
18-500 Final Report - May 6, 2020 Page 1 of 11

AutoCart
Carlos Gonzalez, Zehong Lin, Zeyi Huang: Electrical and Computer Engineering, Carnegie Mellon University

Abstract— In this paper we propose AutoCart: a
mobile robot based basket system that guides shoppers
through a grocery store by leading them through the
location of each item on their shopping list while also
carrying all of the shoppers items in its basket. Auto-
Cart results in a higher rate of customer throughput
which increases revenue for the store while also increas-
ing customer satisfaction by eliminating the hassle of
carrying a basket or pushing a cart.

Index Terms—Autonomous, iRobot, Line Follow-
ing, Mobile, Path Planning, Rangefinder, Robot, Web

1 INTRODUCTION

There are 3 common problems that grocery stores face.
First, shopping carts and baskets are heavy and inconve-
nient when more than a few items need to be carried which
results in poor customer satisfaction. Next, grocery stores
are full of people who all would like to purchase similar
items and so aisles containing popular products have a slow
rate of traffic through them which slows customer traffic
and thus causes a bottleneck for increasing a store’s rev-
enue per hour. Lastly, grocery stores often rearrange items
which leads to items changing location in the store.

In order to solve these problems, we propose AutoCart.
AutoCart is a mobile robot basket platform that guides
customers through the grocery store by leading them to
efficiently retrieve every item on their shopping list. Auto-
Cart eliminates the need for customers to carry a basket,
while simultaneously increasing the flow of traffic through
a store which leads to an increase in customer satisfaction
and an increase in revenue per minute for a grocery store.
Autocart is able to guarantee that it takes the optimal path
through the store while also guiding the customer at a walk-
ing speed of 5 Km/Hr. Furthermore, Autocart is able to
stop within +-0.25m of any object in the store, carry loads
of up to 25Kg, and sense items and continue guiding cus-
tomers through the store with a lag time of less than 2
seconds.

2 DESIGN REQUIREMENTS

We have chosen six design requirements and a test to
verify each metric. If all 6 tests are passed then we can be
sure that AutoCart is a success.

The first requirement is that AutoCart must be able to
maintain a minimum traveling speed of 5 kilometers per
hour. This metric was chosen because 5 kilometers per
hour is the average human walking speed and so will make
a perfect cruising speed for someone following AutoCart

through the store. This metric will be tested by measur-
ing the average speed of AutoCart when traveling between
the 10 most common items. To be more specific, we will
pick one of the ten most popular items as the starting lo-
cation. Then we will measure AutoCart’s average speed to
each of the 9 other items. If the average speed is greater
than 5 Km/hour then the first part of this test is consid-
ered passed. Next we will change the starting location to
another one of the 10 most popular items and repeat the
process. This process will continue until we have measured
the average speed using all 10 items as the starting point. If
all averages are greater than 5 Km/hr, this test was passed.

The second requirement is that AutoCart must stop
within +-0.25m of all requested items. This metric was
chosen because if AutoCart is to stop any farther than this
from the desired item it would lead to the shopper having
to inconveniently walk over to the item and then walk an
uncomfortable distance back to AutoCart while carrying
the potentially heavy item which would lead to a decrease
in customer satisfaction. This metric will be tested by plac-
ing AutoCart at a random location in the store and having
it navigate to the 10 most common items in the store. The
test will be passed if AutoCart always stops within +-0.25m
of each of the 10 items.

The third requirement is that AutoCart must always
go to the correct location of the desired item. This metric
was chosen because if AutoCart is ever to go to the in-
correct location, then we are not increasing efficiency and
thus revenue per hour for the store will decrease. We will
be testing this metric by placing AutoCart in a random
location in the store. Next, we will then ask it to go to the
location of a random item. We will repeat this process 10
times and the test will be passed if and only if AutoCart
travels to the correct location of all 10 items.

The fourth requirement is that AutoCart always takes
the optimal path to pick up the customer’s desired items.
This metric was chosen due to the fact that grocery stores’s
key interest in AutoCart will stem from the increased rate
of customers through the store which leads to a higher rev-
enue for the store. This metric will be tested by placing
AutoCart in a random location. Then, one by one, we will
input an item for AutoCart to drive to. Once AutoCart
reaches its destination, we will manually verify that the
route it took to get there was optimal. We will repeat this
process for 10 items and the test will be passed if and only
if AutoCart takes the optimal route for all 10 items.

