
1

InFrame: Design Document
18-500 - ECE Capstone

Martinez, Diego | Kilinc, Ahmet | Mercier, Ismael
Electrical & Computer Engineering, Carnegie Mellon University

Abstract–– Robotic-assisted photography is among the
most exciting technological developments in the production
industry since the invention of the camera itself. It provides new
and unique ways to capture dynamic scenes and unlock new
avenues for cinematographic creative potential. Current
photography robots on the market range from tremendously
expensive industrial robotic arms, such as Motorized Precision’s
Kira camera robot, to portable devices that allow for smooth
motion across basic scenes. ​However, most photography robots
have not yet leveraged breakthroughs made in the Computer
Vision space in the last decade. For these reasons, this design
blueprints ​InFrame​, an intelligent, motorized photography
assistant that uses state of the art object detection models and
tracking algorithms to follow user-selected targets across a 3D
space, constantly keeping them ​InFrame​.

Index Terms–– Photography, Computer Vision, Robotics,
Deep Learning, Lucas-Kanade, Tracking, Embedded Systems.

1. INTRODUCTION

AI-empowered robotic systems have become the cornerstone of
technological feats unachieveable by any human, pushing
forward the boundaries of what is considered possible across
countless technology-supported fields. Specifically within the
photography and production industry, countless high-precision
robotic devices are now being utilized to improve
cinematography capabilities, such as Motorized Precision’s Kira
camera robot or the Rhino Arc II. However, few such products
available on the market make adequate usage of the many
research breakthroughs in the Computer Vision field to enhance
system operation while maintaining overall system affordability.
The additional functionality that results from applying these
Computer Vision breakthroughs enables powerful autonomy
practical for even the most advanced users, while hardware
affordability broadens the product’s user population to even the
hobbyist level.

To fill this technological gap in market-available development,
this research group has decided to build the InFrame system and
improve the quality standard for affordable smart-photography
systems everywhere. The system is designed to address two
primary areas of use-cases: semi-autonomous lecture recording
and action shot capturing. Many courses at institutions like
Carnegie Mellon University record 1-3 hour long lectures where
the autonomatable task of following the target professor across a
classroom floor is currently being done by a human idling his or
her time while occasionally making acute camera adjustments.

Action shots, such as a diver jumping from a 3-meter board, are
not even being filmed until the olympic levels, creating a market
gap for all other levels of diving activity for users who want to
film themselves either during competition or period of practice.
For both of these application areas, InFrame is the simple
solution that users have long awaited.

These use-cases can be itemized into goals delineated among
three primary system components. Within the Perception
subsystem, the outlined technology must conduct object
detection, object tracking, and relative success rates when
dealing with occlusions blocking the target from the camera
system’s field of view. Within the Hardware subsystem, a
mechanism must be built that can position a camera’s frame,
record image data, and host a computing device capable of
processing computer vision models. Lastly, to control the full
stack, a concurrent system controller alongside an intuitive
user-oriented interface must be developed. To measure success,
this design must support object detection at 70% accuracy and
tracking that allows for selection and frame-centering of a target
for the outlined use-cases without major occlusions and major
lighting changes. Furthermore, to guarantee that users view the
camera as tracking them in real-time, the design must minimize
latency between their measurable movement inputs and camera
tracking outputs to be within a 60ms upper threshold. The
achievement of these two principal metrics translate to a
successful implementation of the InFrame system’s core
functionality.

The following paper will extensively detail the quantitative and
qualitative system design requirements, the solutions designated
for meeting these requirements, an overview of how the
product’s subsystems interact with one-another, an itemization
of design metrics established for assessing each subsystem’s
successful operation, an overview of previously evaluated and
eliminated design alternatives, and an overview of the project
management process behind the development of the overarching
InFrame system.

2. DESIGN REQUIREMENTS

For InFrame to successfully support the use-cases outlined by
this design, a set of itemized technical goals and quantitative
(wherever possible) requirements must be specified and met in
order to guarantee a successful product. These collections of
goals and requirements are delineated across the product’s

2

principal subsystems: System Control, Perception, and
Hardware.

2.1. System Control Requirements
Streamlined and comprehensive control is integral to the
maintenance of the physical InFrame system’s semi-
independent functionality while providing intuitive interfaces
for users to interact seamlessly with the overarching product
functionality. This project design works to solve this central
goal by building a system that can operate as independently as
possible once it has an objective stored locally, while generating
a human-facing interface for users to intermittently provide
these objectives without constant dependence from the remote
device in between command delivery. Therefore, this report
proposal delineates design goals and requirements between
these two subsystems: a core system manager and a user-facing
interface for inputting system commands.

