
18-500 Final Report - May 6, 2020 Page 1 of 22

Project Belka
Authors: John Paul Harriman, Mia Han, Samuel Adams

Electrical and Computer Engineering, Carnegie Mellon University

Abstract—The initial intention behind Project
Belka was to create a system capable of verifying data
integrity on both serial and WiFi data transmission pro-
tocols that would be used on the Cube Rover. However,
because of the current circumstances, Project Belka
has become a study of various error correcting and
detecting algorithms. Various protocols are simulated
using a GUI to evaluate which protocol yields the best
performance while also meeting the requirements and
constraints set by the current design of the Cube Rover.

Index Terms—Bit Erasures, Bit Flips, Carnegie
Mellon University, Computer Architecture, Convolu-
tional Encoding, CubeRover, Data Correction, Data
Error Detection, Data Integrity, Data Manipulation,
Data Packet, Embedded Programming, Field Pro-
grammable Gate Array, Finite State Machine, General
Purpose In-Out, Graphical User Interface, Hamming
Encoding, Inter-Integrated Circuit, Microcontroller,
Moon Radiation, Moon Rover, Protocol, Protocol
Wrapper,Quad Serial Peripheral Interface, Transmis-
sion Control Protocol, Turbo Coding, Universal Asyn-
chronous Receiver-Transmitter, User Datagram Proto-
col, Viterbi, Wifi

1 INTRODUCTION
Project Belka is a collaboration with Carnegie Mellon’s

Cube Rover team to determine error correcting and de-
tecting protocols that best fit Project Belka’s constraints
and achieves the highest recovery rate. Currently, users of
CubeRover have no way of checking the correctness of the
collected data being sent to earth from the rover, besides a
shallow checksum being sent at the tail of packets; the data
may be corrupted by external extremities or harsh moon
conditions. Because the data may get corrupted, creating
and implementing error correcting and detecting protocols
is necessary to ensure the data is transferred successfully
without any corruption.

To solve this issue, we implemented various verification
protocols for UART/I2C, UDP, Wifi and QSPI and tested
each protocol using random data and erroneous data gen-
eration. Each implementation adheres to the requirements
set by the current design of the Project Belka and the hard-
ware requirements determined by the capacity of various
Cube Rover components (TI Hercules, MSP 430, STM32
and FPGA). By exploring various error correcting methods,
we have determined the best fit protocols that CubeRover
should use that meet their requirements and achieve the
highest recovery rate.

2 DESIGN REQUIREMENTS
The specifications for each component we are working

with is listed under Table 1 in Appendix A. These are

our motivational components from the CubeRover team
and serve as our main constraints. The pervasive idea is
that our solution approach be lightweight under conditions
where timing and power need to minimized as much as
possible.

Figure 1: Number of instruction granted by clock frequency
per component

Based on the internal clocks for our components, for
each protocol we now have an upper limit on the number
of instruction we can perform within this second. Luckily,
none of the data sent over serial communication will be a
larger size than the transfer speed of the protocol. The
MSP430 has a significantly small number of instructions
that we are able to execute for error correction/detection.
This has limited the number of approaches that we can
take, this will be explain more in the rationale part of this
document.Cyclone 10 LP FPGA has a maximum of 100
MHz clock speed, and CubeRover will be using SPI and
GPIO to transfer a stream of bits with a minimum length
of 8 bytes; the maximum number of bits is 231 since the
maximum file size that will be transferred is 231 bits. Thus,
given these restrictions, we are limited to the range of val-
ues to set for code rate and constraint length due to the
ranging number of instructions that will vary depending
on the variable values. To stay within these constraints,
our convolutional codes and viterbi algorithm must use no
more than 100,000,000 instructions, which will dictate the
potential combinations of constraint lengths and code rates
to consider due to the need of wanting to stay lightweight
and low-power.

The WiFi design requires that we create a protocol with
100% packet recovery using UDP packets as specified by
CubeRover. The problem with the current UDP solution
is that there is no way to confirm the receipt of packets.
This is the essential requirement that will determine the
success of the protocol. We also only need to be commu-
nicating between two nodes as CubeRover only requires a
WiFi connection between the rover and the lander. An-
other requirement was the transmission of pictures rela-
tively quickly. Since CubeRover is using a MT9P031 cam-
era sensor the resolution is around 5.04 Mega Pixels with 12
bits of Analog Data Conversion (ADC). Doing some com-
putation with the 100% JPEG compression at 12 bits per



18-500 Final Report - May 6, 2020 Page 2 of 22

pixel, each image is around 501KB [3]. Knowing this we
settled on 20Mbps as it is a very reasonable throughput
and will be more than enough for the data transfer that
CubeRover needs for compressed JPEG pictures.

The serial cases of UART and I2C only have to deal
with small data packets, but we wish for these instructions
to be as fast as possible as to not disrupt the flow of data
being sent on either communication call. Since we are only
interacting with at max 1 byte per data frame for both
protocols, we can use a lightweight encoding algorithm and
still maintaining a high recovery rate. We are shooting for
75% correction and 100% recovery for these two protocols
while not breaking the underlying protocol.

SPI and GPIO are mostly either images between the
FPGA and the primary MCU or doing checks on the pri-
mary MCU to make sure that everything is functioning
properly. Because both are transmitting variable amounts
of data (discussed in section 4), the percentage of data re-
covered should be the highest value achievable/the maxi-
mum value. It’s difficult to set a hard value for the per-
centage of data recovered, since higher recovery rates may
be associated with smaller/larger data streams. Addition-
ally, since each of the protocols that are implemented vary
with the number and types of parameters that are set, it’s
difficult to pinpoint an accuracy rate because it’s difficult
to hold all of the protocols to the same standard when they
aren’t inherently the same. Therefore, the goal for the op-
timal protocol is to achieve the highest percentage of data
recovery and correction.

3 ARCHITECTURE OVERVIEW

Figure 2: A diagram of the data structure that controls pro-
tocol changes, stores the results, and updates the changes
in the fraction of packet that is fuzzed. The GUI contains
a TestSuite object, and the test suite calls the functions in
purple/red/yellow to simulate each different protocol.

3.1 Design Modifications

Our overall architecture remained relatively the same,
but had to be fully integrated into a software solution. Our
original architecture looked like the system in figure 3.

Figure 3: A diagram of the initial architecture of our
project during the design phase

There was no problem with the architecture, but we
decided on software due to the unforeseen circumstances.
We moved the simulation of of the TI Hercules, intermedi-
ate micro-controller for fuzzing and verification, and MSP
430 into the GUI and maintained the same commands that
would have been sent between the different hardware com-
ponents.



18-500 Final Report - May 6, 2020 Page 3 of 22

3.2 Current Implementation

Our GUI manipulates a TestSuite object which serves
as the emulation between of the hardware components and
intermediate data manipulation. The pervasive idea was to
keep the same functionality as originally intended, which
behaved in four sequential steps.

