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Abstract–– Robotic-assisted photography is among the      
most exciting technological developments in the production       
industry since the invention of the camera itself. It provides new           
and unique ways to capture dynamic scenes and unlock new          
avenues for cinematographic creative potential. Current      
photography robots on the market range from tremendously        
expensive industrial robotic arms, such as Motorized Precision’s        
Kira camera robot, to portable devices that allow for smooth          
motion across basic scenes. ​However, most photography robots        
have not yet leveraged breakthroughs made in the Computer         
Vision space in the last decade. For these reasons, this design           
blueprints ​InFrame​, an intelligent, motorized photography      
assistant that uses state of the art object detection models and           
tracking algorithms to follow user-selected targets across a 3D         
space, constantly keeping them ​InFrame​. 
 

Index Terms–– Photography, Computer Vision, Robotics,      
Deep Learning, Lucas-Kanade, Tracking, Embedded Systems. 
 

1. INTRODUCTION 
 

AI-empowered robotic systems have become the cornerstone of        
technological feats unachieveable by any human, pushing       
forward the boundaries of what is considered possible across         
countless technology-supported fields. Specifically within the      
photography and production industry, countless high-precision      
robotic devices are now being utilized to improve        
cinematography capabilities, such as Motorized Precision’s Kira       
camera robot or the Rhino Arc II. However, few such products           
available on the market make adequate usage of the many          
research breakthroughs in the Computer Vision field to enhance         
system operation while maintaining overall system affordability.       
The additional functionality that results from applying these        
Computer Vision breakthroughs enables powerful autonomy      
practical for even the most advanced users, while hardware         
affordability broadens the product’s user population to even the         
hobbyist level. 
 
To fill this technological gap in market-available development,        
this research group has decided to build the InFrame system and           
improve the quality standard for affordable smart-photography       
systems everywhere. The system is designed to address two         
primary areas of use-cases: semi-autonomous lecture recording       
and action shot capturing. Many courses at institutions like         
Carnegie Mellon University record 1-3 hour long lectures where         
the autonomatable task of following the target professor across a          
classroom floor is currently being done by a human idling his or            
her time while occasionally making acute camera adjustments.        

Action shots, such as a diver jumping from a 3-meter board, are            
not even being filmed until the olympic levels, creating a market           
gap for all other levels of diving activity for users who want to             
film themselves either during competition or period of practice.         
For both of these application areas, InFrame is the simple          
solution that users have long awaited. 
 
These use-cases can be itemized into goals delineated among         
three primary system components. Within the Perception       
subsystem, the outlined technology must conduct object       
detection, object tracking, and relative success rates when        
dealing with occlusions blocking the target from the camera         
system’s field of view. Within the Hardware subsystem, a         
mechanism must be built that can position a camera’s frame,          
record image data, and host a computing device capable of          
processing computer vision models. Lastly, to control the full         
stack, a concurrent system controller alongside an intuitive        
user-oriented interface must be developed. To measure success,        
this design must support object detection at 70% accuracy and          
tracking that allows for selection and frame-centering of a target          
for the outlined use-cases without major occlusions and major         
lighting changes. Furthermore, to guarantee that users view the         
camera as tracking them in real-time, the design must minimize          
latency between their measurable movement inputs and camera        
tracking outputs to be within a 60ms upper threshold. The          
achievement of these two principal metrics translate to a         
successful implementation of the InFrame system’s core       
functionality. 
 
The following paper will extensively detail the quantitative and         
qualitative system design requirements, the solutions designated       
for meeting these requirements, an overview of how the         
product’s subsystems interact with one-another, an itemization       
of design metrics established for assessing each subsystem’s        
successful operation, an overview of previously evaluated and        
eliminated design alternatives, and an overview of the project         
management process behind the development of the overarching        
InFrame system. 
 

2. DESIGN REQUIREMENTS 
 

For InFrame to successfully support the use-cases outlined by         
this design, a set of itemized technical goals and quantitative          
(wherever possible) requirements must be specified and met in         
order to guarantee a successful product. These collections of         
goals and requirements are delineated across the product’s        
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principal subsystems: System Control, Perception, and      
Hardware. 
 
2.1. System Control Requirements 
Streamlined and comprehensive control is integral to the        
maintenance of the physical InFrame system’s semi-       
independent functionality while providing intuitive interfaces      
for users to interact seamlessly with the overarching product         
functionality. This project design works to solve this central         
goal by building a system that can operate as independently as           
possible once it has an objective stored locally, while generating          
a human-facing interface for users to intermittently provide        
these objectives without constant dependence from the remote        
device in between command delivery. Therefore, this report        
proposal delineates design goals and requirements between       
these two subsystems: a core system manager and a user-facing          
interface for inputting system commands. 
 
