuracy on InFrame’s            
outlined use cases. 
 
2.2.2. Object Tracking 
Since tracking is such an inherent part of the system, a           
requirement for the system is to never lose the target under           
normal circumstances. In any case, this translates to a success          
rate of at least 99% under normal circumstances with consistent          
lighting and small object displacements in between frames.        
Occlusions, objects changing shape and major light changes are         
certainly desirable but are not required. 
 
 
 

https://medium.com/@jonathan_hui/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
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2.3. Hardware Requirements 
Hardware is the aspect that really makes InFrame come to life.           
As such, it is imperative that each aspect of the hardware has a             
specific set of requirements that need to be met to ensure a            
meaningful user experience. Furthermore, each aspect of these        
requirements must be tied back to the end user-experience so as           
to ensure the highest quality product. 
 
2.3.1. Tracking Speed 
The pan and tilt motors must support moving fast enough to           
track a professor walking from 2.5m away. At average human          
walking speeds this is 40° per second. Meeting these speed          
requirements ensures that users are not limited on how fast the           
tracking can be.  
  
2.3.2. Battery Life 
InFrame must be able to record continuously for the duration of           
a lecture or presentation. Most presentations or meetings will         
have at least one intermission in a 3 hour period. Therefore the            
target runtime is 3 hours. If users require a longer filming           
session the batteries could easily be swapped. It should also be           
noted that the battery life for most camera systems is around 3            
hours, when photographers need to film for longer periods of          
time they swap out the battery on their camera. This requirement           
here is to have a user experience analogous to that of working            
with a traditional camera system. Although the battery capacity         
was not tested it was calculated and in this way proved to be             
sufficient. 
 
2.3.3. Motion 
The intentions were to enable InFrame rotate continuously to         
track targets anywhere around it. Due to manufacturing        
complications as a result of COVID-19 it was decided to leave           
out this capacity. InFrame is capable of 360° rotation, but it           
cannot do so continuously. The mechanical system must be able          
to support this without the potential for damage when the axes           
are moved to extreme angles. Therefore there the system was          
designed so there cannot be collisions between parts and the          
wires may not get tangled or twisted while moving. Creating a           
system that will not destroy itself over time is a requirement for            
any product. 

 
2.3.4. Profile 
InFrame is easy to transport in a backpack. Access to the battery            
allows for quick swapping. Like most photography equipment, it         
is tripod mountable. Again, a requirement for a quality user          
experience is to feel similar to standard photography equipment. 
 

3. SYSTEM DESCRIPTION 
 
The aforementioned requirements are the driving factor behind        
InFrame’s design. Now, this report will outline the proposed         
design to meet these requirements to build a successful product. 
 

3.1. System Control Suite 
3.1.1. Core System Manager Design 
The core system manager will need to maintain concurrent         
control of the camera products various subsystems, which        
include camera control, motor control, perception (object       
detection and object tracking), video storage, and       
communication with the remote control interface. To minimize        
the latency of data transfer between any two subsystems, such as           
moving image data from the camera control to the perception          
module, this design centralizes this compute on the Jetson         
device itself. Given that the Jetson will be host of the system’s            
heaviest computing load, the perception operations of object        
tracking, this design will attempt to consolidate all other         
operations that depend upon the output of this computer vision          
work within this device. In order to meet the multifunctionality          
of the CSM’s design and operate its core image processing          
pipeline while also sending / listening for Bluetooth data and          
marking data for future compilation, the system must be         
programmed to operate concurrently. Moreover, since the       
standard for conducting computer vision work is Python, which         
already has more extensive embedded interaction libraries than        
other concurrency languages, the CSM is programmed using        
Python and its multithreading libraries. 
 
3.1.2. Remote Control Interface 
As was outlined in Section 2.1.2, it is imperative for an intuitive            
target selection that InFrame features a remote touch screen         
display. Given the ubiquity of smartphone devices, the choice         
becomes clear. By pairing the InFrame system over Bluetooth to          
a user’s smartphone device, InFrame becomes much more        
cost-efficient, user-friendly and easy to use. Furthermore, iOS        
was chosen due to iPhones’ competitive advantage in the         
photography space and the fact that the InFrame team members          
all have iPhones. 
 
The remote control interface is meant so that the user can send            
three types of commands: A start/stop command to start         
recording frames or stop to save the resulting video, a detect           
objects command so that the system may perform object         
detection on the current frame and send both the frame and the            
bounding boxes above a certain confidence threshold to the         
phone, a select target command to specify which target the          
system should start tracking, and a terminate command to signal          
the CSM to fully shut down. 
 