First was defining the packet generation for each specific
protocol implementation, e.g. UART would need an 8-bit
randomly generated packet. Then we would pass the gen-
erated packet into our encoding function based off of which
the protocol implemented. The encoded packet would then
go through the ”fuzzing” process which would flip the bits
based off the user-defined fuzzing rate. After we got back
the ”fuzzed” packet, we would then pass it into the decod-
ing function to see if it would be able to return a corrected
data packet that matched our originally generated one. In
this step we would also generate our data visualization. For
UART as an example this visualization would be based on
a grey-coded pixel line based off of the 0-255 values (for 8
bits). If our data was able to correct itself fully, then the
line would display as white, and then the packet and cor-
rected packet would be represented on two more lines. The
percentage of correct corrected packets generated would be
served as a percentage correct that we would pass back to
the GUI to update the graph.

The GUI is later described in section 5.4, but in or-
der to keep everything updating concurrently we needed to
use threading. Our main thread serves as the handler to
interactions that the user inputs. This includes the rate
updates, scheme changes, and starting and stopping sim-
ulation. The other thread serves as the updating thread.
While simulation is occurring, the thread will generate a
percentage based off the TestSuite and update the graph.
The generating thread also emits a signal to update the
picture that’s generated within the TestSuite object to the
main thread. The main thread will catch the signal and
repaint the image with the new image. The pass back and
forth must be done under the constraint of the library as
only the main thread is able to make these updates. Once
the user has decided to stop simulation, the main thread
emits a signal to the data generating signal to end it’s ex-
ecution and return to be joined.

4 PROTOCOL DESCRIPTIONS

4.1 UART and I2C

For UART and I2C we mainly covered 5 different al-
gorithms. However, three of these algorithms were able
to emulated through the use of another algorithm, Reed-
Muller. By tuning parameters for this algorithm, we are
able to successfully emulate others such as Universe, Self-
Dual, and Punctured Hadamard Codes.

A couple of definitions to understand the terminology
better is that we will call the block length n (the encoded
message size), message length k (the size of data we want
to send), and distance d (a measure of how far away the
error can be).

4.1.1 Hamming

The version that we implemented for Hamming Code
was an 8,4 model, meaning that we used regular Ham-
ming(7,4), but added an extra parity bit for extra error
detection of 1 bit. This gives us n = 8, k = 4, d = 3.

The main idea of Hamming codes is that it employs a
generator matrix, a syndrome matrix, and a decoding ma-
trix.

The 4 bits that get passed into the encoding function
are multiplied by the generator matrix to produce an 8
bit encoded packet. When the data is fuzzed and passed
into the decoding function, it first is multiplied by a syn-
drome matrix to see if it can correct the bit. It’s also double
checked with an added parity bit to see if the data has been
corrupted. The syndrome will give a value that points to
the exact error to fix.

4.1.2 Golay

Golay had values of n = 24, k = 12, d = 8.

We were able to accomplish this by generating three
packets at a time and sending it to get a whole number
sent. So the total k value would be 24.

The way that we managed to implement this is by re-
lying on the math behind the code itself. We generated
the matrix that allowed for encoding and decoding and
kept it as a static variable that we could access anytime
we wanted to encode or decode. This helped reduce the
computation time. This is a sizable matrix though and
could be dramatically sped up with custom hardware to do
matrix operations.

4.1.3 Universe

Universe codes have values of n = 8, k = 8, and d = 1

Universe codes are binary linear code that is the set of
all binary n-tuples. This algorithm was achieved by tuning
the Reed-Muller with R,M values = 3,3.

4.1.4 Self-Dual

Self-Dual codes have values of n = 32, k = 16, and d =
8

An encoding algorithm is called self-dual when it is both
a repetition code and an SPC code. This algorithm was
achieved by tuning the Reed-Muller with R,M values =
2,5.

Since the k value for Self-Dual was 16 we needed to
generate two different packets to be able to maintain the
consistency.

4.1.5 Hadamard

Hadamard codes have values of n = 128, k = 8, and d
= 64

Hadamard codes were used to transmit photos of Mars
and the results will later show why it was used. There are
multiple ways to implement Hadamard codes, but we used
the Reed-Muller for this one as well to maintain the con-
sistency. We were able to achieve this by tuning the R,M
values = 1,7



18-500 Final Report - May 6, 2020 Page 4 of 22

4.2 WIFI

In order to perform the error correction and data ver-
ification that we needed on the UDP protocol we imple-
mented 2 different types of TCP protocol using the UDP
interface. The first protocol that we implemented was a
simple TCP protocol that didn’t use windowing. This pro-
tocol was very simple but ensured packet delivery by using
acknowledgement (ACK) packets in order to confirm suc-
cessful delivery of packets to their destination.

The packets were defined using the standard UDP
packet structure FIGURE, source port, destination port,
length and checksum. The rest of the fields were stored
in the “data body” of the UDP packet. The TCP headers
that were included were the sequence number, the acknowl-
edgement number, the window size, and the flags (DATA,
ACK). The FIGURE shows the breakdown of UDP (blue)
and TCP (red) headers.

Figure 4: Packet structure for UDP

As for the protocol, the sender of any packet would
first assemble the data packet by calculating the length
of the data to be sent, assign sequence/acknowledgement
numbers, set packet timeout (time spent waiting for an ac-
knowledgement), assign proper flags and finally calculate
checksum. This part of the protocol is defined as encod-
ing” and it is what is being timed during our performance
calculations. The packet will then be queued and sent to
the destination. Once the packet is sent the sender will
wait for a response from the receiver before sending an-
other packet.

When received at the destination the packet is “de-
coded”. The checksum is checked in order to ensure the
data hasn’t been corrupted and the data from the packet
is extracted. This is called the “decode” stage. Once the
packet is decoded, the receiver will send an acknowledge-
ment (ACK) packet using the sequence number received to
calculate the acknowledgement number of the packet. This
packet also generates a checksum via the standard UDP
protocol. This ACK packet is then queued and sent back
to the original sender.

If the ACK packet reaches the original sender before the
timeout is up the packet will be verified using the checksum
field and will trigger the send of subsequent data. This pro-
tocol is good, it ensures packet delivery but it can only send
one packet at a time as it waits for an acknowledgement for
each packet before sending subsequent packets.

In order to try and improve the performance and test for
alternative solutions we also implemented a TCP pseudo
protocol that uses windowing. This protocol works very
similarly to the first protocol, the only difference is that
instead of sending and verifying one packet at a time, we
send and verify a series of packets at a time. For example,
if the window size was 10 the sender would send 10 packets
in a row to the receiver and then would wait for an ACK to
those 10 packets. The goal with windowing is to increase
throughput by reducing the amount of time spent waiting
for ACK packets.

4.3 QSPI and GPIO

For QSPI and GPIO, four different algorithms were ex-
plored and implemented to determine which one that best
meets the constraints set by CubeRover’s design while also
best achieves the highest percentage of data bits recovered.
By implementing BCH, Convolutional Codes and Viterbi,
Reed Solomon, and Convolutional Codes and Viterbi +
Reed Solomon, a wide variety of types of error correcting
(Cyclic Error Correction, Forward Error Correction and Bi-
nary Convolutional Codes), an algorithm/type of algorithm
was determine to be the best fit algorithm for CubeRover’s
QSPI and GPIO usage.