The fifth requirement is that AutoCart must sense an
item placed into its basket in 90% of cases. 90% was cho-
sen because we want to balance the inevitable inconsisten-
cies that will occur from sensing an object with making a
platform that is robust enough that it will not cause an
inconvenience to shoppers. Furthermore, 90% was chosen



18-500 Final Report - May 6, 2020 Page 2 of 11

Figure 3.1: hardware block diagram

because we will be including a button on the GUI that the
user interfaces with in real time so that if an item is not
detected, the user can tap on the button and AutoCart will
proceed to the next time. In this way, the 10% of cases in
which an item is not detected will not cause a great incon-
venience to the customer. We plan on testing this metric
by placing 20 items of weights ranging from 0.5kg to 10kg
and noting whether the item was detected. If 18 out of the
20 items are detected, this test was passed.

The sixth requirement is that in 90% of cases that Au-
toCart senses an object, it must begin to travel to the next
object in less than two seconds. Two seconds was chosen
because it offers enough time for the customer to place an
item and be ready to head to the next one without tak-
ing so long as to inconvenience them. In a similar manner
to our fifth requirement, we will be testing this by placing
items one at a time into AutoCart’s basket. If the item is
detected, AutoCart will have 2 seconds to begin going to
the next object. In this test, if an item is not detected,
we simply discard the item and the sample. Since we are
measuring the response time after detection, we will only
consider a sample to be valid if it is detected and thus will
count the sample as a success, once detected, AutoCart
moves to the next item within 2 seconds. We will run this
process for 20 detected items and the test is considered
passed if and only if AutoCart moves to the next item in
18 out of the 20 samples.

3 ARCHITECTURE OVERVIEW

The hardware architecture of our system is described in
the Figure 3.1. The RPi receives signals from other hard-
ware parts and do computations that will be elaborated in
the software section. Then, RPi sends signals to the iRobot
Roomba Create 2, connected through USB, in order to con-

trol the robot’s motor as well as direction. A line-following
sensor is attached at the bottom of the Roomba, and con-
nected to the RPi through I2C. Working with the lines
that we place on the map of the market, the line-following
sensor will help the robot to keep itself at the center of
aisles and to locate itself on the map. As a result, the
robot can accurately travel to items on the user’s list. To
allow the robot to start moving automatically after items
at the current position is put on it, load sensor is installed
onto our system; the read of the load sensor helps the pro-
gram running on RPi to decide whether an item has been
placed. An amplifier is needed for the load sensor because
of its weak signal, and they will be hooked up through I2C.
The amplifier will also be connected to the RPi with I2C.
To prevent the robot from crashing into customers in the
store, we decide to use an ultrasonic rangefinder to detect
obstacles on the path and the rangefinder is connected
to the RPi through I2C. Lastly, a touchscreen display is
needed to allow the interaction between the user interface
and the user. It is first connected to a video processing
board through DPI and the board is connected to the RPi
using USB.

Figure 3.2: software block diagram



18-500 Final Report - May 6, 2020 Page 3 of 11

The software of the system (Figure 3.2) will be on the
RPi and is in charge of interacting with users, calculating
optimal path, processing the signals from other hardware
components, and controlling the Roomba. It asks the user
for list of items as input and stores an optimal path would
be calculated with DP. DP is used here for path planning,
because it can makes it easier to plan an alternative path if
an obstacle stays on the current path for a long time. Infor-
mation about the optimal path is then displayed to the user
through the user interface. In the process of following the
path, the program would use signals from the line-following
sensor and the map inputted beforehand to determine the
robot’s location on the map, and send signals of motor and
direction control to the Roomba, using Python interface
PyCreate2. The signals from the rangefinder can be used
to prevent crash, and determine if re-planning is necessary.

4 SYSTEM DESCRIPTION

4.1 iRobot Create 2

This serves as the mobile base of the Auto-
Cart. We will be commanding the motor speeds
of iRobot Create 2 using Python API pycre-
ate2 from Raspberry Pi 3. We will use the
drive direct(self, right velocity, left velocity)

to control the velocity of right and left motors separately.
Specific speed for each motor will be calculated using sen-
sor value returned from Line Follower Sensor which will be
discussed below.