3.1.3. Principle of Operation 
To start up the main operational sequence, the core system          
manager will listen for and retrieve command information from         
the communication module, to which the remote controller will         
send system commands. When the user requests an image, the          
system manager will ping the camera manager to capture a          
frame, will forward this frame to the perception module where it           
can run object detection to outline potential targets, and lastly          
forward this information to the communication module for        
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transmission back to the remote interface for the user to select a            
tracking target. When the user communicates with the CSM to          
select a target to track, the comms module will retrieve the data,            
which will be parsed in a separate thread run by the main system             
manager, which will first take another picture using the camera.          
This frame will be passed to the perception module, where          
object tracking of the selected target will be conducted and a set            
of optical flow vectors, which indicate required camera        
adjustments, will be generated. This data is then delivered to the           
motor manager, where they will be reformatted into angular         
rotation and used to readjust the physical camera system to keep           
the target in the center of the frame. The image taken by the             
camera in this iteration will also be sent to the storage module,            
where it will be stored for future compilation. This cycle will           
repeat until the user requests to end the current filming term, at            
which point the main system manager will compile the stored          
frames into a video format and once again restore the system to            
a state prepared for the start of another tracking and filming           
term. Portions of this user interaction are outlined in further          
detail in Section 4, which also contains a description of the API            
this team has designed to enable the CSM and remote user           
interface user to communicate with one another. 
 
3.2. Perception Pipeline 
The computer vision pipeline is mainly composed of two         
subcomponents: Image pre-processing, object detection, and      
object tracking. The image pre-processing component      
downsamples an image so that it fits into the object detection           
model. The object detection component detects objects in an         
image above a certain confidence threshold. The object tracking         
component, given a bounding box, tracks the movement of the          
object within the bounding box from one frame to another. 
 
3.2.1. Image Pre-Processing 
The InFrame system features a Raspberry Pi Camera V2, which          
is set to operate at 720p60. This is because the main camera is             
used not only for object detection and tracking but also for           
actually recording video, so a high quality (for video playback)          
and a high frame rate (for slow motion capabilities in          
post-processing editing of action shots and small displacements        
in between frames for accurate tracking) is desirable. However,         
720p (1280x720 pixels) is a much higher resolution that is          
needed for image inference, so images are downsampled to fit          
the object detection model’s input. 
 
3.2.2. Object Detection 
The object detection component of the perception pipeline will         
make use of a pre-trained neural network architecture designed         
for object detection and OpenCV’s Deep Neural Networks        
module to load said network. The model that it will use is SSD             
Mobilenet-V2, which is an architecture designed by Google AI         
for on-device mobile vision applications. It is a lightweight         
model that achieves 39 FPS on object detection tasks when          

running on a Jetson Nano using 300x300 images[3]. It also          
achieves very similar accuracy benchmarks as other       
state-of-the-art object detection algorithms, as shown in figure 1         
below.  
 

 
Figure 1: Accuracy comparison of state-of-the-art object 

detection models 
 
3.2.3. Object Tracking 
After a bounding box has been selected by the user, the           
perception pipeline enters the object tracking stage. Here, the         
system determines the optical flow from one frame to another in           
order to track the movement of the object within the bounding           
box. Optical flow is the pattern of apparent motion of image           
objects between two consecutive frames caused by the        
movement of an object or a camera. It is a 2D vector field where              
each vector is a displacement vector showing the movement of          
points from the first frame to the second. By using optical flow,            
the system can determine the direction and magnitude of         
movement of an object from frame to frame and use that to drive             
to motors to track the subject. InFrame calculates optical flow by           
calculating the vector from the center point of the previous          
bounding box to the center point of the next. 
 
In order to track objects in real-time on the Jetson Nano, several            
tracking algorithms were implemented and considered.      
Ultimately, because the Jetson Nano’s image comes       
pre-packaged with an inference optimization library called       
TensorRT which achieves speedups of up to 40x, object         
detection itself proved to be the best tracker. As such, once the            
user selects a target, the system saves the class ID of that target             
(i.e. human, dog, skateboard, etc.) and looks for that same class           
ID in future frames’ detection results. In InFrame, this means          
that there can only be one instance of each class per frame,            
otherwise it would randomly switch between them. This can be          
easily improved by gathering features from the target bounding         
box, comparing them to the features in each potential bounding          
box for all the objects pertaining to that class and choosing the            
one that minimizes the difference, but the team did not have           
time to implement this improvement. 
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3.3. Hardware Design 
 

 
Figure 2: Hardware Interaction Diagram 

 
3.3.1. Battery Management - Voltage Regulator 
The 18V from the power tool battery is converted to          
necessary 5V 4A voltage for the Jetson and the 4.8-7.2v          
needed for the servo motors using a switching regulator. This          
is done with a custom PCB that was not manufactured due           
complications with the pandemic. 
 