4.3.1 Convolutional Codes and Viterbi

The stream of bits is inputted into the convolutional
encoder. The convolutional encoder provides knowledge
of the possible data when moving onto the next stage; it
will pass the stream of bits through a series of polynomials
(XOR’s) and shift registers. The polynomials reflect the
convolutional encoder behavior and define the number of
states in the convolutional encoder. The polynomials and
shift registers combined create a state machine for input
data, current state, output bit, and next state; the total
number of states is defined as 2*(k-1), where k = the con-
straint length. Each message sequence is encoded into a
code sequence. The next stage is the Viterbi stage, a graph
that represents the dependencies between the current state
and the next states of the encoder. At each node of the
graph, transitions to the next node are used to show the
change from one set of bits from the current node to an-
other set of bits at the next node, essentially representing
the state diagram. The transitions are determined by the
input bits from the convolutional encoder. During these
transitions, path metrics are calculated using a procedure
called Add-Compare-Select, a calculation repeated at ev-
ery encoder state. At each state, the previous two states
of hamming distances are added to the current hamming
distance at that state to create the new calculation. Once
all the states for that transition are calculated, the cal-
culations are compared, and the smallest calculations are
selected while the rest of the paths are dropped.

To decode, an algorithm called maximum likelihood de-
coding is used. We will be implementing hard decisioning
with viterbi decoding; hard decisioning at nodes only con-
sider the hamming distances and selects the smallest ham-
ming distance at each node. Soft decisioning processes the



18-500 Final Report - May 6, 2020 Page 5 of 22

stream of bits as voltage samples before digitizing them.
Since we aren’t using custom hardware to create the pro-
tocols with and are instead wrapping the protocols around
SPI and GPIO implementations, hard decisioning is best
fit for our design.

Once the state transition graph is completed, the algo-
rithm will back trace through the graph to determine the
nodes which have the smallest saved hamming distance.
Moving through each chosen transition will output a se-
quence of bits. Using the equation r = c xor e, where r is
the received stream of bits, c, the original inputted stream
of bits, can be determined by tracing back through all of
the chosen transitions and matching them to the appropri-
ate outputted bits in the state diagram from the encoding
part. Thus, by retrieving the original sequence of bits and
comparing those bits to the outputted sequence of bits, the
point(s) of error will be determined.

Because we didn’t integrate the algorithms with the
hardware, I used hard-decisioning for the Viterbi decod-
ing. Soft-decisioning uses the voltage samples in addition
to the data to determine the recover the sequence; hard-
decisioning decodes the message only using the bit sequence
and no other infromation from the receiver’s sampling and
demapper [viterbi˙hard˙soft].

4.3.2 Reed Solomon

Reed Solomon is a type of block-based error correct-
ing codes and a type of forward error correcting code, an
error correction technique to detect and correct a limited
number of errors in transmitted data without the need for
re-transmission [rs˙bch˙overview] and are best for identi-
fying bursts of errors in the data. The data is first encoded
using a geneartor polynomial composed of various shift reg-
isters p(x)) ∗ x(n − k)modg(x). To decode the data bits,
the syndromes, error locator polynomial, error polynomial
coefficients[reed˙solomon˙overview].

Figure 5: Reed Solomon Decoding Architecture

4.3.3 BCH

BCH codes (Bose–Chaudhuri–Hocquenghem codes) is a
type of cyclic-error correcting codes (error correction codes)
and optimal for detecting random bits of errors. Error cor-
rection codes add additional bits of redundant information
to the original message in the form of an ECC; the redun-
dancy allows the receiver to detect a limited number of bits
that occur anywhere in the message and corrects the bits
of data without re-transmission. BCH utilizes an encod-
ing polynomial to encode the message and add additional
redundant bits of information. Decoding consists of four

steps: calculating the syndrome, another polynomial, de-
termining the error location polynomial, determining the
errors location polynomial, and the correcting the received
pattern [rs˙bch˙overview].

4.3.4 Reed Solomon + Viterbi

Reed Solomon and Viterbi encoding and decoding fol-
lows the same implementation that is already described in
the previous parts. The data is first encoded using Reed
Solomon encoding; then, the data is encoded again using
Viterbi. Once the data is encoded, the data is decoded
using Viterbi and then decoded using Reed Solomon. By
using both algorithms, bit error bursts (bytes) and random
bit fuzzing can be detected.

5 DESIGN TRADE STUDIES

5.1 I2C and UART

The packet format for I2C and UART are very similar
in structure with both requiring a small amount of bits (8-
10) per ACK/NAK packet received. This is helpful because
we can use the same general approach for both instances.

Figure 6: General Packet Format for I2C and CubeRover’s
Example Packet

Because the data size bit is 1 byte – we will limit our
cases to 255 size of bytes for the data n. In total, we will
have 259 Bytes transferred over I2C max for each data
packet. Checksum will be helpful for error detection, but
not for error correction. Our Cube Rover packet has the
constraints with each I2C reply, MCU includes a fault bit
CubeRover has a limit of 1 sec for a timeout Will at max
try 3 times to initiate the same command. If this process
fails, Safe Mode is enabled, and the fault register is set.
CubeRover limits the total number of retries in any case to
3 tries and after that it will go into safe mode.

Considering what we know, there is already a system
in place in case of failure. Checksum is not a guaranteed
mechanism and can only do error detection at max. It does
not take into consideration that the checksum itself can be
compromised by radiation. We must work within the time-
frame specified to error correct the entire packet sent or ask
for a retry.



18-500 Final Report - May 6, 2020 Page 6 of 22

Figure 7: First Approach to I2C

Figure 8: Second Approach to I2C

The two main approaches have two different metrics
into consideration. With the first approach, we first accept
all packets into a FIFO buffer and run our error correction
on our entire data packet, then sending requests for missed
packets. This helps avoid the extra computation time run-
ning the code on each individual packet, but can potentially
increase the computation time exponentially. We decided
to avoid this approach in the end because we would need to
break the protocol by sending in ACK’s after every packet
received when it should normally be a NAK. To avoid con-
fusion between protocols, we decided to go with approach
2. In approach 2, we are splitting the packet in half for
each packet sent. With this we can employ a simpler algo-
rithm than we could with the approach where we accept all
packets at once. This however, cuts our code rate into 1/2
due to adding the extra integrity bits to the end of each
half packet. This relies on an implementation of Hamming
Encoding, we will explain the code rates for the other four
as well.

Memory usage seemed minor for these implementations
since they were operating on a smaller scale of packet sizes.
At most, the matrices needed for some of the encoding and
decoding algorithms reached a size of around 50Kb total
for the program. This is static and won’t change with dif-
ferent inputs to the encoding function since there is little
dynamically allocated memory.