2.1.1. Core System Manager
The core system manager’s foremost goal is to provide a
framework for managing the product’s various subsystems
simultaneously so as to avoid queuing subsystem tasks, an
outcome of sequential design that would slow down the overall
system. In order to accomplish this goal, the core system
manager has a requirement to be programmed as a collection of
concurrently operating managers, each of which pass
information (e.g. image frames, received user-commands, motor
rotation vectors) among one another. Subsequently, to improve
the effective operating speeds (e.g. effective post-processing
framerate), the core system manager must be centralized to
reduce the latency between data transmission. To support this
goal, the system should be able to transmit a single image frame
from the camera to the Perception subsystem in under 1ms. A
single image frame was selected as it is the largest amount of
data that the system manager would have to send from one
subsystem to another within a short period of time (FPS​-1
seconds); furthermore, a period of 1ms was selected as an upper
bound to represent a qualitative measurement of data
transmission being “near instant.” Lastly, since the product will
be utilized outdoors and thus typically without reliable WiFi
connection, video storage cannot occur on the cloud and must
be operated offline; the core system manager must therefore
support offline video storage with a simple download process.

2.1.2. User-Interface for Command Delivery
Commanding the InFrame system through a user-intuitive
medium is critical to the development of a streamlined user
experience and, as a result, a well-design product. For any
use-case InFrame is designed to deliver, both a screen for
displaying images and an ability to touch select specific
locations on said screen are critical requirements for the reason
that users interacting with the system will need to both view
object-detected targets within the camera’s field of view and
select a specific intended target. With the unnecessary

complexity integral with installing, populating, and polling an
external touch screen, a remote interface surfaces as a clear
requirement. With the added goal of supporting outdoor uses
cases, communication with this remote interface cannot be
conducted through an online server since consistent WiFi
connectivity cannot be relied upon outdoors.

To improve the user experience around setting up the device and
initializing tracking, this design requires a maximum pair time
between the camera system and its remote controller of up to 20
seconds; any amount of time beyond this would be too long to
justify to users. Lastly, when the remote controller requests an
object detected frame (e.g. an image capture with detected
targets indicated / outlined), the frame data should reach and be
displayed on the remote controller within 2 seconds, the upper
bound of how long the system designers were willing to wait
between requesting to select a target and actually being able to
select one.

2.2. Perception Requirements
Perception lies at the core of InFrame’s functionality. In order to
have a fully functioning system, we need an accurate and
efficient computer vision pipeline capable of object detection
and object tracking.

2.2.1. Object Detection
State-of-the-art object detection models such as YOLOv2, SSD
ResNet-18 and SSD Mobilenet-V2 achieve accuracies between
69% and 85%[1]. ​As such, given a certain frame, the system
should be able to detect the objects it was trained to detect with
at least 70% accuracy (the lower bound of state-of-the-art object
detection models).

2.2.2. Object Tracking
Using one of the bounding boxes resulting from object
detection, the system needs to reliably and consistently track the
object enclosed by said bounding box. Popular tracking methods
such as Lucas Kanade tracking assume consistent lighting and
small object displacements in between frames. As such, the
requirement for the system’s tracking capabilities is that in the
absence of occlusions, object-shape-change and major lighting
changes, a target should never be lost. Dealing with these cases
is desirable, and this design will certainly strive to cover them
by considering deep learning optimizations of these tracking
algorithms, but they are outside of the scope of this project.

2.2.3. Use Case Coverage
InFrame is designed with two main use cases in mind, lecture
recordings and action shots. As such, the computer vision
pipeline should be able to support object detection and tracking
in these cases. In order to do so, the system needs to be able to
detect slow walking humans (i.e. lecturers) even as they turn
around to face a blackboard, as well as fast moving entities such
as soccer balls, skateboarders, and climbers. To achieve this, the

3

system should use an object detection model trained on a dataset
which includes these items as part of its classes.

In addition to the requirements outlined above, the time it takes
to go from an input frame to a decision from the perception
pipeline should be kept under 60 ms. This is because popular
consumer electronics ratings agencies such as RTINGS.com
claim that input lags above 50 ms start to become noticeable for
humans. Hence, when a target moves, for the system to be
responsive to that “input” and appear to track in real-time, the
duration of the entire perception stack should be kept only a bit
above 50 ms since that number is meant for gaming and a bit
above that would still appear to be happening in real-time. What
this translates to is that the time it takes to take a frame, track
the movement of an object with respect to the last frame and
execute a motor command should all be kept below 60 ms[2].