2.1.1. Core System Manager 
The core system manager’s foremost goal is to provide a          
framework for managing the product’s various subsystems       
simultaneously so as to avoid queuing subsystem tasks, an         
outcome of sequential design that would slow down the overall          
system. In order to accomplish this goal, the core system          
manager has a requirement to be programmed as a collection of           
concurrently operating managers, each of which pass       
information (e.g. image frames, received user-commands, motor       
rotation vectors) among one another. Subsequently, to improve        
the effective operating speeds (e.g. effective post-processing       
framerate), the core system manager must be centralized to         
reduce the latency between data transmission. To support this         
goal, the system should be able to transmit a single image frame            
from the camera to the Perception subsystem in under 1ms. A           
single image frame was selected as it is the largest amount of            
data that the system manager would have to send from one           
subsystem to another within a short period of time (FPS​-1          
seconds); furthermore, a period of 1ms was selected as an upper           
bound to represent a qualitative measurement of data        
transmission being “near instant.” Lastly, since the product will         
be utilized outdoors and thus typically without reliable WiFi         
connection, video storage cannot occur on the cloud and must          
be operated offline; the core system manager must therefore         
support offline video storage with a simple download process. 
 
2.1.2. User-Interface for Command Delivery 
Commanding the InFrame system through a user-intuitive       
medium is critical to the development of a streamlined user          
experience and, as a result, a well-design product. For any          
use-case InFrame is designed to deliver, both a screen for          
displaying images and an ability to touch select specific         
locations on said screen are critical requirements for the reason          
that users interacting with the system will need to both view           
object-detected targets within the camera’s field of view and         
select a specific intended target. With the unnecessary        

complexity integral with installing, populating, and polling an        
external touch screen, a remote interface surfaces as a clear          
requirement. With the added goal of supporting outdoor uses         
cases, communication with this remote interface cannot be        
conducted through an online server since consistent WiFi        
connectivity cannot be relied upon outdoors. 
 
To improve the user experience around setting up the device and           
initializing tracking, this design requires a maximum pair time         
between the camera system and its remote controller of up to 20            
seconds; any amount of time beyond this would be too long to            
justify to users. Lastly, when the remote controller requests an          
object detected frame (e.g. an image capture with detected         
targets indicated / outlined), the frame data should reach and be           
displayed on the remote controller within 2 seconds, the upper          
bound of how long the system designers were willing to wait           
between requesting to select a target and actually being able to           
select one. 
 
2.2. Perception Requirements 
Perception lies at the core of InFrame’s functionality. In order to           
have a fully functioning system, we need an accurate and          
efficient computer vision pipeline capable of object detection        
and object tracking. 
 
2.2.1. Object Detection 
State-of-the-art object detection models such as YOLOv2, SSD        
ResNet-18 and SSD Mobilenet-V2 achieve accuracies between       
69% and 85%[1]. ​As such, given a certain frame, the system           
should be able to detect the objects it was trained to detect with             
at least 70% accuracy (the lower bound of state-of-the-art object          
detection models). 
 
2.2.2. Object Tracking 
Using one of the bounding boxes resulting from object         
detection, the system needs to reliably and consistently track the          
object enclosed by said bounding box. Popular tracking methods         
such as Lucas Kanade tracking assume consistent lighting and         
small object displacements in between frames. As such, the         
requirement for the system’s tracking capabilities is that in the          
absence of occlusions, object-shape-change and major lighting       
changes, a target should never be lost. Dealing with these cases           
is desirable, and this design will certainly strive to cover them           
by considering deep learning optimizations of these tracking        
algorithms, but they are outside of the scope of this project. 
 
2.2.3. Use Case Coverage 
InFrame is designed with two main use cases in mind, lecture           
recordings and action shots. As such, the computer vision         
pipeline should be able to support object detection and tracking          
in these cases. In order to do so, the system needs to be able to               
detect slow walking humans (i.e. lecturers) even as they turn          
around to face a blackboard, as well as fast moving entities such            
as soccer balls, skateboarders, and climbers. To achieve this, the          
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system should use an object detection model trained on a dataset           
which includes these items as part of its classes. 
 
In addition to the requirements outlined above, the time it takes           
to go from an input frame to a decision from the perception            
pipeline should be kept under 60 ms. This is because popular           
consumer electronics ratings agencies such as RTINGS.com       
claim that input lags above 50 ms start to become noticeable for            
humans. Hence, when a target moves, for the system to be           
responsive to that “input” and appear to track in real-time, the           
duration of the entire perception stack should be kept only a bit            
above 50 ms since that number is meant for gaming and a bit             
above that would still appear to be happening in real-time. What           
this translates to is that the time it takes to take a frame, track              
the movement of an object with respect to the last frame and            
execute a motor command should all be kept below 60 ms[2]. 
 
