
18-500 Design Document - March 2, 2020 Page 1 of 10

Project Belka
Authors: John Paul Harriman, Mia Han, Samuel Adams

Electrical and Computer Engineering, Carnegie Mellon University

Abstract—A system capable of verifying data in-
tegrity on both serial and WiFi data transmission pro-
tocols. We want to be able to implement various com-
munication protocols that can ensure complete data
integrity, but we also want to create a system to make
these protocols verifiable. We did this by designing a
system that simulates errors that might happen during
data transmission and we use those errors to verify that
our protocols are working correctly.

Index Terms—Bit Erasures, Bit Flips, Carnegie
Mellon University, Computer Architecture, Convolu-
tional Encoding, CubeRover, Data Correction, Data
Error Detection, Data Integrity, Data Manipulation,
Data Packet, Embedded Programming, Field Pro-
grammable Gate Array, Finite State Machine, General
Purpose In-Out, Graphical User Interface, Hamming
Encoding, Inter-Integrated Circuit, Microcontroller,
Moon Radiation, Moon Rover, Protocol, Protocol
Wrapper,Quad Serial Peripheral Interface, Transmis-
sion Control Protocol, Turbo Coding, Universal Asyn-
chronous Receiver-Transmitter, User Datagram Proto-
col, Viterbi, Wifi

1 INTRODUCTION

Collaborating with Carnegie Mellon’s CubeRover team,
we are verifying the integrity of the data collected by the
CubeRover in the domain of software and hardware. Cur-
rently, users of CubeRover have no way of checking the
correctness of the collected data being sent to earth from
the rover; the data may be corrupted by external extrem-
ities or harsh moon conditions. To solve this issue, we
plan to design a verification protocol that determines how
much data is corrupted; additionally, to test the protocols,
we plan to simulate the effects of moon radiation on the
currently running computers to handle any data loss with
protocols including UART, UDP, Wifi, and QSPI.

We have more specifications listed below, but are gen-
eral metrics are as follows. We must send all serial packets
with error correction/detection within the limit of a time-
out, 1 second. In terms of data recovery, we would like
100% recovery on all packets being sent serially and over
Wifi. This includes both the error correction and detection
portions of the protocols. We are aiming for a code rate
of 5/7, but have a hard minimum of 1/4. For protocols
with defined data packet sizes, we want an error correc-
tion of up to 75%. These are done through convolutional
encoding and hamming encoding schemes.

2 DESIGN REQUIREMENTS

The specifications for each component we are working
with is listed under Table 1 in Appendix A. These are
our motivational components from the CubeRover team
and serve as our main constraints. The pervasive idea is
that our solution approach be lightweight under conditions
where timing and power need to minimized as much as
possible.

Figure 1: Qualitative approach to our requirements

Our main approach is a three step process where we
can increase the level of trust that we have in our system
to the point that it needs no manual intervention to run
the protocols.

2.1 Data Verification

The data verification section is where we are able to
run our error correction coding while testing that these
encoding/decoding schemes are doing as expected. In fig-
ure 2, we will explain this verification method in more de-
tail. The main idea comes in where we are passing back
our corrected data through the same protocol, essentially
creating two different modes of communication/computa-
tion. These modes are for now deemed - Debug mode and
Throughput mode. During debug, we will be sending the
corrected data and verifying on our intermediate micro-
controller. Throughput mode is for the next stage.

2.2 Protocol Verification and Throughput
Test

Now that we are sure that our error correction is work-
ing, we need to affirm that our protocol is sending what
we are expecting. We can now stress test our protocol by



18-500 Design Document - March 2, 2020 Page 2 of 10

continuously send packets through our intermediate micro-
controller and limiting ourselves to the constraint of the
timeout time. During this stage, we are able to verify that
our protocols fit our new standard, while still being able to
maintain the necessary constraints.