2.3. Hardware Requirements
Hardware is the aspect that really makes InFrame come to life.
As such, it is imperative that each aspect of the hardware has a
certain set of requirements that need to be meant to ensure a
meaningful user experience. Furthermore, each aspect of these
requirements must be tied back to the end user-experience so as
to ensure the highest quality product.

2.3.1. Tracking Speed
The pan and tilt motors must support moving fast enough to
track a professor walking from 2.5m away. At average human
walking speeds this is 40° per second. At further distances the
motors will be able to track targets moving faster. The motors
must also be able to track the target anywhere around it for
scenarios such as someone skateboarding. Therefore it is
essential that it has continuous motion on the pan axis and be
able to look above and behind itself within 180°. Meeting these
speed requirements ensures that users will not be limited to how
fast the tracking can be.

2.3.2. Battery Life
InFrame must be able to record continuously for the duration of
a lecture or presentation. Most presentations or meetings will
have at least one intermission in a 3 hour period. Therefore the
target runtime is 3 hours. If users require a longer filming
session the batteries could easily be swapped. It should also be
noted that the battery life for most camera systems is around 3
hours, when photographers need to film for longer periods of
time they swap out the battery on their camera. This
requirement here is to have a user experience analogous to that
of working with a traditional camera system.

2.3.3. Motion
As previously stated, continuous pan and a 180° tilt is necessary
for an appropriate tracking range. The mechanical system must
be able to support this without the potential for damage when
the axes are moved to extreme angles. Therefore there cannot be

collisions between parts and the wires may not get tangled or
twisted while moving. Creating a system that will not destroy
itself over time is a requirement for any product.

2.3.4. Profile
InFrame must be easy to transport in a backpack. Access to the
battery should allow for quick swapping. Like most
photography equipment, it should be tripod mountable. Again, a
requirement for a quality user experience is to feel similar to
standard photography equipment.

3. SYSTEM DESCRIPTION

The aforementioned requirements are the driving factor behind
InFrame’s design. Now, this report will outline the proposed
design to meet these requirements to build a successful product.

3.1. System Control Suite
3.1.1. Core System Manager Design

Figure 1: Software Interaction Diagram for Jetson CSM

The core system manager will need to maintain concurrent
control of the camera products various subsystems, which
include camera control, motor control, perception (object
detection and object tracking), video storage, and
communication with the remote control interface. To minimize
the latency of data transfer between any two subsystems, such
as moving image data from the camera control to the perception
module, this design centralizes this compute on the Jetson
device itself. Given that the Jetson will be host of the system’s
heaviest computing load, the perception operations of object
tracking, this design will attempt to consolidate all other
operations that depend upon the output of this computer vision
work within this device. To improve the overall speed of the
system and allow for computer vision work to occur
simultaneously with the rest of the interconnected system
operations, the core system manager will be programmed using
extensive concurrency features within Python, which will
already be the language of choice for nearly all computer vision

4

work and has more extensive embedded interaction libraries
than other modern concurrency languages.

To start up the main operational sequence, the core system
manager will listen for and retrieve command information from
the communication module, to which the remote controller will
send system commands. When users request images, the system
manager will first ping the camera manager to capture a frame,
then will forward this frame to the perception module where it
can run object detection to outline potential targets, and lastly
forward this information to the communication module for
transmission back to the remote interface for the user to select a
tracking target. This path is on such potential user interaction
story for the system; more such sequences will be outlined in
further detail throughout Section 4.

3.1.2. Remote Control Interface
As was outlined in Section 2.1.2, it is imperative for an intuitive
target selection that InFrame features a remote touch screen
display. Given the ubiquity of smartphone devices, the choice
becomes clear. By pairing the InFrame system over Bluetooth to
a user’s smartphone device, InFrame becomes much more
cost-efficient, user-friendly and easy to use. Furthermore, iOS
was chosen due to iPhones’ competitive advantage in the
photography space and the fact that the InFrame team members
all have iPhones.

The remote control interface is meant so that the user can send
three types of commands: A ​start/stop command to start
recording frames or stop to save the resulting video, a ​detect
objects command so that the system may perform object
detection on the current frame and send both the frame and the
bounding boxes above a certain confidence threshold to the
phone so that the user can select a target and finally, a select
target command to specify which target the system should start
tracking.

3.2. Perception Pipeline
The computer vision pipeline is mainly composed of two
subcomponents: Image pre-processing, object detection, and
object tracking. The image pre-processing component
downsamples an image so that it fits into the object detection
model. The object detection component detects objects in an
image above a certain confidence threshold. The object tracking
component, given a bounding box, tracks the movement of the
object within the bounding box from one frame to another.