2.3. Hardware Requirements 
Hardware is the aspect that really makes InFrame come to life.           
As such, it is imperative that each aspect of the hardware has a             
certain set of requirements that need to be meant to ensure a            
meaningful user experience. Furthermore, each aspect of these        
requirements must be tied back to the end user-experience so as           
to ensure the highest quality product. 
 
2.3.1. Tracking Speed 
The pan and tilt motors must support moving fast enough to           
track a professor walking from 2.5m away. At average human          
walking speeds this is 40° per second. At further distances the           
motors will be able to track targets moving faster. The motors           
must also be able to track the target anywhere around it for            
scenarios such as someone skateboarding. Therefore it is        
essential that it has continuous motion on the pan axis and be            
able to look above and behind itself within 180°. Meeting these           
speed requirements ensures that users will not be limited to how           
fast the tracking can be. 

 
2.3.2. Battery Life 
InFrame must be able to record continuously for the duration of           
a lecture or presentation. Most presentations or meetings will         
have at least one intermission in a 3 hour period. Therefore the            
target runtime is 3 hours. If users require a longer filming           
session the batteries could easily be swapped. It should also be           
noted that the battery life for most camera systems is around 3            
hours, when photographers need to film for longer periods of          
time they swap out the battery on their camera. This          
requirement here is to have a user experience analogous to that           
of working with a traditional camera system. 
 
2.3.3. Motion 
As previously stated, continuous pan and a 180° tilt is necessary           
for an appropriate tracking range. The mechanical system must         
be able to support this without the potential for damage when           
the axes are moved to extreme angles. Therefore there cannot be           

collisions between parts and the wires may not get tangled or           
twisted while moving. Creating a system that will not destroy          
itself over time is a requirement for any product. 

 
2.3.4. Profile 
InFrame must be easy to transport in a backpack. Access to the            
battery should allow for quick swapping. Like most        
photography equipment, it should be tripod mountable. Again, a         
requirement for a quality user experience is to feel similar to           
standard photography equipment. 
 

3. SYSTEM DESCRIPTION 
 
The aforementioned requirements are the driving factor behind        
InFrame’s design. Now, this report will outline the proposed         
design to meet these requirements to build a successful product. 
 
3.1. System Control Suite 
3.1.1. Core System Manager Design 

 
Figure 1: Software Interaction Diagram for Jetson CSM 

 
The core system manager will need to maintain concurrent         
control of the camera products various subsystems, which        
include camera control, motor control, perception (object       
detection and object tracking), video storage, and       
communication with the remote control interface. To minimize        
the latency of data transfer between any two subsystems, such          
as moving image data from the camera control to the perception           
module, this design centralizes this compute on the Jetson         
device itself. Given that the Jetson will be host of the system’s            
heaviest computing load, the perception operations of object        
tracking, this design will attempt to consolidate all other         
operations that depend upon the output of this computer vision          
work within this device. To improve the overall speed of the           
system and allow for computer vision work to occur         
simultaneously with the rest of the interconnected system        
operations, the core system manager will be programmed using         
extensive concurrency features within Python, which will       
already be the language of choice for nearly all computer vision           
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work and has more extensive embedded interaction libraries        
than other modern concurrency languages. 
 
To start up the main operational sequence, the core system          
manager will listen for and retrieve command information from         
the communication module, to which the remote controller will         
send system commands. When users request images, the system         
manager will first ping the camera manager to capture a frame,           
then will forward this frame to the perception module where it           
can run object detection to outline potential targets, and lastly          
forward this information to the communication module for        
transmission back to the remote interface for the user to select a            
tracking target. This path is on such potential user interaction          
story for the system; more such sequences will be outlined in           
further detail throughout Section 4. 
 
3.1.2. Remote Control Interface 
As was outlined in Section 2.1.2, it is imperative for an intuitive            
target selection that InFrame features a remote touch screen         
display. Given the ubiquity of smartphone devices, the choice         
becomes clear. By pairing the InFrame system over Bluetooth to          
a user’s smartphone device, InFrame becomes much more        
cost-efficient, user-friendly and easy to use. Furthermore, iOS        
was chosen due to iPhones’ competitive advantage in the         
photography space and the fact that the InFrame team members          
all have iPhones. 
 
The remote control interface is meant so that the user can send            
three types of commands: A ​start/stop command to start         
recording frames or stop to save the resulting video, a ​detect           
objects command so that the system may perform object         
detection on the current frame and send both the frame and the            
bounding boxes above a certain confidence threshold to the         
phone so that the user can select a target and finally, a select             
target command to specify which target the system should start          
tracking. 
 
3.2. Perception Pipeline 
The computer vision pipeline is mainly composed of two         
subcomponents: Image pre-processing, object detection, and      
object tracking. The image pre-processing component      
downsamples an image so that it fits into the object detection           
model. The object detection component detects objects in an         
image above a certain confidence threshold. The object tracking         
component, given a bounding box, tracks the movement of the          
object within the bounding box from one frame to another. 
 