Our main focus was placed on the timing and perfor-
mance of the algorithms used. Here are the results of our
program with differing fuzzing rates for each protocol.

5.1.1 Performance

Figure 9: Performance on fixed size packages with
5%, 10%, 20%, and50% fuzzing rates



18-500 Final Report - May 6, 2020 Page 7 of 22

From figure 7, we can see how well each is performing
as we scale up the error rate. Hadamard consistently per-
forms the best while the others drop significantly once we
increase the fuzzing rate from 10 to 20%. Even once we had
increased the fuzzing rate to 80+ percent, Hadamard still
was able to correctly fix 50% of the packets being fuzzed.
The performance wouldn’t mean much without the timing,
however.

5.1.2 Timing

We calculated a rough time and cycle approximation
that ran on one core to try to simulate the results of the
algorithms running on the micro-controllers.

Figure 10: Figure 11:



18-500 Final Report - May 6, 2020 Page 8 of 22

Figure 12:

Figure 13:



18-500 Final Report - May 6, 2020 Page 9 of 22

Figure 14:
Figure 15:



18-500 Final Report - May 6, 2020 Page 10 of 22

Figure 16:

When comparing the five different protocols in terms
of total clock cycles (encoding + decoding) and total time
(encoding + decoding). We can see that Hadamard is the
only close to approaching our time constraint, but is still
well below the threshold for sending one packet. You can
see how many clock cycles and time it took for all the
other protocols as a histogram with the frequency being
how many times that value occurred over 1000 trials of
running the encoding and decoding portions. The results
can be filtered out if they are not statistically significant,
i.e. removing outliers, so when there is only 1 value for
timing, then that means the trials almost always were that
value. Some analysis of how these algorithms would fair
with our upper bound of sent packets is below.

Figure 17: Average amount of cycles and time taken to run
the algorithm on 8 bits for each algorithm adjusted based
on per packet basis

A quick analysis of this table show how the times grow
as we scale up our total size. Hadamard vs Hamming is
the most obvious comparison to draw, which is that Ham-
ming only takes 6.7 seconds total to send 256 packets while
Hadamard takes more than 2.5 minutes to do the same.
This can be a significant slowdown if most of the processing
power is being taken to run these encoding and decoding
functions even if they are under the 1 second constraint.

5.1.3 Code Rates

Figure 18: Code rates of each algorithm

These code rates are based on how many of the useful
bits are eventually encoded. For example, Hamming has 8-
bits that it wants to send, but need 16 bits to fully encode
the packet. This means that it has a code rate of 8/16
= 1/2. Hadamard has a very small code rate, but very



18-500 Final Report - May 6, 2020 Page 11 of 22

high accuracy. This is due to the redundancy built into the
algorithm that allows for more faults.

5.2 SPI

SPI communication interface is most significantly used
between the camera FPGA and the flight controller.

Figure 19: A visual of how the SPI packets are built for
data transmission between the Primary Flight MCU and
the camera FPGA.

In the timing diagram, the number of data bits is vari-
ables; once the address bits are transmitted, the receiving
device does not know how many bits will proceed after
the address bits. Additionally, CubeRover did not provide
any data size limits in the draft of their documentation for
the packet; the number of data bits could be of any size.
Moreover, SPI doesn’t use parity bits unlike UART/I2C,
making error detection even more difficult. The implemen-
tations take an average amount of data that is greater than
eight bits; BCH processes 1023 bits and Reed Solomon pro-
cess 256 bits per iteration. Because of the unknown data
size, I wanted to ensure that the protocols can handle large
amounts of data; if they have the capacity to achieve high
percentage of recovered data with large amounts of data,
the protocols should be able to detect and correct errors in
smaller streams of data.

5.2.1 Reed Solomon and BCH

BCH is a type of error correcting codes that is a gen-
eralized form of Hamming encoding; I chose implementing
BCH over other encoding and decoding schemes because of
the control over the precise number of symbol errors cor-
rected by the code and how unlike Hamming encoding and
decoding, it can correct multiple bit errors. Additionally,
because BCH utilizes a simple algebraic method called syn-
drome decoding to decode data sequences, it’s optimal for
lower-power devices like the Cube Rover. The BCH Code
configuration:

n = 1023 (1)

k (dimension) = 983 (2)

After researching current BCH usages and most optimaly
combintations of values for those variables, I decided to

implement BCH with a code length of 1023. I chose to
use 1023 because most implementations of BCH don’t use
code lengths greater than 100; common implementations
like the ones that are used in control channels in cellular
TDMA use code lengths of 48 or 31. Additionally, when
the code length increases, the overhead will increase; for
instance, the overhead increases about 0.4% when the code
length increases from 511 to 1023.

Next, I decided to implement Reed Solomon Encoding
and Decoding. Reed Solomon is a subset of BCH codes;
unlike BCH codes, Reed Solomon is block-based error de-
tecting codes. Block-based error detecting codes are opti-
mal for detecting large error bursts, unlike BCH. Because
the potential effects of moon radiation on the Cube Rover
are unknown, including an algorithm that detects random
bursts of errors diversifies the types of algorithms that I
apply. By diversifying the algorithms, I hoped to see how
each unique algorithm would perform given the randomly
selected indexes that are chosed to be fuzzed. Moreover,
Reed Solomon is widely used algorithm, as it’s still cur-
rently used in storage devices like DVDs, CDs, and hard
drives.

n = 1016 (3)

k (dimension) = 984 (4)

When I was determining the parameters, I wanted to use a
code length that was close to the value of the BCH param-
eters for consistency; if both algorithms used drastically
different parameters, it may lead to incorrect comparisons
due to different overheads and different distances between
errors caused by the different ranges that the errors could
possibly occur in.

5.2.2 Viterbi and Reed Solomon + Viterbi

I chose to research and implement convolutional encod-
ing and Viterbi decoding because it’s a popular and fre-
quently used error correcting protocol for bit streaming;
currently, it still being used in CDMA and GSM digital
cellular, dial-up modems, satellite, deep-space communica-
tions, and 802.11 wireless LANs. Convolutional codes like
Viterbi are also not based on blocks of bits but instead a
stream of bits, more closely aligning with how SPI func-
tions.

r = 1/2 (5)

k (dimension) = 7 (6)

The convolutional code used by the Viterbi algorithm is de-
fined by two parameters: code rate and constraint length.
Code rate (R = k/n) is the ratio between the number of
input bits into the convolutional encoder (k) to the number
of channel symbols outputted by the convolutional encoder
(n), ranging from to . After researching optimal code rates
and factors that affect the code rate, we determined that
the code rate will be decided when the implementation is
completed. Since code rate is not a hard specification and
other components don’t depend on the code rate, various
code rates will be tested to determine which one has the
lowest latency and smallest overhead.



18-500 Final Report - May 6, 2020 Page 12 of 22

Constraint length (K) is the number of input frames
held in the k-bit shift register. Like our approach for de-
termining the code rate that will be used, we will determine
the most optimal constraint length for our implementation
by trying various constraint lengths; the most optimal con-
straint length will yield the lowest latency and smallest
overhead.