2.3 Hands-off

During the final part of our design, we would like to be
able to remove the intermediate micro-controller and have
the design only interact with the Graphical User Interface.
We are calling this approach hands-off because now we will
no longer be able to manipulate the data. This is the end-
goal because this is the deliverable that we will be giving
to CubeRover, and should run without any unnecessary
hardware.

2.4 Hard Requirements

We have some defined hard requirements that we would
like to meet based on our metrics from each hardware com-
ponent. We are limiting ourselves to a 1 second cut-
off to send back an Acknowledged or Not Acknowledged
packet after each serial protocol due to our motivation of
our client.

Figure 2: Number of instruction granted by clock frequency
per component

Based on the internal clocks for our components, for
each protocol we now have an upper limit on the number
of instruction we can perform within this second. Luckily,
none of the data sent over serial communication will be a
larger size than the transfer speed of the protocol. The
MSP430 has a significantly small number of instructions
that we are able to execute for error correction/detection.
This has limited the number of approaches that we can
take, this will be explain more in the rationale part of this
document.Cyclone 10 LP FPGA has a maximum of 100
MHz clock speed, and CubeRover will be using SPI and
GPIO to transfer a stream of bits with a minimum length
of 8 bytes; the maximum number of bits is 23̂1 since the
maximum file size that will be transferred is 23̂1 bits. Thus,
given these restrictions, we are limited to the range of val-
ues to set for code rate and constraint length due to the
ranging number of instructions that will vary depending
on the variable values. To stay within these constraints,
our convolutional codes and viterbi algorithm must use
no more than 100,000 instructions, which will dictate the
potential combinations of constraint lengths and code rates
to consider.

The WiFi design requires that we create a protocol with
100% packet recovery using UDP packets as specified by
CubeRover. The problem with the current UDP solution
is that there is no way to confirm the receipt of packets.
This is the essential requirement that will determine the
success of the protocol. We also only need to be commu-
nicating between two nodes as CubeRover only requires a
WiFi connection between the rover and the lander. An-
other requirement was the transmission of pictures rela-
tively quickly. Since CubeRover is using a MT9P031 cam-
era sensor the resolution is around 5.04 Mega Pixels with 12
bits of Analog Data Conversion (ADC). Doing some com-
putation with the 100% JPEG compression at 12 bits per
pixel, each image is around 501KB [3]. Knowing this we
settled on 20Mbps as it is a very reasonable throughput
and will be more than enough for the data transfer that
CubeRover needs for compressed JPEG pictures.

The serial cases of UART and I2C only have to deal
with small data packets, but we wish for these instructions
to be as fast as possible as to not disrupt the flow of data
being sent on either communication call. Since we are only
interacting with at max 1 byte per data frame for both
protocols, we can use a lightweight encoding algorithm and
still maintaining a high recovery rate. We are shooting for
75% correction and 100% recovery for these two protocols
while not breaking the underlying protocol.

3 ARCHITECTURE OVERVIEW

Figure 3: An example transaction between our main host,
the TI Hercules, the component, MSP 430, the data ma-
nipulator, STM32, and the Graphical User Interface

The GUI will send inputted data to the STM32 via
functions sendProtocolToBeSimulated and sendErrorRate-
ToBeSimulated; since this data is transmitted over UART,
the STM 32 will send the GUI ACK/NAK (ACK3/NAK3
on the diagram) once it receives the configuration from
the GUI. The TI Hercules will send a randomly gener-
ated data packet to the STM 32; The STM32 will then
”fuzz” the data (simulate the moon effects by flipping ran-
dom bits/erasures) and send the modified to do the com-
ponent (in this example, MSP 430) to test the protocol.
The component will then send pack the ”corrected” packet
of data and whether or not it deems it as an ACK/NAK



18-500 Design Document - March 2, 2020 Page 3 of 10

(ACK1/NAK1). The STM 32 will receive the ”corrected”
data packet and send it to the TI to compare it to the origi-
nal packet of data that it generated. The STM32 will com-
pare the ACK/NAK (ACK1/NAK1) to what ACK/NAK
it expected to receive; the results of this comparison will
be sent to the GUI (What the ACK/NAK should be) and
since this information is transmitted over UART, the GUI
will send an ACK/NAK (ACK4/NAK4) back to the STM
32. The TI Hercules will compare the original packet to the
”corrected” data packet to verify if both packets match; it
will send the result of this comparison to the GUI. Since
this data is transmitted to the GUI over UART, the GUI
will send an ACK/NAK (ACK2/NAK2) back to the TI
Hercules.