3.2.1. Image Pre-Processing 
The InFrame system features a Raspberry Pi Camera V2, which          
is set to operate at 720p60. This is because the main camera is             
used not only for object detection and tracking but also for           
actually recording video, so a high quality (for video playback)          
and a high frame rate (for slow motion capabilities in          
post-processing editing of action shots and small displacements        

in between frames for accurate tracking) is desirable. However,         
720p (1280x720 pixels) is a much higher resolution that is          
needed for image inference, so images are downsampled to fit          
the object detection model’s input. 
 
3.2.2. Object Detection 
 
The object detection component of the perception pipeline will         
make use of a pre-trained neural network architecture designed         
for object detection and OpenCV’s Deep Neural Networks        
module to load said network. The model that it will use is SSD             
Mobilenet-V2, which is an architecture designed by Google AI         
for on-device mobile vision applications. It is a lightweight         
model that achieves 39 FPS on object detection tasks when          
running on a Jetson Nano using 300x300 images[3]. It also          
achieves very similar accuracy benchmarks as other       
state-of-the-art object detection algorithms, as shown in figure 2         
below. However, it is worth noting that object detection will not           
be running in real-time, but only when a user wishes to change a             
tracking target (so that bounding boxes can be selected). As          
such, heavier networks that achieve greater accuracy such as         
YOLOv3 will also be considered. Because most of these models          
are trained using the COCO dataset, which includes labels that          
cover all of our use cases (people, sports balls, skateboards,          
frisbees, etc), it is expected that they would all achieve the same            
accuracy on our data that they report being able to achieve on            
their original reports. 
 

 
Figure 2: Accuracy comparison of state-of-the-art object 

detection models 
 
3.2.3. Object Tracking 
After a bounding box has been selected by the user, the           
perception pipeline enters the object tracking stage. Here, the         
system determines the optical flow from one frame to another in           
order to track the movement of the object within the bounding           
box. Optical flow is the pattern of apparent motion of image           
objects between two consecutive frames caused by the        
movement of an object or a camera. It is a 2D vector field where              
each vector is a displacement vector showing the movement of          
points from the first frame to the second. By using optical flow,            
the system can determine the direction and magnitude of         
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movement of an object from frame to frame and use that to            
drive to motors to track the subject. In order to achieve this,            
InFrame extracts features from the object within the bounding         
box using Shi-Tomasi corner detection (wrapped under the        
goodFeaturesToTrack function of OpenCV). Then, it uses these        
points to calculate their optical flow using the Lucas-Kanade         
tracking method (wrapped under the calcOpticalFlowPyrLK      
function of OpenCV). It should be noted that Lucas-Kanade         
does not deal well with occlusions and changes of shape. As           
such, deep learning optimizations[4] of adaptive object tracking        

will also be considered to improve InFrame’s tracking        
capabilities. 
This design currently assumes that in the time that it takes for            
the user to select a target, the subject will not move (so that its              
location with respect to the bounding box that the user chooses           
based on the given frame does not change). This is of course not             
optimal and an attempt to perform multi-target tracking will be          
done for this period of time while the user chooses a target (i.e.             
track all the boxes with different IDs so that eventually the           
system just tracks the chosen box). 

 
3.3. Hardware Design 

 
Figure 3: Hardware Interaction Diagram 

 
 
3.3.1. Battery Management - Battery Spoof 
A low power microcontroller which is able to perform         
authentication with the power tool battery and make it think it           
is connected to a tool instead of InFrame. This         
communication protocol will be observed from the battery        
and a power tool and then replicated by the spoofer. 
 
3.3.2. Battery Management - Voltage Regulator 
Once authentication is complete more power can be drawn         
from the battery. The microcontroller responsible for spoofing        
will connect the 5V power regulator to the Jetson over a           
MOSFET. At this point the Jetson can turn on the Servo           
Motor Driver by sending a I2C command back to the battery           
manager enabling it to turn on the switching power regulator          
for the servos. The purpose behind this is to allow for greater            
flexibility with how the servos are powered and enable easy          
testing of what power settings achieve the greatest        
performance.  
 
 

3.3.3. Power Tool Battery 
A power tool battery has been selected because it will be           
easier and safer to work with than just LithiumPolymer         
batteries since it already comes with the protective charge and          
discharge circuitry. A Milwaukee Tool 18V 6.0Ah battery        
has been selected because it provides sufficient power for the          
desired runtime while still remaining economical. Standard       
photography equipment uses interchangeable batteries so in       
doing the same InFrame shares a similar user experience. 
 