3.2.1. Image Pre-Processing
The InFrame system features a Raspberry Pi Camera V2, which
is set to operate at 720p60. This is because the main camera is
used not only for object detection and tracking but also for
actually recording video, so a high quality (for video playback)
and a high frame rate (for slow motion capabilities in
post-processing editing of action shots and small displacements

in between frames for accurate tracking) is desirable. However,
720p (1280x720 pixels) is a much higher resolution that is
needed for image inference, so images are downsampled to fit
the object detection model’s input.

3.2.2. Object Detection

The object detection component of the perception pipeline will
make use of a pre-trained neural network architecture designed
for object detection and OpenCV’s Deep Neural Networks
module to load said network. The model that it will use is SSD
Mobilenet-V2, which is an architecture designed by Google AI
for on-device mobile vision applications. It is a lightweight
model that achieves 39 FPS on object detection tasks when
running on a Jetson Nano using 300x300 images[3]. It also
achieves very similar accuracy benchmarks as other
state-of-the-art object detection algorithms, as shown in figure 2
below. However, it is worth noting that object detection will not
be running in real-time, but only when a user wishes to change a
tracking target (so that bounding boxes can be selected). As
such, heavier networks that achieve greater accuracy such as
YOLOv3 will also be considered. Because most of these models
are trained using the COCO dataset, which includes labels that
cover all of our use cases (people, sports balls, skateboards,
frisbees, etc), it is expected that they would all achieve the same
accuracy on our data that they report being able to achieve on
their original reports.

Figure 2: Accuracy comparison of state-of-the-art object

detection models

3.2.3. Object Tracking
After a bounding box has been selected by the user, the
perception pipeline enters the object tracking stage. Here, the
system determines the optical flow from one frame to another in
order to track the movement of the object within the bounding
box. Optical flow is the pattern of apparent motion of image
objects between two consecutive frames caused by the
movement of an object or a camera. It is a 2D vector field where
each vector is a displacement vector showing the movement of
points from the first frame to the second. By using optical flow,
the system can determine the direction and magnitude of

5

movement of an object from frame to frame and use that to
drive to motors to track the subject. In order to achieve this,
InFrame extracts features from the object within the bounding
box using Shi-Tomasi corner detection (wrapped under the
goodFeaturesToTrack function of OpenCV). Then, it uses these
points to calculate their optical flow using the Lucas-Kanade
tracking method (wrapped under the calcOpticalFlowPyrLK
function of OpenCV). It should be noted that Lucas-Kanade
does not deal well with occlusions and changes of shape. As
such, deep learning optimizations[4] of adaptive object tracking

will also be considered to improve InFrame’s tracking
capabilities.
This design currently assumes that in the time that it takes for
the user to select a target, the subject will not move (so that its
location with respect to the bounding box that the user chooses
based on the given frame does not change). This is of course not
optimal and an attempt to perform multi-target tracking will be
done for this period of time while the user chooses a target (i.e.
track all the boxes with different IDs so that eventually the
system just tracks the chosen box).

3.3. Hardware Design

Figure 3: Hardware Interaction Diagram

3.3.1. Battery Management - Battery Spoof
A low power microcontroller which is able to perform
authentication with the power tool battery and make it think it
is connected to a tool instead of InFrame. This
communication protocol will be observed from the battery
and a power tool and then replicated by the spoofer.

3.3.2. Battery Management - Voltage Regulator
Once authentication is complete more power can be drawn
from the battery. The microcontroller responsible for spoofing
will connect the 5V power regulator to the Jetson over a
MOSFET. At this point the Jetson can turn on the Servo
Motor Driver by sending a I2C command back to the battery
manager enabling it to turn on the switching power regulator
for the servos. The purpose behind this is to allow for greater
flexibility with how the servos are powered and enable easy
testing of what power settings achieve the greatest
performance.

3.3.3. Power Tool Battery
A power tool battery has been selected because it will be
easier and safer to work with than just LithiumPolymer
batteries since it already comes with the protective charge and
discharge circuitry. A Milwaukee Tool 18V 6.0Ah battery
has been selected because it provides sufficient power for the
desired runtime while still remaining economical. Standard
photography equipment uses interchangeable batteries so in
doing the same InFrame shares a similar user experience.

3.3.4. Servo Motor Driver
This PCB will be a simple logic level shifter that will allow
control of the 4.8V-7.2V servo’s with the 3.3V Jetson gpio
pins. An optocoupler is used to isolate and protect the Jetson
from any potential voltage spikes coming from the servo
motors. This board will also have a power passthrough from
the battery manager to the servo motors.