4.2 Raspberry Pi 3

The Raspberry Pi 3 will be connected to iRobot Cre-
ate 2 using Create 2 USB to Serial Cable which is a 7-pin
mini-DIN cable on the Roomba side and a USB cable on
the Raspberry Pi 3 side. It receives signals from the load
sensor, and line-following sensor and a back-end program
will be running on the RPi to process these signals.

4.3 User Interface

From the user interface, the user should be able to add
items that they want to purchase, select the quantity of the
items, see the item that the cart is currently heading to and
the next item that the cart to heading to, and command
the cart to skip the next item on the list.

Figure 4.1 describes the interaction between the user
and the user interface, and the interaction between the
user interface. First, the user click start button on the
starting page (Figure 4.2), to confirm that they will start
shopping. Then, the user interface would be activated and
present to a list of items and through which the user can
select the items they are going to purchase (Figure 4.3).
After pressing the “submit” button on the user interface,
the items selected would be sent to the back-end and call
the path planning algorithm. The path planning algorithm
generates an optimal path and sends it back to the user

interface.
Then, the user interface switches to the guiding page

(Figure 4.4) and the cart would start guiding the user ac-
cording to the planned path. A map of the store, the cur-
rent and next node that the cart are displayed to the user.
Also, the user interface the list of items selected by the
users, in the sequence in which they will be visited, and a
list of nodes the cart is going to visit. When the cart arrives
at an item on the list, it will guide the user to pick up the
item on the left or right shelf. In case that the cart fails
to sense that items are placed on it, or the user no longer
wants to purchase the current item, the user can press the
“skip this item” button to instruct the cart to move on.
The ”Done Placing Item” and ”Place an Obstacle buttons”
are for simulation purpose and will be elaborated in section
6.2.

After all the items on the list are visited, the user in-
terface will control the cart to return to the place of carts
return, and reset itself to the starting page, indicating that
it’s ready for use.

4.4 Tablet

We will be using the Pi Foundation Display – 7” Touch-
screen Display for Raspberry Pi as a display of the user
interface to the user. The touchscreen can be easily con-
nected to the Raspberry Pi, with the help of an adapter
board; only two connections to the RPi are required: power
from RPi’s GPIO port and a ribbon cable connection to
RPi’s DSI port. A detailed build instruction can be found
on the product’s official page. The product well fits as
our display of the user interface. It is highly interactive,
with drivers that support a virtual ‘on screen’ keyboard,
and would be comfortable and easy to user for users in a
grocery store.

Figure 4.1: User Interaction Diagram



18-500 Final Report - May 6, 2020 Page 4 of 11

Figure 4.2: Starting Page

Figure 4.3: Item Selecting Page

Figure 4.4: Guiding Page

4.5 Load Sensor and Amplifier

We will be using a Load Sensor with its corresponding
amplifier in order to measure the weight of items placed into
the basket. The load sensor is able to measure to within 1
kg of the weight in the basket. We will mount this at the
bottom of the basket and we will use it to detect when an
item is placed into the basket. The connection between the
amplifier and the Raspberry Pi is done via i2c.

4.6 Line Following Sensor

We will be using Dexter Line Follower Board (black)
to perform line following. Conveniently, DI-sensors have
well-documented Python API for interacting with the line
follower sensor. This board is consist of 6 IR sensors and
integrates the sensor values from these 6 IR sensors to com-
pute one sensor value from 0.0 to 1.0. If the black line is
under the left half of the line follower board, the returned
value will be in the range of 0.0-0.5; if the black line is under
the right half of the line follower board, the returned value
will be in the range of 0.5-1.0, thus making 0.5 the center
point of the black line. With this value, we can write a
PID-based algorithm for line following. Learning from the
starter code given in the API, the tentative code for line
following is included in the Appendix.

4.7 Laser Rangefinder

We will be mounting one Laser Rangefinder at the front
of the iRobot Create. This will allow us to incorporate
obstacle avoidance into our system by allowing us to con-
stantly poll the sensor for an obstacle within its line of sight.
If an obstacle is detected within 0.5m, then the iRobot Cre-
ate will stop. It will then wait 20 seconds and if after 20
seconds the obstacle has not moved, it will then replan and
turn around and follow another path to its destination. In
order to accomplish this, we will be using an HC-SR04 Dis-
tance Sensor which has a detection range of 2cm - 500cm
with an effectual angle of 15 degrees and precision of +-
0.3cm.