Figure 4: Overview of the Interactions Between All Devices

We decided to take this decentralized approach over
a more centralized approach because it allows for better
data validation and it allows us to take out the STM while
the protocols still work. With the centralized approach we
weren’t able to obtain the corrected data packets in order
to compare them with the packets that were corrupted.
With this approach we were able to separate the tests into
data validation and throughput testing in order to have a
more complete verification suite. In order to do the data
validation using this architecture we followed the timing
diagram shown in Figure 13 for ”Debug”. During the ”De-
bug” testing we send one packet at a time in order to send
the corrected data after to confirm on the TI that the data
is the same as when it was sent. On the centralized model
we had before this would not have been possible as we had
no device that was able to do that comparison. Once we
are able to complete the debug testing without any errors
we can move on to the ”Throughput” testing also shown
in Figure 13 which is the exact same as the debug tests
except that the fixed packet is no longer sent back, to ver-
ify only the ACKs will be checked. With both the TI and
the MCU/FPGA running the protocol without any spectial
changes this design also allows us to pull out the STM in

order to test the protocols without any fuzzing.

3.1 GUI

Figure 5: Sample GUI screen

GUI Features

Control Center: The control center allows the user to
configure the settings for protocol and error rate that they
want to simulate; the configuration consists of selecting
protocol (I2C, UART, SPI, and GPIO) and setting a nu-
merator and denominator (must be greater than 0) for the
error rate. Once the user submits the configuration, the
GUI will send the configuration (sendProtocolToBeSimu-
lated and sendErrorRateToBeSimulated) to the STM 32.

Real Time Log: The real time log displays and notifies
the user of all data received and sent from the STM 32. The
real time log will confirm that the configuration is sent to
the STM 32, whether or not the “corrected” data packet
matched the original data packet, and whether or not the
ACK/NAK sent by the protocol is correct/expected.

Real Time Line Graph: The real time line graph dis-
plays a time vs. percentage of data packets corrected for
each protocol. The tabs on the top of the display allow the
users to switch between different protocols to view the per-
centage of data recovered per protocol; the real time line
graph shows and verifies the packet recovery accuracy rate
of our protocols.

4 DESIGN TRADE STUDIES

4.1 I2C and UART

The packet format for I2C and UART are very similar
in structure with both requiring a small amount of bits (8)
per ACK/NAK packet received. This is helpful because we
can use the same general approach for both instances.



18-500 Design Document - March 2, 2020 Page 4 of 10

Figure 6: General Packet Format for I2C and CubeRover’s
Example Packet

Because the data size bit is 1 byte – we will limit our
cases to 255 size of bytes for the data n. In total, we will
have 259 Bytes transferred over I2C max for each data
packet. Checksum will be helpful for error detection, but
not for error correction. Our Cube Rover packet has the
constraints with each I2C reply, MCU includes a fault bit
CubeRover has a limit of 1 sec for a timeout Will at max
try 3 times to initiate the same command. If this process
fails, Safe Mode is enabled, and the fault register is set.
CubeRover limits the total number of retries in any case to
3 tries and after that it will go into safe mode.

Consider what we know, there is already a system in
place in case of failure. Checksum is not a guaranteed
mechanism and can only do error detection at max. It
does not take into consideration that the checksum itself
can be compromised by radiation. We must work within
the timeframe specified to error correct the entire packet
sent or ask for a retry.