6

3.3.5. Servos
This option was chosen due to the ease of controlling a servo
motor since they require less hardware and simpler control
signals than other motors. In addition to this, servo motors
offer greater torque for their size as a result of their internal
gearing system. For panning motion, the system will use a
continuous rotation metal geared servo motor that will enable
360° rotation. For tilting, the system will use a 180° metal
geared servo which will allow movement without worry about
collisions since it cannot go past the set limit.

3.3.6. Camera
The system will use a 1080P30FPS camera that will be easily
integrated with the Jetson through a CSI MIPI interface that is
built-in. This camera has a high enough FPS where we can
constantly keep the GPU running the tracking algorithm and
also film a quality video. 1080P30FPS is the typical “high
quality video” resolution seen in most online streaming.
Providing the highest quality possible is a key aspect of any
photography equipment.

3.3.7. WiFi and Bluetooth Module
The system will feature an ​Intel 8265NGW Dual Band WiFi
and Bluetooth 4.2 module that will enable wireless
communication for the Jetson. It plugs directly into the
Jetson’s M.2 connector and works with supported software.
This will allow for easy Bluetooth communication between
InFrame and the iOSDevice.

3.3.8. Nvidia Jetson Nano
The Jetson is the most affordable embedded single board
computer that offers high computer vision performance with
its NVIDIA GPU. ​See section 6.1 for more details.

3.4. Mechanical Design

Figure 4: CAD Model of InFrame

3.4.1. Motion
To properly track a target, InFrame must be able to pan and
tilt the camera. This motion will be achieved with servo
motors. A continuous rotation servo motor will allow InFrame
to track targets in full 360° motion. So as to not tangle wires
with continuous rotation there will be a slip-ring connecting
the tilt servo and the camera connections to the rest of the
system. 360° tilt will not be possible because the tilt arm
would collide with the rest of the system so it has been
limited to 180° tilting. To be able to track a person moving at
average walking speeds from 2.5m away(test case for a
lecture) InFrame must be able to move at 40° per second. This
is easily achievable with most servo motors.

3.4.2. Profile
To be able to comfortably transport Inframe in a backpack,
the system should be limited to a maximum of 6”x6”x9”​.
There will also be an easily accessible battery slot to be able
to quickly swap batteries. In addition, inFrame will also
feature a standard tripod screw so that users may mount it to a
tripod like most camera systems.

4. SYSTEM INTERACTION

A detailed diagram of the way that information is passed
across the different components of the system is included in
Appendix 1 (section 10.1). It outlines the different serial
communication protocols used to communicate between the
software component in charge of initializing and managing a
specific hardware component and said hardware component,
as well as the main purpose of each of the different
subcomponents of the entire system. In addition, on the right
side of the diagram, there is a detailed look at the different
commands that can be sent from the iOS device to interface
with the InFrame system.

This diagram gives a very general overview of how different
parts of the system work together to create the fully
functioning InFrame system. In order to illustrate two
common uses of InFrame, this report will now dive into how
the target selection and target tracking scenarios work.

4.1 Sequence Diagram for Tracking Target Selection

A detailed diagram of the target selection sequence is
included in Appendix 2 (section 10.2). Here, a user uses the
iOS device to request the Jetson Nano to perform object
detection. Then, the iOS app draws the resulting bounding
boxes on top of the current frame. Finally, a user can select
one of these bounding boxes and its ID is sent back to the
Jetson to move forward with tracking.

7

4.2 Sequence Diagram for Object Tracking

A detailed diagram of the object tracking sequence is included
in Appendix 3 (section 10.3). Here, after a user has selected a
bounding box and the Jetson Nano received the appropriate
bounding box ID, it can continuously use the camera and
perception managers to keep track of the object within the
bounding box and compute the optical flow from frame to
frame. This optical flow can then be translated by the motor
managers to actionable movement and InFrame can
effectively track a subject in 3D space.

5. METRICS & VALIDATION

5.1 Subsystem Testing
5.1.1. Object Detection
In order to determine if object detection is functioning
properly, a suite of testing scenarios designed around the use
cases that InFrame is meant to support will be created. In each
scenario, according to the system’s requirements, a successful
test would accurately detect at least 70% of the intended
objects. In order to cover a lecture recording, static input
frames with multiple people at distances of 5m, 10m and 15m
from the camera will be fed into the perception pipeline. In
order to cover a broad range of action shots, static input
frames featuring skateboards, various types of sports balls,
frisbees and cars will be used. As long as these objects are not
very close together (since object detection has a threshold for
how close these objects can be), success in this space means
detecting at least 70% of these objects in a frame.

