

Current Cube Rover
A 4.4 pound rover that is sent to the moon to collect and send
data and images back to earth over wifi and is controlled from
earth.

● Currently no way to verify collected data is accurate
○ Data may be corrupted by moon effects like

radiation and light
● Not currently space grade
● Rover talks to Lunar Lander using UART and Wifi.
● Rover components talk to each other using I2C and QSPI.
● Currently there is no error handling for flipped bits and

dropped packets.
● Moon radiation makes it very likely for bits to be flipped

and packets to be dropped.

Use Cases
Solution: Create protocols between components in the
CubeRover architecture (MCU, I2C, QSPI, UART, GPIO) that
detect and correct errors

We will recreate the architecture of the CubeRover and use a
microprocessor to simulate the potential effects of the moon
on the data like bit flips and data packet dropping.

● A GUI will be used to control the microprocessor to test
the accuracy and efficiency of our protocols

● ECE Areas: Software and hardware

Requirements of Projects

Power Consumption/Capacity

Battery Capacity 60 Wh

Power Consumption without
Solar

1.02 W

Power Consumption with
Solar

.64 W

Effective Battery Capacity 150 Wh

Energy/Instruction TBD

Packet Recovery 100%

Code Rate 70%

Bit Recovery 100%

Max Handshake Instructions 4 Calls

Error Correction/Detection

Space Specifications

Upstream Ground-to-Rover 2038 Bytes/Payload

Downstream Rover-to-Ground 2^16 Bytes/Payload

Time from Earth-Moon ~2.6 seconds

Maximizing Efficiency for Error Correction:

● Each protocol needs different error corrections
due to specification of each.

● UART and I2C - Defined and restricted number
of bits

● SPI and UDP - Undefined number of
bits/packets

Key Technical Challenges

Accurate Simulation

● How can we accurately simulate the
radiation effect on the hardware.

Drivers

● Each driver can be unwieldy and we are
working with multiple components

● Have to create wrapper for each driver
such that we can implement our
correction on top of the established
software

● Drivers should have C implementations,
but may only contain binariesTiming:

● Accurate timing is not only dependent on our
code (interrupts, scheduling, etc)

● Want code to have minimal impact (<1%) on
existing code timing.

Overall Architecture

TI Hercules RM46
MCU

TI MSP430 MCU

BlueGiga WF121

TI MSP430 MCU

Cyclone 10 LP FPGA

Lander Interface

Wifi
driver

BLDC Control
Driver

FPGA
Control

I2C

I2C SPI

SPI

GPIO

GPIO

UART

UART

UART UART

GPIO

GPIO

- Passed through microcontroller

UDP

Microcontroller Architecture
Microcontroller Discovery Board - STM32F4DISCOVERY

Design Rationale:
● Contains all necessary peripherals

○ 3 I2C (2 needed), 2 UART (2 needed), 2 SPI
(2 needed).

● Easy to use programming interface
● Easily expandable/easily moddable
● Software interface similar to Arduino
● Controlled using Arduino IDE

Microcontroller Discovery Board

Discover WiFi Add-on board for STM32F4

Design Rationale:
● Can easily set-up UDP protocol
● Supported module for Discovery board
● Will use last I2C connection

WiFi Add-on board

Design - Error Correction/Detection

Start 7 or 10 bits R/W ACK 8 Bits ACK STOP8 Bits

Example UDP Protocol

Example I2C Protocol

Example SPI Protocol

Start 5 or 9 bits Parity STOP

Example UART Protocol

Correction Code Possibilities:

Cyclic Redundancy Check
● Pros - Simple to implement, highly

accurate
● Cons - Does not contain error

correction
Reed-Solomon:

● Pros - Error Correction and Detection,
Easily scalable

● Cons - Codec needs extra memory,
expensive due to matrix computation

*Low-Density Parity Check:
● Pros - Scalable, Parity bits are

accounted for
● Cons - High drop in code rate

GUI Implementation

- Implemented in Python using PythonUSB and microUSB
libraries

Design - Verification

ClientHost SMT32
MicrocontrollerProtocol Protocol

Control Commands

Status Signals

Testing, Verification and Metrics

● Latency:

● Verification and Accuracy: GUI
○ Configure the number of bits flipped or packets

dropped in GUI
○ Errors detected and corrected will be sent back

to the GUI
○ Testbenches will run several tests to determine

percentage of accuracy
○ Goal: 100% accuracy data detecting and

correcting

● Power Verification
○ Use spec of each component

to calculate the amount of
power used per instruction

○ Verify power consumption by
using a multimeter

Division of Labor

Mia
Leads GUI design,
implementation, and
integration

John Paul
Leads designing
protocol for error
detection and
correction for serial
data transmission

Sam
Leads designing
protocol for error
detection and
correction for UDP and
network data
transmission

 All
● Software implementation of error checking (C/C++)
● Creating GUI (Python)
● Programming MCU to simulate moon effects
● Creating and putting together components to recreate CubeRover’s architecture

Gantt Chart