Figure 7: First Approach to I2C

Figure 8: Second Approach to I2C

The two main approaches have two different metrics
into consideration. With the first approach, we first accept
all packets into a FIFO buffer and run our error correction
on our entire data packet, then sending requests for missed
packets. This helps avoid the extra computation time run-
ning the code on each individual packet, but can potentially
increase the computation time exponentially. We decided
to avoid this approach in the end because we would need to
break the protocol by sending in ACK’s after every packet
received when it should normally be a NAK. To avoid con-
fusion between protocols, we decided to go with approach
2. In approach 2, we are splitting the packet in half for
each packet sent. With this we can employ a simpler algo-
rithm than we could with the approach where we accept all
packets at once. This however, cuts our code rate into 1/2
due to adding the extra integrity bits to the end of each
half packet.

4.2 SPI and GPIO

The implementation will ultimately use convolutional
codes and Viterbi primarily because of the amount of mem-
ory that convolutional codes and Viterbi utilize. Since the
CubeRover has at most 2GB of memory allocated for data
storage, minimizing the amount of data that the algorithm
will utilize is imperative. Turbo codes use four times the
amount of convolutional codes compared to convolutional
codes + viterbi, and Reed-Solomon stores parity symbols
that could take up to the same amount of bits as the chunk
of bits, doubling the amount of memory used. The amount
of memory convolutional codes and Viterbi will take up is
at most the same amount of memory as the input data
in addition to the amount of memory for the input data;
however, it uses the fewest number of processes/instruc-
tions to detect errors in the stream of bits. Turbo codes
will pass the data through four times the number of convo-
lutional codes as convolutional codes + viterbi, and Reed-
Solomon four processes (source encoder, encryption, chan-
nel encoder, and modulator) for each iteration of encod-
ing; contrarily, convolutional codes + viterbi only use two
processes to encode the data. Thus, because it uses one
of the least amount of memory and least amount of pro-
cesses, convolutional codes + viterbi best fit our solution
approach.



18-500 Design Document - March 2, 2020 Page 5 of 10

4.3 WiFi

When designing the WiFi protocol there were a couple
of trade offs that we had to decide on. One option was
to implement the entire TCP protocol over UDP, includ-
ing the 3-way handshake. This turned out not to be the
best option as the handshake could be eliminated as we are
always only talking between 2 nodes. This decreases the
time needed to setup the connection by a lot. This also
decreases the header overhead in each packet as we were
able to make them fairly small.

4.4 GUI

Figure 9: GUI tradeoffs between Pyserial, microPython,
and C

5 SYSTEM DESCRIPTION

5.1 I2C and UART Protocol

Our verification method of our data bits, we will be
using Hamming Encoding.

This is our starting approach to the protocols. With
four added parity bits we should be able to implement a
2-bit error correction method and 3-bit error detection.

The justification for this method is that the algorithm
to run on it on is lightweight and constant in computation
time. This will eventually be replaced by a more complex
algorithm, but for now we can use it as proof of concept
while we do more research.

We can’t use Turbo Encoding or Low-Density Parity
Coding because both of these require a byte count of over
1000 to become efficient computationally, this is the reason
why we must stick to either Hamming Encoding or Reed-
Solomon. The initial problem with Reed-Solomon for our
main approach is that we need to allocate a significant por-
tion of memory to get it running at all. We will later test
to see if this is true.

However, for now we can calculate the code rate for
hamming encoding which should meet our specification.

(Added integrity) r = 4
(Block Length) n = 24 − 1 = 15
(Message Length) k = 15 − 4 − 1 = 10
(Code Rate) R = k/n = 10/15 = 2/3

This puts our code rate at 2/3 which is well about our
means.

5.2 SPI and GPIO Protocol

Figure 10: Overview of Viterbi Algorithm when code rate
= 1/2 and constraint length = 3

Figure 11: Diagram of Convolution Registers when code
rate = 1/2

To verify whether or not streams of bits are altered
or affected by noise during transmission, we plan on im-
plementing convolutional codes and the viterbi algorithm.
The algorithm is comprised of two parts: a convolutional
encoder composed of shift registers with code generator
polynomials and the trellis, part of the viterbi stage.