3.3.4. Servo Motor Driver 
This PCB will be a simple logic level shifter that will allow            
control of the 4.8V-7.2V servo’s with the 3.3V Jetson gpio          
pins. An optocoupler is used to isolate and protect the Jetson           
from any potential voltage spikes coming from the servo         
motors. This board will also have a power passthrough from          
the battery manager to the servo motors. 
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3.3.5. Servos 
This option was chosen due to the ease of controlling a servo            
motor since they require less hardware and simpler control         
signals than other motors. In addition to this, servo motors          
offer greater torque for their size as a result of their internal            
gearing system. For panning motion, the system will use a          
continuous rotation metal geared servo motor that will enable         
360° rotation. For tilting, the system will use a 180° metal           
geared servo which will allow movement without worry about         
collisions since it cannot go past the set limit. 
 
3.3.6. Camera 
The system will use a 1080P30FPS camera that will be easily           
integrated with the Jetson through a CSI MIPI interface that is           
built-in. This camera has a high enough FPS where we can           
constantly keep the GPU running the tracking algorithm and         
also film a quality video. 1080P30FPS is the typical “high          
quality video” resolution seen in most online streaming.        
Providing the highest quality possible is a key aspect of any           
photography equipment. 
 
3.3.7. WiFi and Bluetooth Module 
The system will feature an ​Intel 8265NGW Dual Band WiFi          
and Bluetooth 4.2 module that will enable wireless        
communication for the Jetson. It plugs directly into the         
Jetson’s M.2 connector and works with supported software.        
This will allow for easy Bluetooth communication between        
InFrame and the iOSDevice. 
 
3.3.8. Nvidia Jetson Nano 
The Jetson is the most affordable embedded single board         
computer that offers high computer vision performance with        
its NVIDIA GPU. ​See section 6.1 for more details. 
 
3.4. Mechanical Design 

 
Figure 4: CAD Model of InFrame 

 
3.4.1. Motion 
To properly track a target, InFrame must be able to pan and            
tilt the camera. This motion will be achieved with servo          
motors. A continuous rotation servo motor will allow InFrame         
to track targets in full 360° motion. So as to not tangle wires             
with continuous rotation there will be a slip-ring connecting         
the tilt servo and the camera connections to the rest of the            
system. 360° tilt will not be possible because the tilt arm           
would collide with the rest of the system so it has been            
limited to 180° tilting. To be able to track a person moving at             
average walking speeds from 2.5m away(test case for a         
lecture) InFrame must be able to move at 40° per second. This            
is easily achievable with most servo motors. 
 
3.4.2. Profile 
To be able to comfortably transport Inframe in a backpack,          
the system should be limited to a maximum of 6”x6”x9”​.          
There will also be an easily accessible battery slot to be able            
to quickly swap batteries. In addition, inFrame will also         
feature a standard tripod screw so that users may mount it to a             
tripod like most camera systems. 

 
4. SYSTEM INTERACTION 

 
A detailed diagram of the way that information is passed          
across the different components of the system is included in          
Appendix 1 (section 10.1). It outlines the different serial         
communication protocols used to communicate between the       
software component in charge of initializing and managing a         
specific hardware component and said hardware component,       
as well as the main purpose of each of the different           
subcomponents of the entire system. In addition, on the right          
side of the diagram, there is a detailed look at the different            
commands that can be sent from the iOS device to interface           
with the InFrame system. 
 
This diagram gives a very general overview of how different          
parts of the system work together to create the fully          
functioning InFrame system. In order to illustrate two        
common uses of InFrame, this report will now dive into how           
the target selection and target tracking scenarios work. 
 
4.1 Sequence Diagram for Tracking Target Selection 
 
A detailed diagram of the target selection sequence is         
included in Appendix 2 (section 10.2). Here, a user uses the           
iOS device to request the Jetson Nano to perform object          
detection. Then, the iOS app draws the resulting bounding         
boxes on top of the current frame. Finally, a user can select            
one of these bounding boxes and its ID is sent back to the             
Jetson to move forward with tracking. 
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4.2 Sequence Diagram for Object Tracking 
 
A detailed diagram of the object tracking sequence is included          
in Appendix 3 (section 10.3). Here, after a user has selected a            
bounding box and the Jetson Nano received the appropriate         
bounding box ID, it can continuously use the camera and          
perception managers to keep track of the object within the          
bounding box and compute the optical flow from frame to          
frame. This optical flow can then be translated by the motor           
managers to actionable movement and InFrame can       
effectively track a subject in 3D space. 
 

5. METRICS & VALIDATION 
 
5.1 Subsystem Testing 
5.1.1. Object Detection 
In order to determine if object detection is functioning         
properly, a suite of testing scenarios designed around the use          
cases that InFrame is meant to support will be created. In each            
scenario, according to the system’s requirements, a successful        
test would accurately detect at least 70% of the intended          
objects. In order to cover a lecture recording, static input          
frames with multiple people at distances of 5m, 10m and 15m           
from the camera will be fed into the perception pipeline. In           
order to cover a broad range of action shots, static input           
frames featuring skateboards, various types of sports balls,        
frisbees and cars will be used. As long as these objects are not             
very close together (since object detection has a threshold for          
how close these objects can be), success in this space means           
detecting at least 70% of these objects in a frame. 
 
