

In**Frame**

Ike Kilinc, Diego Martinez, Thor Mercier

Application Area

Lecture Filming

Action Shots

Use Cases Goals Reqs & Sols Interactions Verification

Primary Subsystems & Core Goals within Each

Computer Vision

→ Detection

→ Tracking

→ Handling occlusions where possible

Hardware

→ Camera positioning

→ Frame recording

→ CV hosting compute

System Control

→ Controlling the full stack

- Managing multithreaded operations
- → Bridge user interaction to functionality

Use Cases

Requirements & Solutions: Computer Vision

Goals	Requirements	Solutions	
Object detection	>80% accuracy in frames with our use	Pre-trained models that include our	
Tracking detected object	With no occlusions and no lighting changes, never lose target	Lucas-Kanade tracking with DL optimizations	
Detect slow walking human (e.g. lecturer)	Use an object detection model with people in its classes	MobileNetV2 trained on COCO dataset, which includes 'person' class	
Detect fast moving entity (e.g. skateboarder, soccer ball)	Use a model with these items in its classes	MobileNetV2 trained on COCO dataset, which includes bicycles, cars, frisbees, skateboards and sports balls	
Detect fast falling entity (e.g. diver, falling rock climber)	High FPS camera so that movement between frames minimal	Picam with 1080p60 and 720p180	

Requirements & Solutions: Computer Vision

Deep Learning Inference Performance

Jetson Nano (FP16, batch size 1)

Network Model

≤ 60 ms

Use Cases Goals Reqs & Sols Interactions Verification

Requirements & Solutions: Hardware

Goals	Requirements	Solutions			
Freedom to move / be tracked anywhere in space	Continuous 360(deg) RoM / rotation	Slip Ring / quick turnaround			
Move to track fast horizontal motion	Pan servo move at 36.87 (deg/s) @ full camera load	Continuous rotation servo motor			
Move to track medium speed vertical motion	Tilt servo move at 38.66 (deg/s) @ full camera load	Maxmoral 2pcs MG90S 9g Metal Gear Pro Servo			
Smooth motion horizontally/vertically	Motion jerk has little to no -ve impact on video quality	Big box (boundary), little box (size determined by BB update freq) (user defined)			
Stable camera frame (no jitter/shake)	(T_stable - T_moveEnd) < 30ms (1 frame)	TBD			
Tripod mountable	Base built with standard tripod receiver	Screw receiver with standard 1/4" - 20 thread/inch			
Independent of electrical socket	Battery life would last the length of a trip (e.g. hike)	Removable batteries with 3.5 hr capacity			
Backpack storable	Size < 26.5"h x 17.5"w x 6.5"d	S/I			
Limit system temp at max load	Max Internal Temp < 60 °C	Side ventilation, etc.			
Use Cases Goals Reqs & Sols Interactions Verification					

Requirements & Solutions: Hardware

Verification

Requirements & Solutions: System Control

Goals

Use Cases

Goals	Requirements	Solutions	
Intuitively interface with camera control and its feed	Screen and User Input	iOS interface for control	
Ability to control while mobile	Wireless interface	Bluetooth capabilities of iOS framework	
Video storage without immediate uplink	On-board backup of video content	Store video locally	
Easy to select tracking subject	Polling time for curr frame < 2s	S/I	
Easy to set up device & phone	Bluetooth pair time < 20 seconds	S/I	
Intuitive mode selection	Post pair reach destination time < 2 clicks	S/I	

Reqs & Sols

Interactions

Requirements & Solutions: System Control

CORE

On Boot

Overarching System Interaction Diagram

Parts for Purchase -- Feedback!

Part	Name	Cost	Addit. Specs	Link
Tilt Servo	Maxmoral 2pcs MG90S 9g Metal Gear Pro Servo	\$9.99	2.0KG/cm, 0.11s/60 Degree	Amazon
Pan Servo	Metal Gear Micro Servo / Continuous Rotation	\$16.99	Stall Torque - 1.8 kg / cm (4.8V)	Amazon
Camera	Raspberry Pi Camera Module V2 - 8MP, 1080p	\$28.20	1080P60, 720P180	<u>Amazon</u>
Battery	Waitley M18 18V 6.0Ah Replacement Battery	\$42.98	6.0Ah	Amazon
Central Compute	Jetson Nano Developer Kit	\$99		<u>NVIDIA</u>
Battery Adapter	Milwaukee 49-24-2371 M18 Power Source	~\$33		Amazon
Slip-ring	TBD	TBD		TBD
Use Cases	Goals	Reqs & Sols	Interactions	Verification

Testing & Verification: Full System

Lecture Filming

- → Film Tom Mitchell teaching 10-701 lecture
- → Success: Identifies teacher as potential target
- → Success: Does not lose target throughout 1.5 long lecture (e.g. when standing student occludes frame)
- → Success: Battery lasts 3 hour lecture duration
- → Success: Does not switch targets from teacher to student viewer at arbitrary time

Action Shot: 3m Diver

- → Film CMU divers during practice
- → Success: Can identify diver as potential target
- → Success: Follows target at top of motion (slowest)
- → Success: Follows target at bottom of motion (fastest)
- → Success: Camera stays in place once target is lost as they enter the water