4.8 Path Planner

Our group came up with our original path finding al-
gorithm to best address the problem at hand. We will
go over why we did not go with some of the off the shelf
algorithms that solve Traveling Salesman problem in the
Design Trade Off Studies section. The path finding algo-
rithm takes in three inputs: the starting point, the ending
point, and requiredNodes: a list of nodes that must be
visited. It returns the optimal route as a list of node in the
order they should be visited. The path finding algorithm
has two big stages two it. Stage one is a preparation step
that involves the use to A* algorithm. Stage two applies
an iterative greedy approach to generate the optimal route
bit by bit. This stage is consist of multiple steps that I will
explain below.



18-500 Final Report - May 6, 2020 Page 5 of 11

4.8.1 Stage 1

Stage 1 uses A* to find the shortest path between each
and every pair of nodes in the map. I chose to use Eu-
clidean distance as the heuristic function because it takes
constant time to compute as long as the x and y-coodinates
of the nodes are given. This step serves as a preparation
for the second stage. Although each A* runs really fast,
usually less than 0.1 seconds, the number of A* that needs
to be computed grows fast, O(N2), with respect to number
of nodes in the map. As a result, with a map of 1000 nodes,
stage 1 can take up to 30 minutes to compute. The saving
grace here is that stage one can be pre-computed for each
map ahead of time, and it does not need to be recomputed
unless the map changes permanently. As a result, the al-
gorithm save the result of stage 1 alongside with all the
map information in pickled file locally. At run time when
user enters a shopping list, the algorithm loads in these
information and goes directly into stage two.

4.8.2 Stage 2

Stage 2 is where the majority of the design work went
in. It has multiple stages. Stage 2 always starts with a cur-
rent optimal route which is the shortest path from origin
to destination. It then iteratively builds or alters this route
with a greedy approach to eventually include all required
nodes. If any required nodes are already on the shortest
route from origin to destination, they are removed from
requiredNodes list before any iterations of stage 2 is ran.
For ease of understanding, I will use a contrived example
to demonstrate one iteration of stage two.

Assume we have a map in which all edges have the same
length. On this map, we are planning a route that starts at
0, ends at 9, and must visit [2,4,6]. After some iterations,
the current optimal route has become 0− > 1− > 2− >
3− > 2− > 1− > 9.

1. Step 1: the first step of every iteration of stage 2
is figuring out where can the next required node be
inserted into the current optimal route. This is
equivalent to finding all the pairs of nodes in the
current optimal route that either: 1.does not have
any required nodes in between them, OR 2.only
has required nodes that are also visited somewhere
else in the route between them. A node can be
a pair with itself. Once we finish this step for
the above example, we should arrive at this list.
possible insertion pairs = [(0, 1), (0, 3), (0, 2),
(1, 2), (1, 3), (2, 3), (3, 9), (1, 9), (0, 0), (1, 1), (2,
2), (3, 3)]. If duplicate pairs arise in this process,
we keep the pair that is furthest apart. For exam-
ple, pair (0, 2) occurs once at index 0 & 2 and occurs
again at index 0 & 4. Because of the assumption that
all edges have the same length, the second (0, 2) is
further apart; so, the second pair is kept.

2. Step 2: The second step of every iteration of stage
2 is figuring out which required node that has not

been visited yet can be inserted into the current
optimal route at least cost. This step is when the
shortest paths computed in stage 1 come in handy.
For required node x, and possible insertion pair (i,
j), the cost function is: length of shortest path from
i to x, plus length of shortest path from x to j,
minus the length of the current path from i to j
or in pseudo code: len(shortest path(i, x)) +

len(shortest path(x, j)) - len(current path(i,

j)).