After thorough research into determining the most opti-
mal code rates, out of the following code rate and constraint
combinations ((R = , K = 7), (R = , K = 8), (R = , K =
9), (R = , K = 3), (R = , K=9), (R = 5/7, K = 3) and (R
= 13/14, K =4)), a code rate of 1/2 and constraint length
of 7 best fit the constraints of the project while being able
to recover the most fuzzed data. Prior to implementing the
algorithm, after thorough research of frequently used con-
straint lengths and code rates, I found that the Voyager,
an American scientific program that successfully deployed
the first two man-made robots to the moon[nasa˙viterbi],
and (1/2, 7) is the standard for current deep space appli-
cations. Because of new technological developments since
that project, another popular configuration is (1/2, 10).
However, after running both configurations with Viterbi,
(1/2, 7) achieve a much higher percentage of data recov-
ered than (1/2, 10).

Combining both Viterbi and Reed Solomon in my im-
plementation combines the two standout capabilities of
both algorithms: being able to detect error bursts (byte er-
rors), Reed Solomon, and being able to detect individual bit
errors, Viterbi. Despite the significant costs and overhead
of implementing both algorithms on the rover, combining
both could have yielded a significantly higher to almost per-
fect data recovery rate. I use both of the implementations
of the protocols that are already described above; to imple-
ment both, I encoded the data stream using Reed Solomon
and then Viterbi and to decode the data stream, I decoded
using Viterbi first and then Reed Solomon. Encoding the
function using Reed Solomon first would detect the large
chunks of fuzzed data; once the sections of fuzzed data are
identified, Viterbi would be able to identify the remaining
bits that are left. When I reversed the encoding/decoding
order, the percentage of fuzzed data recovered was identical
to the amount of fuzzed data that was recovered only when
I implemented Viterbi, defeating the purpose of using both
algorithms.

5.2.3 Performance

Figure 20: Line graphs that reflect the percentage of
data recovered when each protocol fifty times at different
amounts of the data being fuzzed. The percentage of data
recovered is the fraction of data that is recovered after one
iteration.



18-500 Final Report - May 6, 2020 Page 13 of 22

5.2.4 Timing

Figure 21: BCH Encoding and Decoding Time and Cycles

Figure 22: Reed Solomon Encoding and Decoding Time
and Cycles



18-500 Final Report - May 6, 2020 Page 14 of 22

Figure 23: Reed Solomon Encoding and Decoding Time
and Cycles

5.3 WiFi

For the UDP protocol the goal was to create a pro-
tocol for UDP that ensures packet delivery. Looking at
the existing IP protocols that are out there TCP is one of
those protocols that ensures packet delivery by standard.
The existing TCP stack however is much larger than the
UDP stack that is running on the rover. The goal was to
create a TCP wrapper around the UDP interface in or-
der to create a lightweight protocol that ensures packet
delivery. Within that TCP wrapper we also performed a
trade study to determine the effects of a windowing vs a
non-windowing protocol when dealing with large numbers
of packet drops. As opposed to the other protocols that
we worked with UDP focused mainly on restoring dropped
packets over data fuzzing.

A couple of things to consider when looking at the
design of the UDP protocol. First is the absence of the
standard 3-Way TCP handshake. There were a couple of
reasons we decided to leave this out of the protocol and
the simulator. The first was that we are only doing com-
munication between 2 hosts. In our product application
(CubeRover) the rover only needs to talk to the lander
and vice versa. This would mean that ideally the rover
would have one port dedicated to sending data and one
port dedicated to receiving data, and the same on the lan-
der. This would mean that the lander would already be
expecting data from the rover and vice versa, thus the 3
way handshake wouldn’t be needed to establish a connec-
tion. However with this approach one would need to build
in a defined structure in order to identify what data is being
passed over WIFI. On CubeRover this was not a problem
as they had already defined their message structure for a
standard UDP protocol. However if other users were to use
this design they would have to make those considerations
themselves as processing larger blocks of data could add
some overhead to the design.

Second is the verification accuracy of checksum when it
comes to data fuzzing. When we first began this project
we felt that checksum would be enough to detect the ag-
gressive data fuzzing that we would be conducting on the
protocols. We quickly found out that this was not the case,
although checksum is decently good at checking for 1-2 bit
errors per word it isn’t very good at anything else. This led
to verifying some packets that were not correct at higher
fuzzing rates. Upon exploring other options to mitigate
this we found that cyclic redundancy codes (CRCs) would
be better and just as cheap as doing a checksum [5]. As for
our simulator we stuck with checksum in order to follow the
bounds set for us by CubeRover which was to design a pro-
tocol that worked over UDP, and as a standard UDP uses
checksum. However, if we were to do this project again
more consideration would’ve gone into CRC and similar
verification codes.

5.3.1 Performance

When we first began this project we thought that the
windowing approach would be the best one in order to en-



18-500 Final Report - May 6, 2020 Page 15 of 22

sure validated packed delivery as fast as possible. But after
we ran the simulation it became clear that this was not the
case. Both of the figures below show the number of packets
transmitted with drops vs number of packets transmitted
without drops (max number of packets delivered). I per-
formed the tests this way in order to ensure that the speed
of my simulation was not affected positively or negatively
by gathering this data on my personal computer. In or-
der to gather macro data on the performance of the WIFI
protocols incremented probabilities 0 to 0.5 stepping ev-
ery 0.0001 and for each probability I ran the simulator 100
times in order to generate the data. After the simulation
data was generated I used MatLibPlot [6] in python to plot
the data.

Figure 24: Line graph that reflects the performance of the
windowing implementation

Figure 21 shows the performance statistics for the win-
dowing implementation. As you can see The windowing
performance does a really good job when the packet drop
rate is around 1-2% operating around 20% above the ideal
(no drops) non-windowing implementation. Quickly after
we can see that there is a steep fall off. This is most likely
due to the fact that windowing requires a series of successful
packet deliveries, thus if one packet in the series is dropped,
the entire window will have to be re-transmitted. We also
noticed that the graph was quite choppy when compared
to the non-windowing implementation, we suspect this to
be random outliers where a window can actually be sent.

Figure 25: Line graph that reflects the performance of the
non-windowing implementation

We contrast the windowing implementation with the
statistics gathered from the protocol without windowing.
We can see that even though there indeed is a fall off in per-
formance as you increase the packet drop rate it is nowhere
near as steep of a drop off as the windowing implementa-
tion. Even at aggressively high packet drop rates such as
0.5 we still are transmitting packets at 13.5% of our poten-
tial.

We can conclude that based only on the data displayed
above that the non-windowing implementation performs
way better in low drop rate scenarios (<2%). However,
once the drop rate goes above that threshold it is far bet-
ter to use the non-windowing solution.

5.4 GUI

Figure 26: GUI Implementation Trade-Offs Between Py-
Forms and QTPy



18-500 Final Report - May 6, 2020 Page 16 of 22

5.5 C-Extension Interface

Figure 27: C-Extension Interface Trade-Offs Between Us-
ing C-Types and Using Cython.