5.1.2. Object Tracking
Object tracking is a critical aspect of InFrame’s functionality
(its raison d’etre, if you will) and as such will be strictly
tested. A test suite featuring fast moving objects will test the
camera’s input FPS so that displacements in between frames
are small enough to be accurately tracked. In addition, these
tests will test that the tracking speeds between frames are fast
enough to keep up with the input FPS and achieve the 60 ms
requirement that was mentioned in section 2.2.3. In addition,
there will be tests where the target object changes a bit in
shape as it moves (i.e. a climber on a rock wall) so that the
tracking algorithm’s generalization capabilities can cover that.
Finally, a set of tests will test the system’s capabilities to deal
with occlusions and/or major lighting changes. It is not
required to deal with these to a great extent, but these tests
will inform the team of the different circumstances in which
InFrame would not work well.

5.1.3. Battery Management Circuit
For the Battery Management Circuit to work properly it must
first be able to authenticate the connection with the battery
and then maintain it for an extended period of time. This
subsystem must also be able to supply enough power for

InFrame to function properly. After authentication has been
proven to work two more tests will be conducted. First, a
dummy load, similar to the highest power demand of
InFrame, will be applied to the battery manger and monitored
until the battery is drained to the safe minimum. It is
important to do this test before connecting it to the Jetson to
ensure that there will not be any unsafe behaviour that could
damage the Jetson. During this period of time any voltage or
power drop-off will be noted and software adjustments will be
made to compensate for this. Once safety has been proven it
will be possible to connect the battery manager to the rest of
the system and measure the true battery life. At this point the
tracking should be run on the system for as long as possible to
get an accurate representation of what the battery life is.

5.1.4. Motor Control
Motor testing is twofold, firstly it must be proven that they
can be controlled by the Jetson and powered through the
battery manager. After this has been proven it is imperative
that motor speed is tested. This will require the entire
mechanical system to be complete to prove that each of the
components can be moved at the required speed. Once fully
assembled axes movement will be timed to ensure that they
can move fast enough. Using the variable switching regulator
on the Battery Management Circuit will allow for a
performance comparison at different voltage levels.

5.1.5. Camera
Testing the camera is as simple as proving that the desired
resolution can be achieved at the required frame rate. It is
important to determine if there are any dropped frames or
similar issues. This can be done by running the camera at the
desired settings for a period of time and making sure the
images look as they should.

5.1.6. Bluetooth Commands
Data transmission of user-inputted commands from the iOS
interface to the Jetson CSM is critical to the utilization of the
remote user-interface. To ensure that these commands are
going through properly, the system’s communication will first
be tested under ideal conditions with no active threads
controlling InFrame’s other subsystems by sending a
Bluetooth message to the Jetson and viewing if its contents
can be printed on its terminal. Then, to better model expected
conditions, the transmission and retrieval of a “Stop
Recording” Bluetooth message on the Jetson-end will be
tested while the various other subsystems are running on
concurrent threads.

5.1.7. Image Transmission
With the size of a typical InFrame image being significantly
greater than that of a small “Start,” “Stop,” or “Track ID:X”
command, the transmission of Bluetooth commands will be a
relatively lighter case compared to that of a full frame. The

8

testing of this functionality will be done simply by serializing
and delivering an image, a collection of pixel coordinates
(representing all possible object-detected outline boxes), and
a collection of ID values associated with each box via
Bluetooth from the Jetson to a paired iPhone. If the image can
reliably (over 5 repetitions) be received and displayed on the
iPhone within a 2 second period, then this test will be
considered successful.

5.2 Integration Testing
5.2.1. Lecture Recording
When the project is completed final testing may be
performed. To test usability and functionality, someone not
part of the team will be performing these tests. First this test
user will setup InFrame in a lecture at the front of the class.
They will have to go through the initialization process of
picking a target, the professor, and then starting the recording
and offloading of the video.

5.2.2. Action Shot: 3m Diver
To test the athletic event scenario a user will setup InFrame to
track him/herself as they dive off of a 3m diving board and
then recover the footage after the dive. To decide how to best
improve and move forward with InFrame multiple test users
will be selected so that their feedback may be used.

6. DESIGN TRADE STUDIES

6.1 Main Compute
The largest bottleneck for InFrame is the image processing
pipeline. It is imperative that the computer vision be
performed as quickly as possible to leave enough time for
motors to update within the 60ms alloted for each cycle of
tracking. The decision to use a Jetson as opposed to other
popular single board computers such as the Raspberry Pi
comes down to how much processing power each board has.
The NVIDIA Jetson Nano outperforms any RPI board
substantially in a computer vision application. This is because
the Jetson has a GPU which the RPI lacks. There are not
many SBC’s that offer GPU capabilities and the Jetson Nano
is the only one reasonably within the project budget.