3.3.2. Power Tool Battery 
A power tool battery has been selected because it will be           
easier and safer to work with than just LithiumPolymer         
batteries since it already comes with the protective charge and          
discharge circuitry. A Milwaukee Tool 18V 6.0Ah battery has         
been selected because it provides sufficient power for the         
desired runtime while still remaining economical. Standard       
photography equipment uses interchangeable batteries so in       
doing the same InFrame shares a similar user experience. 
 
 
3.3.3. Servo Motor Driver 
This circuit will be a simple logic level shifter that will allow            
control of the 4.8V-7.2V servo’s with the 3.3V Jetson gpio          
pins. An optocoupler is used to isolate and protect the Jetson           
from any potential voltage spikes coming from the servo         
motors. This board will also have a power passthrough from          
the battery manager to the servo motors. This circuit will be           
on the same PCB as the voltage regulators. 
 
3.3.4. Servos 
This option was chosen due to the ease of controlling a servo            
motor since they require less hardware and simpler control         
signals than other motors. In addition to this, servo motors          
offer greater torque for their size as a result of their internal            
gearing system. For panning motion, the system will use a          
continuous rotation metal geared servo motor that will enable         
360° rotation. For tilting, the system will use a 180° metal           
geared servo which will allow movement without worry about         
collisions since it cannot go past the set limit. 
 

3.3.5. Camera 
The system will use a 1080P30FPS camera that will be easily           
integrated with the Jetson through a CSI MIPI interface that is           
built-in. This camera has a high enough FPS where we can           
constantly keep the GPU running the tracking algorithm and         
also film a quality video. 1080P30FPS is the typical “high          
quality video” resolution seen in most online streaming.        
Providing the highest quality possible is a key aspect of any           
photography equipment. 
 
3.3.6. WiFi and Bluetooth Module 
The system will feature an Intel 8265NGW Dual Band WiFi          
and Bluetooth 4.2 module that will enable wireless        
communication for the Jetson. It plugs directly into the         
Jetson’s M.2 connector and works with supported software.        
This will allow for easy Bluetooth communication between        
InFrame and the iOS Device. 
 
3.3.7. Nvidia Jetson Nano 
The Jetson is the most affordable embedded single board         
computer that offers high computer vision performance with        
its NVIDIA GPU. See section 6.1 for more details. 
 
3.4. Mechanical Design 

 
Figure 3:Physical System Design 

 
3.4.1. Motion 
To properly track a target, InFrame must be able to pan and            
tilt the camera. This motion will be achieved with servo          
motors. A continuous rotation servo motor will allow InFrame         
to track targets in full 360° motion. Due to pandemic          
complications, a slip ring was not integrated into the panning          
mechanism and therefore it is unable to turn continuously and          
is restricted to just 360°. A 360° tilt will not be possible            
because the tilt arm would collide with the rest of the system            
so it has been limited to 180° tilting. To be able to track a              
person moving at average walking speeds from 2.5m away         
(test case for a lecture) InFrame must be able to move at 40°             
per second. This is easily achievable with most servo motors. 
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3.4.2. Profile 
To be able to comfortably transport Inframe in a backpack,          
the system should be limited to a maximum of 6.25” x 4.5” x             
5.5”. There will also be an easily accessible battery slot to be            
able to quickly swap batteries. In addition, inFrame will also          
feature a standard tripod screw so that users may mount it to a             
tripod like most camera systems. 

 
4. SYSTEM INTERACTION 

 
A detailed diagram of the way that information is passed          
across the different components of the system is included in          
Appendix 1 (section 10.1). It outlines the different serial         
communication protocols used to communicate between the       
software component in charge of initializing and managing a         
specific hardware component and said hardware component,       
as well as the main purpose of each of the different           
subcomponents of the entire system. In addition, on the right          
side of the diagram, there is a detailed look at the different            
commands that can be sent from the iOS device to interface           
with the InFrame system. 
 
This diagram gives a very general overview of how different          
parts of the system work together to create the fully          
functioning InFrame system. In order to illustrate two        
common uses of InFrame, this report will now dive into how           
the target selection and target tracking scenarios work. 
 
4.1 Sequence Diagram for Tracking Target Selection 
 
A detailed diagram of the target selection sequence is         
included in Appendix 2 (section 10.2). Here, a user uses the           
iOS device to request the Jetson Nano to perform object          
detection. Then, the iOS app draws the resulting bounding         
boxes on top of the current frame. Finally, a user can select            
one of these bounding boxes and its ID is sent back to the             
Jetson to move forward with tracking. 
 