Convolutional Codes and Viterbi Encoding
The stream of bits is inputted into the convolutional en-
coder. The convolutional encoder provides knowledge of
the possible data when moving onto the next stage; it will



18-500 Design Document - March 2, 2020 Page 6 of 10

pass the stream of bits through a series of polynomials
(XOR’s) and shift registers. The polynomials reflect the
convolutional encoder behavior and define the number of
states in the convolutional encoder. The polynomials and
shift registers combined create a state machine for input
data, current state, output bit, and next state; the total
number of states is defined as 2*(k-1), where k = the con-
straint length. Each message sequence is encoded into a
code sequence. The next stage is the Viterbi stage, a graph
that represents the dependencies between the current state
and the next states of the encoder. At each node of the
graph, transitions to the next node are used to show the
change from one set of bits from the current node to an-
other set of bits at the next node, essentially representing
the state diagram. The transitions are determined by the
input bits from the convolutional encoder. During these
transitions, path metrics are calculated using a procedure
called Add-Compare-Select, a calculation repeated at ev-
ery encoder state. At each state, the previous two states
of hamming distances are added to the current hamming
distance at that state to create the new calculation. Once
all the states for that transition are calculated, the cal-
culations are compared, and the smallest calculations are
selected while the rest of the paths are dropped.

Convolutional Codes and Viterbi Decoding
To decode, an algorithm called maximum likelihood de-
coding is used. We will be implementing hard decisioning
with viterbi decoding; hard decisioning at nodes only con-
sider the hamming distances and selects the smallest ham-
ming distance at each node. Soft decisioning processes the
stream of bits as voltage samples before digitizing them.
Since we aren’t using custom hardware to create the pro-
tocols with and are instead wrapping the protocols around
SPI and GPIO implementations, hard decisioning is best
fit for our design. Once the state transition graph is com-
pleted, the algorithm will back trace through the graph to
determine the nodes which have the smallest saved ham-
ming distance. Moving through each chosen transition will
output a sequence of bits. Using the equation r = c xor
e, where r is the received stream of bits, c, the original
inputted stream of bits, can be determined by tracing back
through all of the chosen transitions and matching them
to the appropriate outputted bits in the state diagram
from the encoding part. Thus, by retrieving the original
sequence of bits and comparing those bits to the outputted
sequence of bits, the point(s) of error will be determined.

Convolutional Code + Viterbi Algorithm Variables
The convolutional code used by the Viterbi algorithm is de-
fined by two parameters: code rate and constraint length.
Code rate (R = k/n) is the ratio between the number of
input bits into the convolutional encoder (k) to the number
of channel symbols outputted by the convolutional encoder
(n), ranging from to . After researching optimal code rates
and factors that affect the code rate, we determined that
the code rate will be decided when the implementation is

completed. Since code rate is not a hard specification and
other components don’t depend on the code rate, various
code rates will be tested to determine which one has the
lowest latency and smallest overhead. Constraint length
(K) is the number of input frames held in the k-bit shift
register. Like our approach for determining the code rate
that will be used, we will determine the most optimal
constraint length for our implementation by trying vari-
ous constraint lengths; the most optimal constraint length
will yield the lowest latency and smallest overhead. After
thorough research into determining the most optimal code
rates, we’ve decided to test the following code rate and
constraint length combinations: (R = , K = 7), (R = ,
K = 8), (R = , K = 9), (R = , K = 3), (R = , K=9),
(R = 5/7, K = 3) and (R = 13/14, K =4). Once n (the
denominator in the code rate, 1/n) exceeds 4, research has
shown that the gain with code rates with values greater
than 4 does not yield much higher gains than the values
from 2-4; thus, any code rate smaller than is not worth
pursuing . Additionally, with these combinations of code
rates and constraint lengths, after calculating the num-
ber of instructions for each combination, we concluded
that each combination is achievable under the maximum
number of instructions from the Cyclone 10 LP FPGA.