3. Step 3: After finding the least cost way to insert the
next unvisited required node, last step of every itera-
tion of stage 2 is updating the current optimal route
accordingly. If we go back to our example, say the
next unvisited required node to insert is 4, best in-
sertion place is (0, 2), and the best way to visit 4
is going from 0− > 5− > 4 and going back directly
from 4 to 2. Then the current route is updated to
0− > 5− > 4− > 2− > 1− > 9. Notice how when
updating, node 1, 2 and 3 (originally at index 1, index
2, and index 3) are deleted. We can do this because
node 2 is visited again somewhere else in the route,
and node 1 and node 3 are not requited nodes.

Stage two continues until all required nodes are visited. At
this point, the current optimal route is the overall optimal
route.

4.8.3 Final augmentation

Now the hard work of planning is done, the optimal
route sometimes need to be polished a bit more in order
to better guide Auto Cart is a realistic setting. If more
than one item is needed at a particular node, that node
is repeated multiple times in the overall optimal route to
match the number of items needed on that node. This is to
allow the functionality of skipping items. With the multi-
plicity of nodes, user can choose to skip one item at a node
without skipping all other nodes at the same node.

4.8.4 Re-planning

Auto Cart has the ability to detect obstacle and avoid
them while navigating the shopping mall. Obstacle detec-
tion is covered in the sensor section, we will go over how
the path planner re-plans a route to circumvent obstacle in
this section. Put simply, when an obstacle is encountered,
the path planner alters the map temporarily to reflect the
position of the obstacle and performs A* to circumvent the
obstacle in a locally optimal way. Once the obstacle is cir-
cumvented, Auto Cart gets back onto the planned optimal
route and continues execution from there.

First let us notice a fact about the optimal route gen-
erated by the path planner. It is always a neighbor-to-
neighbor route, which means that adjacent nodes in the
route are neighbors. This is both a simplification and a
complication at the same time. It is a simplification be-
cause if Auto Cart were to detect an obstacle while fol-



18-500 Final Report - May 6, 2020 Page 6 of 11

lowing the planned route, the path planner knows exactly
where the obstacle is at. This is a complication because all
the shortest paths computed in Stage 1 of path planner are
not useful any more. This is because if two nodes are neigh-
bors, then it is very likely that the shortest path between
these two nodes is just going directly from one to the other.
In other words, the way path planner is written makes that
if an obstacle were to appear between two nodes in the op-
timal route, the obstacle is almost always guaranteed to be
on the shortest path between those two nodes. This means
that re-planning is almost always needed. However, the
good thing is that one iteration of A* is very cheap.

Before re-planning, the path planner first removes the
edge that has the obstacle on it. It then performs A* to
find the new shortest path between the two neighboring
nodes, Node1 and Node2, that have an obstacle between
them. Auto Cart pauses its execution of the overall op-
timal path and executes this newly re-planned alternative
path from Node1 to Node2 first. After executing this newly
re-planned alternative path, Auto Cart should have circum-
vented the obstacle and should be back on to the overall
optimal path. At this point, Auto Cart continues execution
of the overall optimal route until another obstacle is met.

After re-planning, the removed edge is put back into
the map. Running one A* is very cheap, so if the user en-
counters the same obstacle again, it does not hurt to run
A* again on the same Node1 and Node2. We put back
the removed edge also because we think it is reasonable
to assume all obstacles are temporary; removing an edge
permanently might reduce the optimality of potential later
re-planning.

4.8.5 Testing

To perform testing, we first need to generate maps of
our own. We first randomly generate the x and y coor-
dinates of n nodes. The weight(length) of edge between
each pair of nodes is always the euclidean distance. We
chose this to be the weight to avoid potential problems
with the heuristic function in A* (Heuristic function must
be admissible in order for A* to return the least-cost path.
This means that the heuristic function should never over-
estimates the actual cost of going from node A to node B).
After generating the nodes, we generate the edges. In order
to test with maps of different sparseness, we only choose to
include a certain percentage of all edges. When we include
100% of all edges, then the map is fully connected and these
maps are usually the most challenging ones within the same
node count.

While testing, we also alter the number of nodes that
need to be visited. We do this by randomly marking y% of
all nodes to be required nodes. For each map with n nodes
and x% sparseness and y% required nodes, we perform 50
different tests. Each test has a randomly selected origin,
a randomly selected destination, and a randomly selected
list of nodes that need to be visited.

We tested with map up to 1000 nodes and up to 50%
sparseness. We stopped at 50% sparseness because we

think it is unfeasible for supermarkets to have a map that
is denser than that. There does not exist a direct path from
the middle of an aisle to the middle of another aisle. For
each test, we record and calculate the run time and check
for correctness.

