
Team A5: Diego Martinez, Ike Kilinc, Ismael Mercier



Application Area

Lecture Filming

Application Solution Trade-Offs Proj. Mgmt.M&V

Action Shots



Solution Approach

Application Solution Trade-Offs Proj. Mgmt.M&V



Application Solution Trade-Offs Proj. Mgmt.M&V

1. Target Selection

Complete Solution

2. Target Tracking

3. Motors Follow Target



Metrics and Validation → Hardware

Goals Requirements Testing Method Result
Motion Speed Servos should move at least 40°/s Record full rotation time w SW timer Motors are capable of 100°/s

Position Accuracy Within 10 degrees of target Moved CW and CCW by the same 
amount 10 times 

Average of 5-7 degree drift

Smooth Motion Ignore movements < 0.5m At a fixed user-defined distance, 
manually verify that small 
movements do not trigger motors

Software ignores optical flow vectors 
which magnitude moves the motors 
to an angle translating to 
movements of < 0.5m.

Battery powered Battery life would last the length of a 
trip (e.g. hike)

Prove theoretically since PCB 
manufacture not possible

N/A (was not able to test the battery 
from home)

Backpack storable Size < 26.5"h x 17.5"w x 6.5"d Measure with ruler, compare to 
pre-design quantities, place in 
backpack

Measurements: 6.25" x 4.5" x 5.5"

Application Solution Trade-Offs Proj. Mgmt.M&V



Design Trade-offs → Hardware

System PCB
➔ Decided to use one PCB instead of two for battery management and motor 

drivers.
◆ Easier to design and manufacture
◆ Easier to integrate into housing
◆ Less wiring 

Voltage Regulator
➔ Changed to switching voltage regulator instead of linear regulator

◆ Linear voltage regulator was burning ~46W as heat
◆ Switching regulator is much more efficient

Housing
➔ Smaller form factor + increased portability.
➔ Cut out continuous rotation due to design complications

  

Application Solution Trade-Offs Proj. Mgmt.M&V



Metrics and Validation → Perception

Application Solution Trade-Offs Proj. Mgmt.M&V

Goals Requirements Testing Method Result

Accurate Object Detection > 80% accuracy in frames with our 
use cases

Run on suite of 120 potential targets: 40 
lecturers, 40 runners and 40 
skateboarders, binary success metric

92.5% accuracy on lecturers
77.5% accuracy on runners
85% accuracy on skateboarders

Tracking Reliability With no occlusions and no lighting 
changes, never lose target

frames_tracked / total_frames from suite of 
10 tests > 99%, bounding box 
automatically drawn and manually verified

6 “easy” tests = 718/720
4 reach tests = 417/480**
**Includes occlusions, lighting changes and shape 
changes!

Track Any Possible Target Identify any target and be able to 
differentiate between any pair of 
targets

Select different range of targets and 
compare with benchmark above

Can only track one of any 
detection class in a frame



Design Trade-offs → Perception

Object Tracking Implementation
➔ MOSSE Tracker: As fast as it gets, not very good.
➔ CSRT Tracker: Very slow, supposedly the best but still not 

great.
➔ MOSSE + Intermittent Obj Detection: Almost as fast as 

standalone MOSSE, works very well.
➔ Obj Detection + TensorRT: Incredibly fast, works very well. A 

bit more jitter in optical flow but manageable.

Object Detection Model / Compute
➔ MobileNet-V2 on board: Fast but light (39 FPS)
➔ ResNet-18 on board: Very slow on Jetson (5 FPS)
➔ Heavy Models on AWS: Much faster than necessary, limited 

by ping to closest AWS servers (Approx 20 ms)

Tracking Type Speed Targets Lost

MOSSE Tracker 5.98 FPS 19/20

CSRT Tracker 1.19 FPS 14/20

MOSSE Tracker + OD 4.83 FPS 1/20

OD + Inference Boosts 13.75 FPS 0/20

Application Solution Trade-Offs Proj. Mgmt.M&V



Metrics and Validation → CSM

Application Solution Trade-Offs Proj. Mgmt.M&V

Goals Requirements Testing Method Result

Minimizing latency overhead Inter-frame operation time falls 
within the 60ms threshold of 

negligible mechanical reaction time

Run the CSM independently of Perception, 
with frame data mock-inserted into execution 

flow

13.75 FPS perception (72.7ms), 
4.13 FPS full CSM (242ms), CSM 

adds 170ms per frame on avg

Responsive target selection User-input response time ≤ 2s Manually time each possible Bluetooth 
message transmission to the CSM: 

timeSentFromRI - timeReceivedByCSM

243 ms
43ms CSM processing time + 
200ms BT latency (average)

Robustness System execution cannot be ended 
abruptly by any possible user-input

Give app to 3 non-developer users, ask them 
to try and break it

3 major errors found in first test, 
All 3 were fixed,

2nd test could not be broken.



Design Trade-offs → CSM
Control Interface
➔ On-Board → Remote Interface: Reducing cost & improving convenience
➔ Web-Server → Android → iOS: Cutting down on user-input latency & usability 

by team members

Communication Protocol
➔ WiFi → Bluetooth: Portability demands LAN independence

CSM Software
➔ Sequential → Concurrent  → Parallel**: Listen to Bluetooth while processing 

frames & improving inter-frame speed
➔ Golang → Python: Perception requires Python, multi-language platform 

creates yet another link exposed to failure

Application Solution Trade-Offs Proj. Mgmt.M&V



Integration – Virus Edition

Integration Testing Limitations
➔ Only one team member had access to a Jetson
➔ Jetson needed to run Perception code
➔ Heavy documentation on shared code for efficient development

Hardware Tested on Arduino
➔ Motor tests run using Arduino C
➔ Unable to test Python MotorMan 

Bluetooth Communications
➔ Replaced Jetson Bluetooth capabilities with OSX Bluetooth Framework for testing

Application Solution Trade-Offs Proj. Mgmt.M&V



Project Management

Application Solution Trade-Offs Proj. Mgmt.M&V