6 DESIGN SPECIFICATION
6.1 I2C/UART Implementation Details

Figure 28: A visualization of the breakdown of the imple-
mentation of and relationship between packet generation,
data fuzzing, data recovery and response packet generation
for I2C/UART.

To best simulate and resemble how packets will actually
be passed through the protocols on the CubeRover, we de-
cided to separate the data fuzzing and verification from the
packet generation, data recovery and response packet. The
data is first randomly generated in C; and the locations and
values of the errors are first randomly generated in Python;
the data will then be passed to a function as a data struc-
ture to the encoding functions set by the GUI. The fuzzed
packet goes through the Data Recovery step which is essen-
tially the decoding function and passes it into the Response
packet generation, which would signify either the ACK or
NAK value, meaning that the caller would have to resend
the same packet. When passed back to the Python part of

the code, we check if the protocol met what we defined as
the acceptable response and see if the corrected packet was
actually what we intended to send. Lastly, we recall the
generation function to begin the cycle again.

6.2 QSPI Implementation Details

Figure 29: A visualization of the breakdown of the imple-
mentation of and relationship between packet generation,
data fuzzing, data recovery and response packet generation
for the BCH and Reed Solomon Implementations. The
parts in yellow are implemented in Python, the parts in
blue are implemented in C, and the parts in green are the
inputs.

Based off the library [1] that is used, most of the work
is done in Python; Python is only used to call the func-
tion and pass parameters from the GUI and to determine
how much data was recovered. Five parameters are passed
to the data generation function in C: the number of era-
sures, the location of erasures, the number of errors, the
locations of errors, and the number of initial zeros (only
for Reed Solomon). The number of erasures and errors is
determined by the inputted percentage of fuzzed data; with
this calculation, the unique locations (indexes in the bit ar-
ray) of the errors and erasures are determine. These five
values are then passed to a function in C that initializes
the protocol; the data is randomly generated and then en-
coded using either BCH or Reed Solomon encoding. The
data is then fuzzed; the data is fuzzed inbetween encod-
ing/decoding to simulate how the data may be affected by
channel noise/external conditions. Afterward, the fuzzed
data is passed to the decoding function; once the fuzzed
data is decoded, the original data and the recovered data
are returned back to initial Python function, where the
data is compared to determine how much was accurately
recovered.



18-500 Final Report - May 6, 2020 Page 17 of 22

Figure 30: A visualization of the breakdown of the imple-
mentation of and relationship between packet generation,
data fuzzing, data recovery and response packet generation
for the Viterbi Implementation. The parts in yellow are
implemented in Python, the parts in blue are implemented
in C, and the parts in green are the inputs.

Based off the library [2] that is used, the data is ran-
domly generated in Python; unlike the previous protocol,
the data is fuzzed in Python. The data is fuzzed by select-
ing a certain amount of data (the total length times the
percentage of bits flipped) and then selecting random in-
dexes in the string to randomly change. The fuzzed data
is then passed to the encoder; the encoder will return the
fuzzed data. The fuzzed data is then passed to the decoder
which will decode the message. Afterwards, both the orig-
inal data and the recovered data are compared in Python
to determine the amount of data that was accurately re-
covered.

6.3 UDP/Wifi Implementation

The WIFI simulator acts as an extension of the existing
UDP interface. It works by providing a channel through
which messages can be encoded and decoded as well as
dropped. The simulator was written in C without the help
of any outside libraries.

Figure 31: Block diagram showing how WIFI simulator
works.

The simulator has 7 distinct parts (as shown above).
The first t is the packet generator, we did not end up using
the packet generator that all of the other protocols were
using because they were not exactly the type of packets
that we wanted to produce for the WIFI simulator. This
generator is responsible for producing the data that is to be
transmitted. The next module was the sender, the sender

deals with the protocol on the sending side of the inter-
action, on the receiving side the receiver deals with the
protocols on the receiving side. The inflight list was our
way of simulating packets that are “in the air” (going from
the sender to the receiver). We opted to make this a list
type object in order to make it easier to keep track of the
packets in flight. The packet dropper acts as a middleman
between the sender and the receiver. The packet dropper
handles the dropping of packets by traversing the inflight
list and deleting nodes based on the random probability
given. The logger is the outside wrapper for the whole sim-
ulator. It keeps track of all of the sent, dropped, received
packets and relays that information to the GUI in order for
it to be displayed.

As a side note, the simulator also contains parts that
are not super necessary to its function. Fields like source
port and destination port contained in the packet structure
were not used in our simulation for routing but rather were
put there to make the protocol appear to be a little more
realistic. If we were to have had an opportunity to im-
plement this on the micro controllers like we had planned
these fields would have come into use.

6.4 GUI

Figure 32: The GUI screen for a I2C/UART

Figure 33: The GUI screen for WIFI Protocols



18-500 Final Report - May 6, 2020 Page 18 of 22

Figure 34: The GUI screen for QSPI Protocols

The GUI allows users to configure and simulate var-
ious protocols; users will pick a protocol using the drop
down menu in the right corner and then input the frac-
tion amount of data that will be fuzzed. The GUI will
update with their inputted configuration and will contin-
uously simulate the protocol on the screen by constantly
updating the screen with the results of each iteration.

Real Time Line Graph: The real time line graph
displays a time vs. percentage of data packets corrected
for each protocol. Time is in seconds on the x-axis, and
the percentage of data accurately recovered is on the right
hand axis. For the protocols intended for I2C/UART usage,
the percentage of data recovered is the number of packets
accurately recovered in that second; for example, in that
second, the algorithm ran 10 times and was able to recover
90% (nine out of ten packets). Because the size of the data
is significantly larger for the protocols intended for QSPI
usage, each second, the protocol is ran one time, and the
percentage of data that is recovered is the number of bits
that are recovered for that iteration; for instance, if the
data is fully recovered for that iteration, the percentage of
data recovered is 100%. Otherwise, if the data was not
fully recovered, it will be reflected as a value ¡100%. Every
time a new protocol or change in percentage of data being
fuzzed is simulated, the line graph will reset.

Data Visualization: The data visualization reflects
the generated data, the corrected data, and the difference
of the generate and corrected data.

Real Time Log: The real time log displays the changes
that occur on screen and the time stamp at which they oc-
curred. The time log allows the user to keep track of the
protocols and configurations that they have simulated.

Updates: Updates originally used to show any major
changes within the system including errors. To better uti-
lize this space for data collection, after simulation stops,
the results are piped into the update box that included the
rate of fuzzing and the data points within the graph. This
helped because the program could run its course and then
the user would be able to copy and paste with little hassle.

7 IMPLEMENTATION
The GUI communicates the protocol and the error rate

that the user would like to simulate to the STM 32; the
STM 32 will send back to the GUI whether the protocol
was successful at error detection and correction. To imple-
ment these interactions, microPython best fits our needs
because of the libraries that it offers for the UART ports
that the design requires and its supported by the STM 32
devices. The table in part 4.4 outlines why microPython is
best for our implementation.