5.1.2. Object Tracking 
Object tracking is a critical aspect of InFrame’s functionality         
(its raison d’etre, if you will) and as such will be strictly            
tested. A test suite featuring fast moving objects will test the           
camera’s input FPS so that displacements in between frames         
are small enough to be accurately tracked. In addition, these          
tests will test that the tracking speeds between frames are fast           
enough to keep up with the input FPS and achieve the 60 ms             
requirement that was mentioned in section 2.2.3. In addition,         
there will be tests where the target object changes a bit in            
shape as it moves (i.e. a climber on a rock wall) so that the              
tracking algorithm’s generalization capabilities can cover that.       
Finally, a set of tests will test the system’s capabilities to deal            
with occlusions and/or major lighting changes. It is not         
required to deal with these to a great extent, but these tests            
will inform the team of the different circumstances in which          
InFrame would not work well. 
 
5.1.3. Battery Management Circuit 
For the Battery Management Circuit to work properly it must          
first be able to authenticate the connection with the battery          
and then maintain it for an extended period of time. This           
subsystem must also be able to supply enough power for          

InFrame to function properly. After authentication has been        
proven to work two more tests will be conducted. First, a           
dummy load, similar to the highest power demand of         
InFrame, will be applied to the battery manger and monitored          
until the battery is drained to the safe minimum. It is           
important to do this test before connecting it to the Jetson to            
ensure that there will not be any unsafe behaviour that could           
damage the Jetson. During this period of time any voltage or           
power drop-off will be noted and software adjustments will be          
made to compensate for this. Once safety has been proven it           
will be possible to connect the battery manager to the rest of            
the system and measure the true battery life. At this point the            
tracking should be run on the system for as long as possible to             
get an accurate representation of what the battery life is. 

 
5.1.4. Motor Control 
Motor testing is twofold, firstly it must be proven that they           
can be controlled by the Jetson and powered through the          
battery manager. After this has been proven it is imperative          
that motor speed is tested. This will require the entire          
mechanical system to be complete to prove that each of the           
components can be moved at the required speed. Once fully          
assembled axes movement will be timed to ensure that they          
can move fast enough. Using the variable switching regulator         
on the Battery Management Circuit will allow for a         
performance comparison at different voltage levels.  
 
5.1.5. Camera 
Testing the camera is as simple as proving that the desired           
resolution can be achieved at the required frame rate. It is           
important to determine if there are any dropped frames or          
similar issues. This can be done by running the camera at the            
desired settings for a period of time and making sure the           
images look as they should. 
 
5.1.6. Bluetooth Commands 
Data transmission of user-inputted commands from the iOS        
interface to the Jetson CSM is critical to the utilization of the            
remote user-interface. To ensure that these commands are        
going through properly, the system’s communication will first        
be tested under ideal conditions with no active threads         
controlling InFrame’s other subsystems by sending a       
Bluetooth message to the Jetson and viewing if its contents          
can be printed on its terminal. Then, to better model expected           
conditions, the transmission and retrieval of a “Stop        
Recording” Bluetooth message on the Jetson-end will be        
tested while the various other subsystems are running on         
concurrent threads. 
 
5.1.7. Image Transmission 
With the size of a typical InFrame image being significantly          
greater than that of a small “Start,” “Stop,” or “Track ID:X”           
command, the transmission of Bluetooth commands will be a         
relatively lighter case compared to that of a full frame. The           
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testing of this functionality will be done simply by serializing          
and delivering an image, a collection of pixel coordinates         
(representing all possible object-detected outline boxes), and       
a collection of ID values associated with each box via          
Bluetooth from the Jetson to a paired iPhone. If the image can            
reliably (over 5 repetitions) be received and displayed on the          
iPhone within a 2 second period, then this test will be           
considered successful. 
 
5.2 Integration Testing 
5.2.1. Lecture Recording 
When the project is completed final testing may be         
performed. To test usability and functionality, someone not        
part of the team will be performing these tests. First this test            
user will setup InFrame in a lecture at the front of the class.             
They will have to go through the initialization process of          
picking a target, the professor, and then starting the recording          
and offloading of the video. 
 
5.2.2. Action Shot: 3m Diver 
To test the athletic event scenario a user will setup InFrame to            
track him/herself as they dive off of a 3m diving board and            
then recover the footage after the dive. To decide how to best            
improve and move forward with InFrame multiple test users         
will be selected so that their feedback may be used. 