 
4.2 Sequence Diagram for Object Tracking 
 
A detailed diagram of the object tracking sequence is included          
in Appendix 3 (section 10.3). Here, after a user has selected a            
bounding box and the Jetson Nano received the appropriate         
bounding box ID, it can continuously use the camera and          
perception managers to keep track of the object within the          
bounding box and compute the optical flow from frame to          
frame. This optical flow can then be translated by the motor           
manager to actionable movement and InFrame can effectively        
track a subject in 3D space. 
 
 
 
 

4.3 Communication Protocol: CSM & Remote Interface 
In order to clarify and organize interactions between the CSM          
computing host and the Remote Interface, the following API         
was designed. 
 
Remote Interface → CSM 
“Start” - Signals the CSM to begin its target selection process           
by taking an image of its current view, annotating the image           
with detected target options, and returning this frame and         
detection information. 
 
“Select:LEFT;TOP;RIGHT;BOTTOM” - Sends the CSM the      
boundaries of the intended target’s bounding box border       
locations. Each element indicated in all capitalization       
represents an integer value of the bounding box border’s         
location in terms of a pixel value on the image. This           
command starts a CSM target tracking and filming term. 
 
“Finish” - Signals the CSM to end its current target tracking           
term, compile the frames it has accrued, and prepare for the           
next starting instruction from the user. 
 
“Terminate” - Signals for the CSM to terminate all         
operations, compile its current footage (if the term has not yet           
been terminated), and shut the system down. 
 
CSM → Remote Interface 
Detections (Format: .JSON) 
{ 
  “frame”: 

{ filename, image, width, height}, 
“detections”: 

[ {Instance, ClassID, Confidence, Left, Right, Top,       
Bottom}, ...] 

} 
 
 

5. METRICS & VALIDATION 
 
To measure the system’s overarching ability to meet its         
outlined goals, the following section details the testing        
methods and resultant degrees of success for each        
requirement pertaining to InFrame’s subsystems. 
 
5.1 Subsystem Testing 
 
5.1.1. Object Detection 
In order to gauge the effectiveness of the object detection          
model of choice, a suite of tests cases using images found           
online was put together. This suite was designed around the          
most common use cases that InFrame is meant to support and           
is therefore spread out evenly across 3 common use cases: 40           
images of lecturers, 40 of runners and 40 of skateboarders.  
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By using a binary success metric here (successful if it          
detected the target in each image), the system achieved 92.5%          
accuracy on lecturers, 77.5% accuracy on runners and 85%         
accuracy on skateboarders when running the SSD       
Mobilenet-V2 object detection model. By averaging these       
results, an average of 85% accuracy is obtained, which         
successfully meets the target requirement of 80%. 
 
5.1.2. Object Tracking 
Object tracking is a critical aspect of InFrame’s functionality         
(its raison d’etre, if you will). Because of this, the team set out             
to meet the lofty requirement of never losing the target under           
normal circumstances (or a success rate greater than at least          
99% to account for some minor errors), which means no          
occlusions, lighting changes or object shape changes. This        
metric was tested by building a suite of 10 test sequences,           
each one minute long and shot using a frame rate of 60 FPS --              
meaning a total of 1200 frames to track. This test suite           
includes 6 “normal” test cases, as well as 4 “reach” tests. The            
latter tests include occlusions, lighting changes and major        
object shape changes and as such aren’t required but are good           
to have to measure the extent of the system’s capabilities. 
 
By having the software draw bounding boxes around the         
target in each frame, successful tracking was manually        
verified on each frame. Out of the 720 frames of the 6 easy             
tests, 718 were successfully tracked, which translates to a         
99.7% success rate. For the reach tests, out of the 480 frames,            
417 were successfully tracked (86.9%)! Again, the       
requirement for the reach tests was essentially 0% because         
these tests include very major occlusions, very dark        
environments quickly turning very bright, objects completely       
changing shape, and other very hard-to-track scenarios, so        
such a high accuracy here is very impressive. 
 
Finally, the last requirement for object tracking is to be able           
to track any possible target that is within our outlined use           
cases. This requirement however isn’t met in the team’s final          
implementation of the InFrame system. This is because the         
final optimization done on the perception pipeline doesn’t use         
bounding box features to track the target. Rather, it saves the           
class itself (human, dog, etc) and looks for that same class at            
each frame. If at any certain frame there’s more than one           
instance of a class, the system would randomly track one of           
them, so there can currently only be one of each class per            
frame. This can be improved by saving bounding box features          
and looking for the most similar bounding box within a          
certain class (i.e. the system looks for a human but also the            
human that looks most like the one selected initially) but the           
team did not have time to implement this last feature. 
 