5.3 WiFi Protocol

Since UDP does not guarantee packet delivery we
needed to find a way to ensure packet delivery while also
maintaining the UDP structure that CubeRover requires.
The solution for this is to build a pseudo TCP protocol
inside the UDP packet. Essentially this means that we will
be putting the TCP headers that are needed for the pro-
tocol in the body of the UDP packet. This will allow us
to acknowledge receipt of packets using ACK packets. In
order to improve transmission speed we also decided to im-
plement windowing so we can acknowledge multiple packets
at a time increasing our throughput.

Above is the packet structure. In addition to the stan-
dard UDP headers it includes sequence numbers, acknowl-
edgement numbers, Window size and SYN/ACK flags.

In order to keep packets in order each SYN packet will
be assigned an ascending sequence number that will be put
in the ”TCP” header of the packet. This ensures that even
if the packets arrive to the destination out of order they
will be able to be placed back in order. Now to ensure re-
ceipt of the packets on the destination side every n packets



18-500 Design Document - March 2, 2020 Page 7 of 10

(where n = window size), the destination node will send an
ACK packet with an acknowledgement number the same as
the last packet received. This ACK represents a confirmed
receipt of the packets. An example of a window size of 4 is
shown in figure 12.

Figure 12: Example TCP Window

As we can see after the first 4 packets are sent a re-
sponse ACK is sent back to the source to notify it of it’s
receipt. If the ACK is not recieved the entire window will
have to sent again until the ACK is recieved.

6 IMPLEMENTATION

The GUI communicates the protocol and the error rate
that the user would like to simulate to the STM 32; the
STM 32 will send back to the GUI whether the protocol
was successful at error detection and correction. To imple-
ment these interactions, microPython best fits our needs
because of the libraries that it offers for the UART ports
that the design requires and its supported by the STM 32
devices. The table in part 4.4 outlines why microPython is
best for our implementation.

The GUI will be implemented in Python, since that is
the easiest language to use with microPython. The stan-
dards for I2C, UART, SPI, GPIO and Wifi transmission
and protocols that wrap around them will be implemented
in C. For the programs on the STM 32, the STM32 Cube Li-
brary with HAL will be used since it provides all the drivers
necessary for sending and receiving data to and from the
I2C, UART, SPI and GPIO ports. For the programs on
the MSP 430’s, DriverLib will be used since it contains
drivers for GPIO, UART and I2C standard implementa-
tions. For the programs on the TI Hercules, HALCOGEN
(Hardware Abstraction Layer Code Generator) will be used
since it provides libraries and drivers to send/receive data
from SPI, I2C, GPIO, and UART communication.

The WiFi Protocol will be written in C using the socket
library. This is very bare bones but will ensure that the
code is very small. A queue will be used to store packets
while waiting for ACKs coming from the destination. The
entire protocol will run under a HTTP interface.

7 VALIDATION

7.1 Verifying Latency Requirements

TI, MSP 430, and STM 32: The general approach for
determining the latency of these devices is to analyze the
assembly dump of the protocols and using the specifica-
tions of each device, count the number of clock cycles each
instruction uses. The total number of clock cycles times
the core frequency will give the amount of time that it will
take to run the protocol.

STM32: To verify that we are meeting the timing re-
quirements, we plan to also use two other methods:

Oscilloscope via an unused pin: At the beginning
of the task, an unused pin would be set to high. Once the
task is completed, the pin would be set to low right after;
this method is least prone to errors.

Hardware timers: Hal tick/sys tick, TIMx HAL li-
brary provides sys tick handler functions as a base time
reference to measure the latency. Using these timers, we
can count the number of system clock cycles.

7.2 Verifying Power Requirements

The driver libraries that will be used for each compo-
nent offer libraries that can verify the power requirements
of the components.

8 PROJECT MANAGEMENT

8.1 Schedule

Looking at the Gantt chart (Figure 14), we are cur-
rently working on implementing the protocols and stan-
dards. We’ve allocated three and half weeks to implement-
ing the algorithms because first, we wanted to be confi-
dent in the algorithms that we are implementing by thor-
oughly researching them and second, since we’ve never im-
plemented or used these algorithms, we are currently un-
dergoing a learning curve of figuring out these algorithms.