 
6. DESIGN TRADE STUDIES 

 
6.1 Main Compute 
The largest bottleneck for InFrame is the image processing         
pipeline. It is imperative that the computer vision be         
performed as quickly as possible to leave enough time for          
motors to update within the 60ms alloted for each cycle of           
tracking. The decision to use a Jetson as opposed to other           
popular single board computers such as the Raspberry Pi         
comes down to how much processing power each board has.          
The NVIDIA Jetson Nano outperforms any RPI board        
substantially in a computer vision application. This is because         
the Jetson has a GPU which the RPI lacks. There are not            
many SBC’s that offer GPU capabilities and the Jetson Nano          
is the only one reasonably within the project budget. 
 
 
6.2 User Interface/System Control 
On the core system manager (CSM) end, one major point of           
discussion was rooted in the language that the Jetson Nano          
would be programmed in. With the heavily concurrent design         
requirements for the CSM, another language considered for        
deployment was Golang, a modern programming language       
designed to support scalable distributed systems. Although       
developing in Golang would facilitate debugging, improve       
code clarity, and overall make the CSM codebase more         
manageable, Golang’s primary shortcoming is its relative lack        
of GPIO and embedded interfacing support when compared to         

Python, for which heavily supported libraries for GPIO        
(interfacing with motors) and CSI (interfacing with camera)        
have already been developed. Furthermore, since the       
computer vision work on the perception manager must        
already be written in Python due to the powerful CV-based          
libraries it supports, consolidating the full software stack to a          
single programming language improves the quality and       
consistency of the overall codebase. 
 
In the process of selecting the medium for the system’s          
remote control interface, several options were first considered        
before deciding upon an iOS framework. First, a webapp was          
evaluated as a potential remote control alternative due to the          
project team members’ past experiences doing such       
development and the opportunities it offers for livestreaming        
footage over WiFi onto an AWS instance. However, with an          
intended use case of outdoor filming and the resulting         
inability to rely on a consistent WiFi connection, the         
possibility of webapp system control was abandoned in favor         
of a hardware device that can communicate with the camera          
system directly without a middleman remote server. With the         
additional need for an easily interfaceable touch screen, the         
options were limited to developing an iOS or an Android user           
interface. In selecting between these two devices, although        
Android development is facilitated with its no-investment       
development cost as opposed to the iOS       
development-subscription system, all InFrame team members      
have iOS devices, wish to use this device post-development,         
and have space within the project budget to afford this          
relatively low subscription cost. 
 
6.3 Wireless Communication 
As the need for a remote user interface arose, selecting a           
wireless communication protocol (WCP) for data transfer       
between the interface and the core system manager became a          
critical portion of the design. Although Bluetooth eventually        
arose as the optimal WCP, this design process additionally         
evaluated communication over a WiFi protocol. This       
alternative would allow for higher image transfer rates at         
roughly 11Mbps, while Bluetooth only offers roughly       
800Kbps. This boost in speed would have been utilized to          
enable WiFi-based live streaming of camera feed and camera         
control. However, this alternative was found to be        
unnecessary as the project team classified livestreaming as an         
additional feature to be beyond the project scope and intended          
MVP. Additionally, the process of setting up the Jetson Nano          
as a WiFi-connectable device would, on the user’s end, staple          
an additional period of setup time that would exceed the 20           
second requirement this project is committing to. For these         
reasons, WiFi-hosting on the Jetson Nano was abandoned in         
favor of a lighter, more low-power Bluetooth communication        
protocol. 
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6.4 Object Detection/Tracking 
While going over the design of the perception pipeline, a          
major point of discussion was on whether InFrame’s tracking         
capabilities should be based on object or face detection.         
Object detection works with high-level features such as shape         
and relative size, while face detection depends on more         
minute details such as colour, structure and shading.        
However, some research suggests that object detection could        
be generalized to distinguish between different faces as well.         
Furthermore, at ranges of up to 15m from the camera, faces           
start to become very similar. As such, it was decided that           
InFrame would use state-of-the-art object detection to       
differentiate between different objects. Rather than      
recognizing a person and assigning an ID to them as you           
would with facial detection (in such a way that you could say            
“track Bob”), InFrame detects everything as an object and         
leaves it up to the user to select what the target is (by using              
bounding boxes rather than IDs). 
 

7. PROJECT MANAGEMENT 
 
7.1 Schedule 
A detailed look at InFrame’s team schedule is included in          
Appendix 4 (section 10.4). 
 
7.2 Team Member Responsibilities 
Diego Martinez is responsible for the design and        
implementation of the computer vision software and its        
integration with the rest of the system. 
Ismael Mercier is responsible for all electronics hardware as         
well as mechanical hardware. 
Ike Kilinc is responsible for the building and maintaining all          
system control, ranging from multithreading Jetson      
submodules to implementing the remote iOS user-interface. 
 