1. Correctness testing: After the algorithm runs and
finds a optimal route, we check for correctness
by checking whether optimal route[0] == origin,
route[-1] == destination, and whether all re-
quired nodes are in optimal route.

Our algorithm’s result is correct for all tests. The
most computationally intensive testing we did was
map with 1000 nodes, 50% sparseness, and 200 of
those nodes need to be visited. The planning can
be done within 2.5 minutes. One caveat to this is
that stage 1 of path planner this map takes around
30 minutes. However, this is not an issue because
our algorithm pre-computes stage 1 and saves the in-
formation. When each customer submits his or her
shopping list, no stage 1 needs to be run.

We did not check whether planned route is actually
optimal for most of the tests. This is because we did
not find a good way to verify optimality. However,
we did check for optimality on small maps. The al-
gorithm does always return the optimal route.

2. Stage 1 run time bench-marking: We tested and
recorded time of running stage one on maps of 100,
200, 300, 400, 500, 600, 700, 800, 900, and 1000 nodes
with 10% edge density. The result is in the following
graph:

Figure 4.8.5.1

We can conclude that time required to run stage one
increases polynomially with number of nodes in map.

3. Stage 2 run time bench-marking: after performing
the 50 tests on each setting, we record the average
run time and graph them in excel. We mainly looked
at two variables’ impact on run time: number of re-
quired nodes and number of total nodes in map. We
draw a trend line in excel to evaluate the complexity.



18-500 Final Report - May 6, 2020 Page 7 of 11

The first graph is running stage 2 on maps with 100,
200, 300, 400, 500, 600, 700, 800, 900, 1000 nodes
with 10% edge density and 100 required nodes.

Figure 4.8.5.2

We see a unusual trend. It looks like the run time re-
mains the same for a range of number of nodes. The
run time then increases linearly until it hits the next
range.

The second graph is running stage 2 on maps with
1000 nodes, 10% edge density, and varying number
of required nodes.

Figure 4.8.5.3

Here we can see clearly that run time increases poly-
nomially with number of required nodes. This turns
out to be a better theoretical run time than the best
off-the-shelf TSP solver.

4.8.6 Interesting additional findings

We stumbled upon the following findings unexpectedly.
We did not set out to thoroughly investigate these findings
as they do not pertain to the core of our project. However,
we mention them here as they can potentially be interesting
projects for future ECE capstone or research.

1. It is possible that a planning on a denser map is actu-
ally faster. Most of our run time testings were done

on maps with 10% edge density, which means only
10% of all possible edges are included. We feel like
this is a reasonable assumption because most super-
market maps should be very sparse.

5 PROJECT MANAGEMENT

5.1 Schedule

Our GAANT Chart has been inserted at the end of the
end of the document in Appendix A.We have revised the
GAANT Chart after the spring break, with some changes
to the focus of work for each member. In the second half of
the semester, Carlos focused on the testing of sensors, Ze-
hong and Zeyi continued to implement their own software
portions and worked together on software integration.

5.2 Team Member Responsibilities

The 6 primary responsibilities of the project are: Path
Planning, Control, Interfacing with sensors, User Interface,
Tablet GUI, and Interfacing with the Roomba. They are
split up as follows:

Carlos Zeyi Zehong

Control Tablet GUI Roomba Interface
Sensor Interface User Interface Path Planning

Zeyi’s primary responsibility will be the Tablet GUI
and User Interface. Zehong’s primary responsibility will
be Path Planning and interfacing with sensors. Carlos’s
primary responsibility will be interfacing with the Roomba
and Control.

The secondary responsibilities are split up as follows:
Carlos will aid with Path Planning and the Tablet GUI,
Zehong will aid with Control and the User Interface, and
Zeyi will aid with the sensor interface and Roomba inter-
face.

5.3 Budget

The bill of materials is attached at the end of the
project. The proposed cost is 380$.