5.1.3. Battery Management Circuit 
Unfortunately, due to COVID19 complications the battery       
system was not tested. These are the proposed tests. Once the           

voltage regulator has been manufactured it would then be         
connected to the battery and a 15W dummy load would be           
applied and the output power would be recorded over time to           
see what sort of dropoff the battery and regulator system          
produce. These measurements would be taken on the battery         
voltage and the regulator voltage. It is expected that the          
battery voltage will drop but the regulator would maintain         
This needs to be proven. The total time the battery is able to             
sustain this load without discharging the lipo cells to their          
dead voltage would be recorded. This needs to be proven to           
be at least 3.5 hours. Once it has been determined that there            
are no strange voltage spikes in this system the Jetson and           
motors may be connected and again timed to ensure the          
battery lasts as long as expected. 
 
5.1.4. Motor Control 
The motor's speed was tested to prove they are fast enough to            
track targets. The motors were timed using software timers         
and the angle turned was measured for several operating         
points. A maximum operating speed of 100°/s was measured.          
Motor accuracy was determined by moving the motors        
clockwise and counterclockwise 10 times and the offset angle         
was measured. The motors were within 5-7° of the target for           
each test. This met our 10° accuracy requirement. 
 
5.1.5. Camera 
Testing the camera is as simple as proving that the desired           
resolution can be achieved at the required frame rate. It is           
important to determine if there are any dropped frames or          
similar issues. This can be done by running the camera at the            
desired settings for a period of time and making sure the           
images look as they should. 
 
5.1.6. Bluetooth Commands 
Data transmission of user-inputted commands from the iOS        
interface to the Jetson CSM is critical to the utilization of the            
remote user-interface. To ensure that these commands are        
going through properly, the system’s communication was first        
tested under ideal conditions with no active threads        
controlling InFrame’s other subsystems by sending a       
Bluetooth message to the Jetson and viewing if its contents          
can be printed on its terminal. Then, to better model expected           
conditions, the transmission and retrieval of the Bluetooth        
message signaling the CSM to stop recording was tested         
while the various other subsystems are running on concurrent         
threads. These tests all yielded positive results, with the CSM          
system functioning robustly and exactly as intended. 
 
5.1.7. CSM Data Flow 
The primary purpose of the CSM is to coordinate all          
interactions between the various system components and act        
as the product’s control flow operator. For this reason, the          
CSM has to live within the same timing objectives as the           
overall system. Specifically, the CSM should, independently,       
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be able to transfer data from the camera manager to the motor            
manager within the 60 ms upper bound this report has          
established early in Section 2.1. To accomplish this task,         
without any heavy Perception code running, the CSM was         
simulated repeatedly retrieving data from the camera module,        
pushing it to the motor module, and recording the time it           
takes to accomplish this cycle. The results of this experiment          
yielded an independent operating time of 3.76*10-3ms       
between passing sample data in through the Camera module         
(without operating the physical system itself) and this data         
being sent to the Motor module without the intermediary         
Perception processing (this is taking place while both the         
Communications and Storage modules are running      
concurrently). This result is tremendously encouraging and       
far below the ideal 60ms objective! 
 
However, as a follow up, a second experiment was conducted          
to test the CSM under concurrent loads more closely         
representing its expected working conditions. Specifically, the       
same time interval was calculated once again; however, in         
this test, the Perception code was additionally being run. This          
test was done with 10 seconds of filming, over 5 iterations.           
Overall, this test reports 170ms of time between each frame. 
 
This second experiment posed significantly slower operation       
than the previous, going beyond the 60ms objective the         
project had set. After further experimentation, it was found         
that the primary reason for this slowdown is Python’s         
principal means of running concurrent code: the Python        
Global Interpreter Lock (GIL). This data structure implements        
what can only be described as a rudimentary concurrency         
model, the likes of which could be designed by a university           
student taking their first distributed systems class. 
 
After researching means of improving the system, this team         
has found two possible solutions. The first solution would be          
to rewrite the entirety of the CSM in a more concurrency           
friendly programming language, such as Golang, whose       
planning and structure supports the kind of multithreading        
work this project demands. This method would additionally        
require establishing methods for modularizing the Perception       
code so as to be called from a compiler-based language like           
Golang. The second solution would be to implement        
multiprocessing, an alternative Python library that is often        
used by developers to represent parallel systems in the         
language. Although this approach would not be the optimal         
approach, it will likely improve the higher-load operating        
speeds the CSM will experience. Unfortunately, with the        
scheduling delays brought upon by COVID-19, fully       
implementing and debugging either of these approaches did        
not become possible. Preliminary code was written for the         
multiprocessing alternative; however, this team did not       
consider this prototype to be robust enough for merging into          
the project’s final master branch. 