7.3 Budget 
Attached below are all the parts identified as necessary for          
InFrame. The total cost is $406.41 which is well within the           
allocated budget. It is likely that more parts will be necessary           
as further development is made but their cost will be but a            
fraction of the remaining funds. Replicating InFrame in the         
future would cost less since one time expenses such as the           
IOS developer account would not be necessary and because         
many of these parts are bought in multiples and could be used            
to make more than one system effectively amortizing the         
costs at scale.  
 
 
 
 
 
 
 
 

Part Name Cost 

Tilt Servo 
Maxmoral 2pcs MG90S 9g 
Metal Gear Pro Servo $9.99 

Pan Servo 
Metal Gear Micro Servo / 
Continuous Rotation $16.99 

Camera 
Raspberry Pi Camera 
Module V2 - 8MP, 1080p $28.20 

Battery 
Waitley M18 18V 6.0Ah 
Replacement Battery $42.98 

Central Compute Jetson Nano Developer Kit $99 

Battery Adapter 
Milwaukee 49-24-2371 
M18 Power Source $33 

Dev Sub iOS Dev Sub $100 

Slip-ring 18 wire slip-ring $19.26 

3D Printing Material Matte black plastic $26.99 

WiFi/Bluetooth 
Module Intel 8265NGW $30 
Figure 5: Parts List & Overall Budget  
 
7.4 Risk Management 
7.4.1. Hardware Risks 
The biggest risk factor within the hardware is the Battery          
Management Circuit. If for whatever reason it proves to be          
too difficult to spoof the authentication a fall back will be           
necessary. Fortunately, there is an off the shelf product that          
does the authentication with the battery and outputs power,         
Milwaukee 49-24-2371 M18 Power Source​. This part’s       
output will then need to get regulated into the necessary          
voltages for the system. Another potential risk factor is that          
the selected servo motors either wont be strong or fast enough           
to meet the requirements. This could easily be solved by          
purchasing higher power servo motors such as the B13 DLM. 
7.4.2. System Control Risks 
Although the Picamera, the system’s primary image-recording       
device, is advertised as able to record up to 30FPS at 1080p            
and 60FPS at 720p, it may only be able to do so in video              
mode, restricting individual frame access until the end of a          
recording period when the frames are converted into an MP4.          
This limitation would mean that when taking single images         
and passing them through the CSM, a high enough effective          
FPS to support target tracking may not be achieved. For these           
reasons, if taking single images cannot be done fast enough,          
lower resolution images might have to be used instead or a           
faster camera module, such as the 16MP 4K MIPI Arducam          
Module supporting 720p120fps, might have to be purchased.        
Ideally, the latter would be chosen so high quality footage can           
still be recorded. 
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7.4.3. Perception Risks 
The system’s perception pipeline uses the lightest object        
detection model to maximize performance of the most        
computationally intensive task. If this model (SSD       
Mobilenet-V2) for 300x300 size images does not meet the         
accuracy requirements of above 70% on this design’s        
intended use cases, the same model with bigger input images          
will be considered. If that still does not suffice, a heavier           
model such as YOLOv3 will be considered. A final         
contention plan if nothing seems to work well enough on the           
Jetson is to run the perception pipeline on an AWS EC2           
instance. The approximate latency to the nearest AWS server         
is about 20 ms, which is well within the 60 ms upper bound             
for the CV latency that was outlined in the CV requirements           
section. Furthermore, if tracking itself does not work        
accurately due to minor lighting changes or slight occlusions         
having a big effect on performance, rather than using         
OpenCVs implementation of LK tracking, an implementation       
from scratch of a deep learning optimization of LK tracking          
will be used to improve performance. 
 

8. RELATED WORK 
 
The Rhino Arc II is a 4-axis motorized system designed for           
amateur to professional photographers that was recently       
crowdsourced on Kickstarter. Much like InFrame, it too has         
pan and tilt motors, interchangeable batteries and a remote         
control interface. However, the key difference between the        
Arc II and InFrame is that InFrame has object tracking          
capabilities and is itself an end-to-end solution that does not          
require an external camera. 
 
The Arc II does have some very elegant features and modes           
of operation that InFrame could benefit from. These include         
keyframe support and variable speed curves in between        
keyframes, the ability to adjust zoom and focus and a built-in           
interface to control the system alongside the remote interface.         
Because of this, InFrame is designed in a scalable and          
maintainable way so that adding features like these in the          
future is straightforward to achieve. 

 

 
Figure 6: Rhino Arc II 
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10. APPENDIX 
10.1 Appendix 1: System Communication Diagram 
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10.2 Appendix 2: Target Selection Sequence Diagram 
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10.3 Appendix 3: Target Tracking Sequence Diagram 
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10.4 Appendix 4: Team Gantt Chart for Project Management 
 

 