5.4 Risk Management

The main risk of our project is in the testing phase.
The sensors that are installed outside the Roomba could
be broken if the robot crashes into objects. Considering
the risk of breaking the sensors, we have ordered more sen-
sors than we needed. Also, in the case that the Roomba is
not functioning, we have left enough budget space to pur-
chase another one. Furthermore, there may be problems
with keeping track of the vehicles location throughout the
store. If this happens, we will have to pivot to a more ro-
bust map implementation that will use multiple landmarks
in order to develop a more robust localization.



18-500 Final Report - May 6, 2020 Page 8 of 11

6 Design Trade Off Studies

Our design trade off focused on 3 key areas: varying the
number of sensors, varying the path planning algorithm,
and varying the user interface.

6.1 1 sensor vs. 2 sensors

For the sensors, we wanted to know whether 1 sensor
was sufficient to detect obstacles position in front of the
iRobot Create or whether 2 sensors at a varied distance
were needed. In order to test this, 2 tests were created.

The first test consisted of detecting 3 objects of widths
0.1m, 0.3m, and 5m from a distance of 0.5m, 1m and 1.8m.
The widths of the objects were chosen specifically because
they were the widths of objects that we are likely to en-
counter in our project. To be precise, the 0.1m width sim-
ulates detecting a human ankle positioned in front of the
iRobot Create whereas the 0.3m object simulates detecting
another iRobot Create that is positioned in front of our
current robot. Lastly, the 5m width simulates a wall that
is in front of our robot. This test was created in order to
find the maximum distance at which a range sensor could
reliably detect common objects.

The results of this test were as follows: all of the objects
were detected from a distance of 0.5m and 1m. However,
only the wall was detected from a distance of 1.8m. After
these results, we ran a binary search (manually) to find the
farthest distance at which the objects of width 0.1m, and
0.3m were detected. Both of these objects had a maximum
detection distance of 1.3m. Due to these results, we can
guarantee that the range sensor will detect other robots
and humans from 1.3m away while also guaranteeing that
walls can be detected from 1.8m away.

The second test consisted of setting the same 3 objects
up at their maximum detectable distance found in test 1
and varying the angle at which they pointed at the object
from 0 degrees to 15 degrees in intervals of 3 degrees.

The results are as follows, all objects were detected
when the object was within 9 degrees of the field of view,
but none of the objects were able to be detected when the
range sensor field of view varied by more than 9 degrees.
The image below better conveys the definition of the field
of view.

In order to better understand the sensors, we went
about deriving a theoretical model for the maximum

Figure 6.1, shown below, illustrates the model used
to derive the maximum theoretical field of view of the
rangefinder sensors. The derivation is straightforward:

Figure 6.1: Sensor Field of View

6.2 User Interface Changes and Trade off

For the user interface, we decided to change our design
according to the facts that the project’s hardware portion
of the project can no longer be integrated.

Firstly, different from what we proposed in the design
document, a starting page is added to the user interface.
The starting page let the users confirm that they are go-
ing to start shopping, before actually using the interface.
This would help to save the resources for the grocery stores:
consider the case that a user submits an item list but ends
up skipping items on list; this is waste of the shopping cart
resource and makes the waiting time of other users longer.
The starting page prompts the user to think more carefully
before using the cart. It would also be a clearer indication
of the cart’s idle state that it is available to be used.

The item selecting page is not changed much from the
original design. Because the starting page added let the
users confirm that they want to start shopping, the item
selecting page now requires users to select some item before
clicking the submit button and proceed.

Lastly, because the integration between hardware and
software is no longer feasible, the simulation of a real-world
situation cannot be done without the line-following sensor
and Roomba. We decided to perform a simple simulation
of the process of travelling the optimal path on the guiding
page, with the assumption that line-following algorithm is
always correct and the cart can visit the next node on its
planned path as expected. The purpose of the simulation
is to test the robustness of the software integration. The
“Done Placing Item” button simulates that the weight sen-
sors detects that the user has placed the current item onto
the cart. It will then start travelling to the next item, or
ask the user to grab the next item if the next item is on the
other side of the current node. The “Place an Obstacle”
button simulates the situation that the rangefinder sensors
detect an obstacle on the current route. In this case, the
user interface asks the path planning algorithm for a re-
planned path around the obstacle. Also a map is added



18-500 Final Report - May 6, 2020 Page 9 of 11

onto the top of the guiding page for a better user experi-
ence: with the map, users would have a better idea of their
position in the store.