The GUI will be implemented in Python, since that is
the easiest language to use with microPython. The stan-
dards for I2C, UART, SPI, GPIO and Wifi transmission
and protocols that wrap around them will be implemented
in C. For the programs on the STM 32, the STM32 Cube Li-
brary with HAL will be used since it provides all the drivers
necessary for sending and receiving data to and from the
I2C, UART, SPI and GPIO ports. For the programs on
the MSP 430’s, DriverLib will be used since it contains
drivers for GPIO, UART and I2C standard implementa-
tions. For the programs on the TI Hercules, HALCOGEN
(Hardware Abstraction Layer Code Generator) will be used
since it provides libraries and drivers to send/receive data
from SPI, I2C, GPIO, and UART communication.

The WiFi Protocol will be written in C using the socket
library. This is very bare bones but will ensure that the
code is very small. A queue will be used to store packets
while waiting for ACKs coming from the destination. The
entire protocol will run under a HTTP interface.

8 VALIDATION

8.1 Verifying Latency Requirements

PAPI: We used the Performance Application Program-
ming Interface (PAPI) which allows the use of low-level
performance counters on hardware to gather statistics for
users. We did this by gathering both the time and cycle
counts and the beginning and end of the encoding and de-
coding functions. Using our CMU ECE cluster computers
to run the software, we had to be wary of the performance
that the cluster machine would provide. By running on
one core only and setting a high priority, we tried our best
to accurately simulate what the micro-controller would do
in isolation. At the very least, we were able to relatively
compare the different algorithms running using the same
standard. We also ran the same function 1000 times for
each protocol to help negate some of the inconsistencies
from run to run.

8.2 Verifying Power Requirements

We originally wanted to test the values of power being
dissipated by each Micro-controller running our function by
using oscilloscopes to find the differences. However, due to
the unforeseen circumstances we were unable to access the
necessary equipment to test such a case and also did not
have the actual components to use their system settings.



18-500 Final Report - May 6, 2020 Page 19 of 22

9 CONCLUSION
9.1 I2C/UART Recommendation

Out of the five algorithms that we tested for our fixed
packet size model, there was a clear winner in terms of per-
formance which was Hadamard. Hadamard survived in the
most extreme conditions of fuzzing, but it always comes at
a cost. We could clearly see the cost scale up in terms of
time and cycle count when reaching the upper bound of our
total packets size. Another drawback of Hadamard was due
to the code rate. With 1/16 code rate this could very easily
bottleneck the wires when sending over the mass amounts
of data. The other algorithms would probably also fair bet-
ter with an added level of redundancy that Hadamard has,
but has not been formally verified.

If we are concerned with pure performance with most
correction, then the recommendation would be for Universe
encoding. If we are concerned with absolute data integrity
and are only considering sending small numbers of packets,
then the clear winner would be Hadamard due to the high
rates that it can endure by nature.

9.2 QSPI Recommendation

After thorough testing and analysis of the four proto-
cols that were implemented, Reed Solomon and BCH tied
for being the best protocols; both protocols are intended
for different kinds of error detection, burst errors and and
random bit fuzzing. Both protocols also best met the con-
straints set forth by the CubeRover design; however, BCH
uses the least amount of clock cycles and time to detect the
errors, therefore I recommend BCH. However, I feel that
this is contingent on how moon radiation affects the data;
if the moon radiation is more likely to cause error bursts
rather than random bit fuzzing, finding the capcity to im-
plement Reed Solomon should be considered. Contrarily,
if the moon radiation is more likely to cause random bit
flipping, BCH should be used.

9.3 WIFI Recommendation

With regard to the WIFI recommendation we can confi-
dently say that a TCP ”wrapper” around a user datagram
protocol (UDP) works in order to verify the arrival of pack-
ets at their destination. With the two protocols we tested
both worked to some degree but the non-windowing ap-
proach was far superior when dealing with large amounts
of packet drops. However if you can confirm that your
packet drop ratio is less than 2% a windowing approach
would yield a higher transfer rate. In terms of making a
recommendation for the CubeRover project the ideal pro-
tocol would depend on what the actual conditions of the
moon are. If the conditions are such that there would be
more than a 2% packet drop rate over WIFI it would be a
much better idea to go with the non-windowing solution,
but if the drop rate is less than 2% and you needed an ex-
tra boost in throughput performance windowing would be
the solution. All of this being said there is still a lot to be
done in order to fully port this onto a micro controller that
would work on devices such as the CubeRover, our claims

come merely from simulation.

10 PROJECT MANAGEMENT
10.1 Schedule

Looking at the Gantt chart (Figure 14), we modified
the original Gantt Chart due to the current circumstances;
unlike the previous Gantt Chart, we spent the second half
of the semester researching, creating and integrating more
protocols. After we initially implemented the original algo-
rithms, we realized that it took about a week to research
the most optimal protocol to implement, create and inte-
grate the protocol, and see if the protocol actually met our
expectations for performance and percentage of data recov-
ered. Like the previous Gantt Chart, we still created time
to integrate each of our different protocol implementations
with the GUI and built in Slack time. Additionally, be-
cause we are no longer using hardware, there is no time
built in for testing, since testing each algorithm became
part of the week long development of the protocol; testing
the protocol with the GUI became part of the integration
of the protocol with the GUI.

10.2 Budget

From 12.1 a lot of the things we had purchased were
not able to be used. We used the Microcontroller for some
initial testing, but trying to integrate a low level project
like this would have been less cost efficient than not using
the parts at all because we would have had to order two
more sets to be fully functional across the team.

10.3 Team Member Responsibilities

The team member responsibilities were defined and
clear; John Paul was responsible for I2C/UART protocols
(protocols that transmitted small packets of data), Mia was
responsible for QSPI protocols (protocols that transmitted
data that was 256¡ bits), and Sam was responsible for all
WIFI protocols. Regarding the GUI, John Paul and Mia
were primarily responsible for creating the GUI and mak-
ing sure that it was easily to integrate with our protocols.
Everyone worked on integrating their own protocols into
the GUI.

10.4 Risk Management

10.4.1 Design

The biggest risk was initially working around the cur-
rent circumstances; because our project was initially more
focused on integrating the protocols with the actual hard-
ware, we were concerned with how to redesign the project to
best achieve our original goal and proposal. Additionally,
because we were using unaccounted time to figure out how
to move forward with virtual classes, we became slightly
behind in our schedule because of the lost time but we
wanted to make sure that we were fully confident in the
new statement of work that we proposed. To mitigate these
risks, we ensured that the new proposed statement of work
was thorough and thoughtfully planned out to ensure that
we wouldn’t have to back track and rethink our new de-



18-500 Final Report - May 6, 2020 Page 20 of 22

sign. We did decide on a minimal project (Hamming algo-
rithm, Viterbi algorthm, UDP algorithm and GUI) should
we be put too far behind our schedule; that’s why, on the
Gantt Chart, we integrated our initial protocols first to
ensure that we had a completed GUI with minimal proto-
cols. Once the GUI was finished and the protocols were
implemented, we continued researching protocols with the
remaining time.