As we described in the beginning of the document, we
will verify that the standards are working. Before we be-
gin putting the components together, the individual com-
ponents must be tested individually to ensure that we can
correctly send data in-between components. Once we verify
that the standards are working and correct, we will verify
that the protocols that are wrapped around the standards
are working correctly. Once we can prove that protocols are
working properly, we will remove the micro-controller and
let the packet generation run by itself and send updates up
to the GUI through the TI micro-controller

8.2 Team Member Responsibilities

We were able to split our work fairly easily. Mia will be
responsible for the GPIO and SPI protocols and with a sec-
ondary responsibility to the GUI. John Paul will be respon-
sible for the I2C and UART protocols as well as working on



18-500 Design Document - March 2, 2020 Page 8 of 10

the verification tests. Sam will focus on the WiFi protocol
as well as the testing routines that will be validating all of
the protocols.

8.3 Risk Management

Our current risks are determining the trade-offs between
custom hardware and running our code on the specific soft-
ware components. In industry, many of these coding algo-
rithms are optimized to be run on custom hardware where
only the necessary critical paths are used. With these mi-
crocontrollers, we might not meet the timing needs because
we have to deal with cases such as software interrupts,
scheduling, etc.

Other risks that we are currently trying to mitigate is
how best to define GPIO. Because there is no defined pro-
tocol - as it is literally general purpose. We need to either
define what it means or try to use CubeRover’s code as our
use-cases and write wrappers around those.



18-500 Design Document - March 2, 2020 Page 9 of 10

Table 1: Component Metrics

Component Name Master Clock Frequency Protocol Transfer Speeds Flash Memory Size Processor RAM Size
TI Hercules 180 Mhz SPI 11-bit baud clock 1.25 Mb Integrated ARM Cortex R4f 192 Kb

UART 3.125 Mbps
I2C 10 - 400 Kbps

Hercules Wifi Module 33 Mhz UART 1 - 20 Mbps
WIFI 20 Mbps

MSP430 8 Mhz Low Power - 25 Mhz I2C 0 - 400 Kbps 10 Kb MSP430 128 Kb
STM32 168 Mhz SPI 42 Mbps 1 Mb ARM Cortex R4 192 Kb

UART 5.25 - 10.5 Mbps
I2C 100 - 400 Kbps

STM32 Wifi Module 16 Mhz WIFI 20 Mbps ARM Cortex-M3
Cyclone 10 LP FPGA 100MHz SPI 50 Mbps Nios II 270 Kb

Appendix A

Figure 13: Verification Test Timing Diagram

8.4 Budget



18-500 Design Document - March 2, 2020 Page 10 of 10

9 Sources

Viterbi + Convolutional Code Sources:
http://web.mit.edu/6.02/www/s2012/handouts/8.pdf
https://www.design-reuse.com/articles/21107/viterbi-algorithm.html
https://ieeexplore-ieee-org.proxy.library.cmu.edu/stamp/stamp.jsp?tp=arnumber=255163
https://www.cs.cmu.edu/ guyb/realworld/reedsolomon/reed solomon codes.html
http://kom.aau.dk/group/05gr943/literature/print/turbo tutorial.pdf
https://www.mathworks.com/help/comm/ref/turboencoder.html
http://www.micromouseonline.com/2016/02/02/systick-configuration-made-easy-on-the-stm32/

Image Size Equation: http://hyperloop.net/content/guides/how big is an image.html

Datasheets:
http://www.ti.com/lit/ug/spnu514c/spnu514c.pdf
https://www.silabs.com/documents/public/data-sheets/WF121-DataSheet.pdf
http://www.ti.com/lit/ds/symlink/msp430f5529.pdf
https://www.st.com/resource/en/datasheet/dm00037051.pdf



18-500 Design Document - March 2, 2020 Page 11 of 10

Figure 14: Gantt Chart