6.2 User Interface/System Control
On the core system manager (CSM) end, one major point of
discussion was rooted in the language that the Jetson Nano
would be programmed in. With the heavily concurrent design
requirements for the CSM, another language considered for
deployment was Golang, a modern programming language
designed to support scalable distributed systems. Although
developing in Golang would facilitate debugging, improve
code clarity, and overall make the CSM codebase more
manageable, Golang’s primary shortcoming is its relative lack
of GPIO and embedded interfacing support when compared to

Python, for which heavily supported libraries for GPIO
(interfacing with motors) and CSI (interfacing with camera)
have already been developed. Furthermore, since the
computer vision work on the perception manager must
already be written in Python due to the powerful CV-based
libraries it supports, consolidating the full software stack to a
single programming language improves the quality and
consistency of the overall codebase.

In the process of selecting the medium for the system’s
remote control interface, several options were first considered
before deciding upon an iOS framework. First, a webapp was
evaluated as a potential remote control alternative due to the
project team members’ past experiences doing such
development and the opportunities it offers for livestreaming
footage over WiFi onto an AWS instance. However, with an
intended use case of outdoor filming and the resulting
inability to rely on a consistent WiFi connection, the
possibility of webapp system control was abandoned in favor
of a hardware device that can communicate with the camera
system directly without a middleman remote server. With the
additional need for an easily interfaceable touch screen, the
options were limited to developing an iOS or an Android user
interface. In selecting between these two devices, although
Android development is facilitated with its no-investment
development cost as opposed to the iOS
development-subscription system, all InFrame team members
have iOS devices, wish to use this device post-development,
and have space within the project budget to afford this
relatively low subscription cost.

6.3 Wireless Communication
As the need for a remote user interface arose, selecting a
wireless communication protocol (WCP) for data transfer
between the interface and the core system manager became a
critical portion of the design. Although Bluetooth eventually
arose as the optimal WCP, this design process additionally
evaluated communication over a WiFi protocol. This
alternative would allow for higher image transfer rates at
roughly 11Mbps, while Bluetooth only offers roughly
800Kbps. This boost in speed would have been utilized to
enable WiFi-based live streaming of camera feed and camera
control. However, this alternative was found to be
unnecessary as the project team classified livestreaming as an
additional feature to be beyond the project scope and intended
MVP. Additionally, the process of setting up the Jetson Nano
as a WiFi-connectable device would, on the user’s end, staple
an additional period of setup time that would exceed the 20
second requirement this project is committing to. For these
reasons, WiFi-hosting on the Jetson Nano was abandoned in
favor of a lighter, more low-power Bluetooth communication
protocol.

9

6.4 Object Detection/Tracking
While going over the design of the perception pipeline, a
major point of discussion was on whether InFrame’s tracking
capabilities should be based on object or face detection.
Object detection works with high-level features such as shape
and relative size, while face detection depends on more
minute details such as colour, structure and shading.
However, some research suggests that object detection could
be generalized to distinguish between different faces as well.
Furthermore, at ranges of up to 15m from the camera, faces
start to become very similar. As such, it was decided that
InFrame would use state-of-the-art object detection to
differentiate between different objects. Rather than
recognizing a person and assigning an ID to them as you
would with facial detection (in such a way that you could say
“track Bob”), InFrame detects everything as an object and
leaves it up to the user to select what the target is (by using
bounding boxes rather than IDs).

7. PROJECT MANAGEMENT

7.1 Schedule
A detailed look at InFrame’s team schedule is included in
Appendix 4 (section 10.4).

7.2 Team Member Responsibilities
Diego Martinez is responsible for the design and
implementation of the computer vision software and its
integration with the rest of the system.
Ismael Mercier is responsible for all electronics hardware as
well as mechanical hardware.
Ike Kilinc is responsible for the building and maintaining all
system control, ranging from multithreading Jetson
submodules to implementing the remote iOS user-interface.

7.3 Budget
Attached below are all the parts identified as necessary for
InFrame. The total cost is $406.41 which is well within the
allocated budget. It is likely that more parts will be necessary
as further development is made but their cost will be but a
fraction of the remaining funds. Replicating InFrame in the
future would cost less since one time expenses such as the
IOS developer account would not be necessary and because
many of these parts are bought in multiples and could be used
to make more than one system effectively amortizing the
costs at scale.