 
In addition, it should be acknowledged that a secondary         
source of slowdown in the fully functioning system is the          
operation of the physical camera. Beyond the unavoidable        
delay in between the camera is able to take individual frames,           
driving the device seems to take a measurable amount of the           
Jetson’s resources. Beyond a typical approach of scaling up         
the hardware by purchasing a better camera, this report could          
improve upon this camera utilization by creating an        
independent PCB driving the camera or designing a new         
camera system entirely for the more specialized purpose of         
recording and downloading single frames with as little        
wait-time as possible. With both approaches drastically       
expanding the scope of the project, these alternatives would         
need to be accomplished over a longer period of time than a            
single Capstone course. 
 
5.1.8. Image Transmission 
With the size of a typical InFrame image being significantly          
greater than that of the String instruction commands, the         
transmission of Bluetooth commands will be a relatively        
lighter case compared to that of a full frame. The testing of            
this functionality will be done simply by serializing and         
delivering an image, a collection of pixel coordinates        
(representing all possible object-detected outline boxes), and       
a collection of ID values associated with each box via          
Bluetooth from the Jetson to a paired iPhone. This test was           
conducted for over 5 repetitions to be received and displayed          
on the iPhone within a target 2 second period. These tests           
resulted in an average measured time of 443 ms across the           
entire testing suite. Therefore, the testing of image        
transmission is classified to be a success. 
 
5.2 Integration Testing 
As a result of COVID19, the team’s integration efforts were          
significantly impacted. Integration of the full system was        
achieved on a software level, but the team was not able to            
fully integrate the software stack with the system hardware.         
The extent of this integration was to a point in which a clear             
set of inputs and outputs is verified to/from the software so           
that integrating the hardware is a matter of simply plugging          
things in. However, it was not possible to perform full system           
testing. 
 
Nevertheless, the team did everything in their power to test          
integration. Lecture recordings were mimicked by having       
Diego running the full software stack on his Jetson and          
sending the optical flow output, as well as a video recording           
of him moving from side to side to Ismael so he could test the              
motor’s response to said movement. In order to verify         
successful functionality under this limited test, the team used         
the optical flow output from Diego’s movement on the motors          
that Thor had, looking to see if the camera moved in ways            
consistent with Diego’s movement. This test proved to be         
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successful and the team is confident that they could integrate          
software and hardware easily in the future, allowing them to 
 properly test the full system as outlined below. 
 
5.2.1. Lecture Recording 
When the project is completed final testing may be         
performed. To test usability and functionality, someone not        
part of the team will be performing these tests. First this test            
user will set up InFrame in a lecture at the front of the class.              
They will have to go through the initialization process of          
picking a target, the professor, and then starting the recording          
and offloading of the video. 
 
5.2.2. Action Shot: 3m Diver 
To test the athletic event scenario a user will set up InFrame            
to track him/herself as they dive off of a 3m diving board and             
then recover the footage after the dive. To decide how to best            
improve and move forward with InFrame multiple test users         
will be selected so that their feedback may be used. 

 
6. DESIGN TRADE STUDIES & TRADEOFFS 

 
6.1 Main Compute 
The largest bottleneck for InFrame is the image processing         
pipeline. It is imperative that the computer vision be         
performed as quickly as possible to leave enough time for          
motors to update within the 60ms alloted for each cycle of           
tracking. Additionally, this computation has to be hosted        
locally to support outdoor use cases. The decision to use a           
Jetson as opposed to other popular single board computers         
such as the Raspberry Pi comes down to how much          
processing power each board has. The NVIDIA Jetson Nano         
outperforms any RPI board substantially in a computer vision         
application. This is because the Jetson has a GPU which the           
RPI lacks. There are not many SBC’s that offer GPU          
capabilities and the Jetson Nano is the only one reasonably          
within the project budget. 
 