10.4.2 Schedule

Because of the re-design setback, we lost some time on
our schedule to complete our project. By spending time to
re-design our project and to rewrite some parts that were
specific to the previous design, we found ourselves slightly
behind, something that we had not expected. To make up
for lost time, we called each other more frequently to speed
up the integration process and prevent each other from po-
tentially being stuck. Moreover, we arranged the schedule
so that we had a minimum product if we were unable to
complete everything that we had planned.

11 SUMMARY
The WIFI goals were able to be met and meet the

system’s performance goals. Using the conservative non-
windowing protocol we can see that if we were operating at
a 50% packet drop rating we would be able to recover all
the packets at 13.5% of the throughput of a protocol with-
out packet drops. Using the requirements that we outlined
in the beginning of the project with a goal of 20Mbps this
would be achievable on the CubeRover as their WIFI chip
can operate up to 20MBps making our 13.5% throughput
at a 50% packet drop rate 20.8Mbps thus satisfying our
requirement.

The UART and I2C goals were met by being well under
8 million clock cycles for one packet. It seems like a hard
cycle count to reach, but other preliminary encoding algo-
rithms could go well above that for the level of redundancy.
Things we wish we could do for this would be getting ac-
curate timings on the system components. We also really
wish that we could testing on the data transfer speeds be-
cause that could also take up a significant amount of time
for that one second delay, but we would never know without
the hardware.

11.1 Future Work

We do not intend to work on this beyond the semester,
but are planning on handing over our findings to the
CubeRover team so that they can use the knowledge we
went through to hopefully have a successful project.

As a whole it would have been nice if we could have
implemented our solution on hardware. If we were to move
forward that would be the next step in making our project
better. Moreover, if we had more time, we could have ex-
plored other kinds of types of algorithms or variations of
the current algorithms; for instance, BCH could also be im-
plemented with Berlekamp-Massey decoding algorithm or
the Euclidean algorithm.

11.2 Lessons Learned

We would like to acknowledge the difficulties that can
arise when working with a startup for the capstone project.
While it gives a way to get started on a project quickly and
has a good end product, a lot of the things that you wish
were defined aren’t exactly designed. There’s also some
miscommunication that is bound to occur that wouldn’t
happen if it was just your team. We appreciated the op-
portunity, but had to veer slightly away from the original
intention of the project.

Another when working with these coding algorithms is
that there is a very steep learning curve. The recommenda-
tion would be is to have more than preliminary knowledge
before going into such a project. A majority of the semester
was trying to understand the complex topics presented and
not a lot of time or resources to do so.

A large lesson learned when gathering data would be
to backup scripts and data for future use. We used a lot
of python scripting in order to gather and plot data and
some of it was lost amongst all of the other things we were
doing. In the future it would be nice to have a well defined
location to dump all of our data so we could find it if we
needed it.

12 THANK YOU
We wanted to thank Professor Tze Meng Low and

Mobolaji Bankole for the incredible support that they pro-
vided for our project throughout the term as well as Profes-
sor Bill Nace for serving as the Course Director and provid-
ing guidance through the hard times. Thank you as well
to Raewyn Duvall for letting us work on the CubeRover
project.



18-500 Final Report - May 6, 2020 Page 21 of 22

Table 1: Component Metrics

Component Name Master Clock Frequency Protocol Transfer Speeds Flash Memory Size Processor RAM Size
TI Hercules 180 Mhz SPI 11-bit baud clock 1.25 Mb Integrated ARM Cortex R4f 192 Kb

UART 3.125 Mbps
I2C 10 - 400 Kbps

Hercules Wifi Module 33 Mhz UART 1 - 20 Mbps
WIFI 20 Mbps

MSP430 8 Mhz Low Power - 25 Mhz I2C 0 - 400 Kbps 10 Kb MSP430 128 Kb
STM32 168 Mhz SPI 42 Mbps 1 Mb ARM Cortex R4 192 Kb

UART 5.25 - 10.5 Mbps
I2C 100 - 400 Kbps

STM32 Wifi Module 16 Mhz WIFI 20 Mbps ARM Cortex-M3
Cyclone 10 LP FPGA 100MHz SPI 50 Mbps Nios II 270 Kb

Appendix A

Figure 35: Verification Test Timing Diagram

12.1 Budget



18-500 Final Report - May 6, 2020 Page 22 of 22

13 Sources
References
[1] http://the-art-of-ecc.com/

[2] https://github.com/satlab/bbctl

[3] https://www.infoworld.com/article/3250299/what-is-cython-python-at-the-speed-of-c.html

[4] https://docs.python.org/3/library/ctypes.html

[5] Maxino, T., Koopman, P. ”The Effectiveness of Checksums for Embedded Control Networks,” IEEE Trans. on
Dependable and Secure Computing, JanMar 2009, pp. 59-72.

[6] John D. Hunter. Matplotlib: A 2D Graphics Environment, Computing in Science Engineering, 9, 90-95 (2007)

[7] https://ipnpr.jpl.nasa.gov/progressreport/42 − 63/63H.PDF

[8] https://www.cs.cmu.edu/ guyb/realworld/reedsolomon/reedsolomoncodes.html

[9] https://www.cs.cmu.edu/ venkatg/teaching/codingtheory/notes/notes6.pdf

[10] https://www.itu.int/wftp3/av-arch/video-site/h261/H261SpecialistsGroup/Contributions/476.pdf

[11] http://web.mit.edu/6.02/www/f2010/handouts/lectures/L9.pdf

[12] https://ipnpr.jpl.nasa.gov/progressreport/42 − 63/63H.PDF

[13] BCM43362 Datasheet: https://www.cypress.com/file/297991/download

[14] https://bitbucket.org/icl/papi/wiki/Home

[15] https://doc.qt.io/qtforpython/api.html

[16] https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-451-principles-of-digital-communication-ii-spring-2005/video-lectures/chap6.pdf

[17] https://www.sciencedirect.com/topics/engineering/hamming-distance

[18] https://en.wikipedia.org/wiki/Hamming(7,4)

[19] https://www.isiweb.ee.ethz.ch/archive/massey pub/pdf/BI321.pdf

[20] https://cse.buffalo.edu/faculty/atri/courses/coding-theory/lectures/lect4.pdf

[21] https://docs.python.org/3/library/threading.html

Image Size Equation: http://hyperloop.net/content/guides/how big is an image.html

Datasheets:
http://www.ti.com/lit/ug/spnu514c/spnu514c.pdf
https://www.silabs.com/documents/public/data-sheets/WF121-DataSheet.pdf
http://www.ti.com/lit/ds/symlink/msp430f5529.pdf
https://www.st.com/resource/en/datasheet/dm00037051.pdf



18-500 Final Report - May 6, 2020 Page 23 of 22

Figure 36: Gantt Chart