6.3 Path Planning Algorithm Trade Offs

6.3.1 Off-the-Shelf Traveling Salesman algorithm
v.s. design our own algorithm

Initially we thought we could use an off-the-shelf algo-
rithm that solves Traveling Salesman Problem (TSP) for
our path planner. Since TSP has been studied substan-
tially, using an off-the-shelf algorithm can guarantee cor-
rectness. We were initially a bit worried about run time,
but we wanted to implement and test it first. If run time
turns out to not meet our requirement, we will implement
our own algorithm.

Then we researched more about traveling salesman
problem. After research, we feel like it might not be the
most accurate representation of the problem at hand. One
thing that TSP does not allow is visiting a node more than
once, but Auto Cart can visit any node any number of times
as long as the total distance remains the shortest. Another
thing TSP makes sure is that all nodes are visited, which
is highly likely not the case for the usage of Auto Cart
in a shopping mall. A user is very unlikely to have to
visit every stop of every aisle. To address this problem, we
first thought about building a sub-graph consist of only the
nodes we need to visit. It is easy to figure out which nodes
to keep, but when it comes to figuring out which edges to
keep, it is unclear how that can be done easily. Also, more
nodes than those that are required might need to be in-
cluded in order to keep the graph connected. After discus-
sion, we feel like constructing a sub-graph than guarantees
to still contain the optimal route is just as computationally
complex as finding out the optimal route directly.

As a result, we decided to go directly to designing our
own algorithm.

6.3.2 Efficiency v.s. Optimally for re-planning

As we recall from the re-planning section of path plan-
ner, re-planning only considers what is the locally optimal
way to circumvent the obstacle. It is possible that while
circumventing the obstacle, some of the required nodes that
are scheduled to be visited later are visited. The creates
redundancy in the overall route. In order to truly re-plan
an optimal path to circumvent the obstacle, the entirety of
stage 2 potentially need to be re-run. This is very costly
and we do not think it is worth the wait for the user.

7 Related Work

Our project is inspired by Cart-i B (http://course.
ece.cmu.edu/~ece500/projects/f18-team5/), which
builds a cart that follows the user in the store.

8 Summary

The goal of the project was to overall help improve the
shopping process and ultimately create more convenience in
a system where we see inefficiencies. Inspired like projects
such as Amazon Go, we wanted to simplify the shopping
process. Through the optimization path finding algorithm
and user interface, we feel we have added to the realm of
convenience in the shopping experience.

While we were not able to integrate the hardware por-
tion of the project, we were able to make substantial pro-
cess on the integration of all parts that were available to us.
Moreover, our code is ready to simply make the hardware
connections and automatically begin to poll the sensors
that we were going to use prior to the impact of COVID-19.
It should be noted that the parts of the project regarding
the control of the iRobot Create with a Raspberry Pi were
not implemented because of the unavailability of the plat-
form. Lastly, we were not able to test the weight sensors
since that would require the integration of the basket and
the iRobot Create which we did not have access to. Despite
this, we were able to change the focus of the project to one
of a study of design trade offs instead of one with a focus
on hardware integration.

9 References

1. DECHTER, RINA. Generalized Best-First Search
Strategies and the Optimality of A* . UIUC, July
1985, www.ics.uci.edu/ dechter/publications/r0.pdf.

2. Delacroix, Malloy. A PyQt5 Example of How to
Switch between Multiple Windows.

3. Goldberg, Andrew V., and Chris Harrelson . Efficient
Point-to-Point Shortest Path Algorithms.

4. Kagan, Eugene. A Group Testing Algorithm with
Online Informational Learning. Tel-Aviv University,
Nov. 2011.

5. Okuntseva , Ana. “Icons for Groceries App.”
Dribbble, 2019, dribbble.com/shots/7144128-Icons-
for-Groceries-App.

6. Sosic, Martin. “Martinsos/Arduino-Lib-Hc-sr04.”
GitHub, 18 Mar. 2020, github.com/Martinsos/arduino-
lib-hc-sr04.

7. Using the Line Follower. Dexter Industries Revision,
2017.



18-500 Final Report - May 6, 2020 Page 10 of 11

Appendix A

Gantt Chart

Bill of Materials



18-500 Final Report - May 6, 2020 Page 11 of 11

Tentative Line Following Code