 
6.2 Core System Manager 
On the core system manager (CSM) end, one major point of           
discussion was rooted in the language that the Jetson Nano          
would be programmed in. With the heavily concurrent design         
requirements for the CSM, another language considered for        
deployment was Golang, a modern programming language       
designed to support scalable distributed systems. Although       
developing in Golang would facilitate debugging, improve       
code clarity, and overall make the CSM codebase more         
manageable, Golang’s primary shortcoming is its relative lack        
of GPIO and embedded interfacing support when compared to         
Python, for which heavily supported libraries for GPIO        
(interfacing with motors) and CSI (interfacing with camera)        
have already been developed. Furthermore, since the       
computer vision work on the perception manager must        

already be written in Python due to the powerful CV-based          
libraries it supports, consolidating the full software stack to a          
single programming language improves the quality and       
consistency of the overall codebase. Lastly, as described        
earlier in Section 5.1.7, research was conducted to replace the          
concurrency libraries to be used in Python with a language          
supported multiprocessing framework. This post-     
implementation research found the multiprocessing approach      
to likely improve the independent speeds achieved by the         
CSM; however, due to COVID-19 scheduling delays, there        
was not enough time to robustly implement this alternative         
approach to CSM control flow. 
 
6.3 Remote Interface 
In the process of selecting the medium for the system’s          
remote control interface, several options were first considered        
before deciding upon an iOS framework. First, a webapp was          
evaluated as a potential remote control alternative due to the          
project team members’ past experiences doing such       
development and the opportunities it offers for livestreaming        
footage over WiFi onto an AWS instance. However, with an          
intended use case of outdoor filming and the resulting         
inability to rely on a consistent WiFi connection, the         
possibility of webapp system control was abandoned in favor         
of a hardware device that can communicate with the camera          
system directly without a middleman remote server. With the         
additional need for an easily interfaceable touch screen, the         
options were limited to developing an iOS or an Android user           
interface. In selecting between these two devices, although        
Android development is facilitated with its no-investment       
development cost as opposed to the iOS development-        
subscription system, all InFrame team members have iOS        
devices, wish to use this device post-development, and have         
space within the project budget to afford this relatively low          
subscription cost. 
 
6.4 Wireless Communication 
As the need for a remote user interface arose, selecting a           
wireless communication protocol (WCP) for data transfer       
between the interface and the core system manager became a          
critical portion of the design. Although Bluetooth eventually        
arose as the optimal WCP, this design process additionally         
evaluated communication over a WiFi protocol. This       
alternative would allow for higher image transfer rates at         
roughly 11Mbps, while Bluetooth only offers roughly       
800Kbps. This boost in speed would have been utilized to          
enable WiFi-based live streaming of camera feed and camera         
control. However, this alternative was found to be        
unnecessary as the project team classified livestreaming as an         
additional feature to be beyond the project scope and intended          
MVP. Additionally, the process of setting up the Jetson Nano          
as a WiFi-connectable device would, on the user’s end, staple          
an additional period of setup time that would exceed the 20           
second requirement this project is committing to. For these         



10 

reasons, WiFi-hosting on the Jetson Nano was abandoned in         
favor of a lighter, more low-power Bluetooth communication        
protocol. As a result, users view possible targets to follow on           
an image snapshot representing what the camera system can         
see and detect at the time when the user requests to start the             
target selection process. 
 
6.5 Object Tracking 
The most interesting tradeoff decision for the perception        
pipeline was the choice of tracker. There are currently many          
different tracking algorithms available in OpenCV, all with        
varying degrees of accuracy, speed and even ability to detect          
failure. The two most worth noting though are those at the           
opposite ends of the “tracking spectrum”. The fastest tracker         
available is the Minimum Output Sum of Squared Error         
(MOSSE) tracker, which uses adaptive correlation for object        
tracking. It is robust to variations in lighting, scale, pose, and           
non-rigid deformations. While it does run very fast, achieving         
an average frame rate of 5.98 FPS on the Jetson Nano, it            
doesn’t work very well. In a suite of 20 tests, it lost the target              
19 times.  
 
On the other side of the spectrum, there is the Discriminative           
Correlation Filter with Channel and Spatial Reliability       
(CSRT) tracker, which uses a spatial reliability map to adjust          
filter support to the part of the selected region from the frame            
for tracking. It runs much slower than MOSSE, achieving         
only 1.19 FPS on the Jetson Nano, and while it does work            
somewhat better, it is still not reliable enough to be used as            
the sole tracker in a system whose main purpose is tracking --            
losing the target in 14/20 of the test cases. 
 
Now, because even the fastest tracker was still about 3x          
slower than out 60 ms (16.6 FPS) requirement, the team          
looked into using the fastest tracker available (MOSSE) and         
improving it by running object detection every certain number         
of frames to “reset” the bounding box before it accumulates          
error and loses the target. This improvement worked very         
well, achieving an average frame rate of 4.83 FPS (a slow           
down of only about 1 FPS from standalone MOSSE), but          
losing the target on only 1 out of our 20 test cases. 
 