Part Name Cost

Tilt Servo
Maxmoral 2pcs MG90S 9g
Metal Gear Pro Servo $9.99

Pan Servo
Metal Gear Micro Servo /
Continuous Rotation $16.99

Camera
Raspberry Pi Camera
Module V2 - 8MP, 1080p $28.20

Battery
Waitley M18 18V 6.0Ah
Replacement Battery $42.98

Central Compute Jetson Nano Developer Kit $99

Battery Adapter
Milwaukee 49-24-2371
M18 Power Source $33

Dev Sub iOS Dev Sub $100

Slip-ring 18 wire slip-ring $19.26

3D Printing Material Matte black plastic $26.99

WiFi/Bluetooth
Module Intel 8265NGW $30
Figure 5: Parts List & Overall Budget

7.4 Risk Management
7.4.1. Hardware Risks
The biggest risk factor within the hardware is the Battery
Management Circuit. If for whatever reason it proves to be
too difficult to spoof the authentication a fall back will be
necessary. Fortunately, there is an off the shelf product that
does the authentication with the battery and outputs power,
Milwaukee 49-24-2371 M18 Power Source​. This part’s
output will then need to get regulated into the necessary
voltages for the system. Another potential risk factor is that
the selected servo motors either wont be strong or fast enough
to meet the requirements. This could easily be solved by
purchasing higher power servo motors such as the B13 DLM.
7.4.2. System Control Risks
Although the Picamera, the system’s primary image-recording
device, is advertised as able to record up to 30FPS at 1080p
and 60FPS at 720p, it may only be able to do so in video
mode, restricting individual frame access until the end of a
recording period when the frames are converted into an MP4.
This limitation would mean that when taking single images
and passing them through the CSM, a high enough effective
FPS to support target tracking may not be achieved. For these
reasons, if taking single images cannot be done fast enough,
lower resolution images might have to be used instead or a
faster camera module, such as the 16MP 4K MIPI Arducam
Module supporting 720p120fps, might have to be purchased.
Ideally, the latter would be chosen so high quality footage can
still be recorded.

10

7.4.3. Perception Risks
The system’s perception pipeline uses the lightest object
detection model to maximize performance of the most
computationally intensive task. If this model (SSD
Mobilenet-V2) for 300x300 size images does not meet the
accuracy requirements of above 70% on this design’s
intended use cases, the same model with bigger input images
will be considered. If that still does not suffice, a heavier
model such as YOLOv3 will be considered. A final
contention plan if nothing seems to work well enough on the
Jetson is to run the perception pipeline on an AWS EC2
instance. The approximate latency to the nearest AWS server
is about 20 ms, which is well within the 60 ms upper bound
for the CV latency that was outlined in the CV requirements
section. Furthermore, if tracking itself does not work
accurately due to minor lighting changes or slight occlusions
having a big effect on performance, rather than using
OpenCVs implementation of LK tracking, an implementation
from scratch of a deep learning optimization of LK tracking
will be used to improve performance.

8. RELATED WORK

The Rhino Arc II is a 4-axis motorized system designed for
amateur to professional photographers that was recently
crowdsourced on Kickstarter. Much like InFrame, it too has
pan and tilt motors, interchangeable batteries and a remote
control interface. However, the key difference between the
Arc II and InFrame is that InFrame has object tracking
capabilities and is itself an end-to-end solution that does not
require an external camera.

The Arc II does have some very elegant features and modes
of operation that InFrame could benefit from. These include
keyframe support and variable speed curves in between
keyframes, the ability to adjust zoom and focus and a built-in
interface to control the system alongside the remote interface.
Because of this, InFrame is designed in a scalable and
maintainable way so that adding features like these in the
future is straightforward to achieve.

Figure 6: Rhino Arc II

9. REFERENCES

1. Zhao, Z.-Q., Zheng, P., Xu, S.-T., & Wu, X. (2019).
Object Detection With Deep Learning: A Review.
IEEE Transactions on Neural Networks and
Learning Systems.

2. Demers, C. (2019, February 28). Input Lag of TVs.
Retrieved from
https://www.rtings.com/tv/tests/inputs/input-lag.

3. Jetson Nano: Deep Learning Inference Benchmarks.
(2019, April 25). Retrieved from
https://developer.nvidia.com/embedded/jetson-nano-
dl-inference-benchmarks.

4. Wang, C., Galoogahi, H. K., Lin, C.-H., & Lucey, S.
(2018). Deep-LK for Efficient Adaptive Object
Tracking. 2018 IEEE International Conference on
Robotics and Automation (ICRA).

11

10. APPENDIX
10.1 Appendix 1: System Communication Diagram

12

10.2 Appendix 2: Target Selection Sequence Diagram

13

10.3 Appendix 3: Target Tracking Sequence Diagram

14

10.4 Appendix 4: Team Gantt Chart for Project Management