Near the end of the semester, it was discovered that the Jetson            
Nano comes pre-packaged with an SDK called TensorRT,        
which optimizes neural network inference performance up to        
40x. By switching the inference code to use the libraries from           
that SDK, object detection was running at an average speed of           
almost 14 FPS, with a max of nearly 35 FPS. Because of this             
significant speedup to the object detection part of the pipeline,          
the detection model itself was used as the tracker (the whole           
point of using object tracking is that it’s supposed to be faster            
than running object detection at every frame). This        
improvement not only resulted in significant speedup of the         
perception pipeline, but by switching from tracking       

algorithms to deep learning models, occlusions, lighting       
changes and many or reach cases started to work much better           
than expected. In our suite of 20 test cases, the object           
detection tracker never lost the target. 
 
6.6 Object Detection 
The choice of object detection model boiled down to the          
fastest and lightest model which could meet the 80% accuracy          
requirement on the system’s use cases. Running heavy models         
on more capable cloud instances was considered but quickly         
discarded since the system should be independent of a         
Wide-Area Network so that it can be used outdoors. The          
fastest object detection model on the Jetson Nano was SSD          
MobileNet-V2 and as outlined in section 5.1.1, it achieved an          
accuracy of 85% on our use cases. Other heavier models such           
as ResNet-18 were considered and actually did perform a bit          
better in terms of accuracy but ran inference so slowly on the            
Jetson Nano that they were not viable options. 
 
While going over the design of the perception pipeline, a          
major point of discussion was on whether InFrame’s tracking         
capabilities should be based on object or face detection.         
Object detection works with high-level features such as shape         
and relative size, while face detection depends on more         
minute details such as colour, structure and shading.        
However, some research suggests that object detection could        
be generalized to distinguish between different faces as well.         
Furthermore, at ranges of up to 15m from the camera, faces           
start to become very similar. As such, it was decided that           
InFrame would use state-of-the-art object detection to       
differentiate between different objects. Rather than      
recognizing a person and assigning an ID to them as you           
would with facial detection (in such a way that you could say            
“track Bob”), InFrame detects everything as an object and         
leaves it up to the user to select what the target is (by using              
bounding boxes rather than IDs). 
 

7. PROJECT MANAGEMENT 
 
7.1 Schedule 
A detailed look at InFrame’s team schedule is included in          
Appendix 4 (section 10.4). 
 
7.2 Team Member Responsibilities 
Diego Martinez is responsible for the design and        
implementation of the computer vision software and its        
integration with the rest of the system. 
Ismael Mercier is responsible for all electronics hardware as         
well as mechanical hardware. 
Ike Kilinc is responsible for the core system manager, the          
remote interface on iOS, all data transfer and coordination         
across the system, and pushing forward software integration. 
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7.3 Budget 
Attached below are all the parts identified as necessary for          
InFrame. The total cost is $406.41 which is well within the           
allocated budget.  
 
Part Name Cost 

Tilt Servo 
Maxmoral 2pcs MG90S 9g 
Metal Gear Pro Servo $9.99 

Pan Servo 
Metal Gear Micro Servo / 
Continuous Rotation $16.99 

Camera 
Raspberry Pi Camera 
Module V2 - 8MP, 1080p $28.20 

Battery 
Waitley M18 18V 6.0Ah 
Replacement Battery $42.98 

Central Compute Jetson Nano Developer Kit $99 

Battery Adapter 
Milwaukee 49-24-2371 
M18 Power Source $33 

3D Printing Material Matte black plastic $26.99 

WiFi/Bluetooth 
Module Intel 8265NGW $30 

Figure 4: Parts List & Overall Budget  
 
 
 

8. RELATED WORK 
 
The Rhino Arc II is a 4-axis motorized system designed for           
amateur to professional photographers that was recently       
crowdsourced on Kickstarter. Much like InFrame, it too has         
pan and tilt motors, interchangeable batteries and a remote         
control interface. However, the key difference between the        
Arc II and InFrame is that InFrame has object tracking          
capabilities and is itself an end-to-end solution that does not          
require an external camera. 
 
The Arc II does have some very elegant features and modes           
of operation that InFrame could benefit from. These include         

keyframe support and variable speed curves in between        
keyframes, the ability to adjust zoom and focus and a built-in           
interface to control the system alongside the remote interface.         
Because of this, InFrame is designed in a scalable and          
maintainable way so that adding features like these in the          
future is straightforward to achieve. 
 

 
Figure 5: Rhino Arc II 
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10. APPENDIX 
10.1 Appendix 1: System Communication Diagram 
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10.2 Appendix 2: Target Selection Sequence Diagram 
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10.3 Appendix 3: Target Tracking Sequence Diagram 
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10.4 Appendix 4: Team Gantt Chart for Project Management 
 

 


