18-500 Design Report - March 2, 2020

Page 1 of 12

Cooperative vs Non-Cooperative
Autonomous Driving

Authors: Tito Anammah, Serris Lew, Kylee Santos
Electrical and Computer Engineering, Carnegie Mellon University

Likely to be the future framework of transporta-
tion, autonomous driving has been the forefront of
much research in the artificial intelligence field. We
look to explore potential improvements to the cur-
rent system, by experimenting the effect of vehicle-to-
vehicle communication on the road. Given the scope
of our project, we simulate the demonstrations with
6 inexpensive scaled-down model cars on a figure-8
track. After determining the pose and position of each
vehicle through video processing, a centralized server
uses this information to compute decisions for each ve-
hicle and send these commands to them individually.
‘We measure and compare the throughput between the
non-cooperative and cooperative approaches in order to
demonstrate clear improvements to the system.

Index Terms — Cooperative mode: cars communi-
cating with one another to make a collective decision
to optimize the overall system goals. Non-cooperative
mode: cars making individual decisions based off of im-
mediate surroundings to optimize its individual goals.
Throughput: Number of vehicles that pass through cen-
tral time given a specific amount of time.

1 INTRODUCTION

Autonomous driving will likely revolutionize the trans-
portation industry in the next couple of years. Even
more pioneering is the current research on cooperative
autonomous driving. We aim to explore the benefits of
vehicle-to-vehicle (V2V) communication and the advan-
tages of cooperative decision making between autonomous
vehicles. Having multiple vehicles cooperate could not only
improve safety but also decrease traffic congestion.

There has been a lot of research on autonomous vehicles
that make decisions solely based on their immediate sensor
input. Simulating V2V communication implicitly extends a
vehicle’s sensory range and allows it to make more informed
decisions based on its environment. It provides additional
information such as another vehicle’s intended path that
cannot be fielded through sensor data. For demo purposes,
we will have a figure-8 track setup with three cars on each
loop. The center lane will be shared by cars from both
loops, and our goal for this project is to achieve at least a
30% increase in throughput compared to a non-cooperative
scenario.

2 DESIGN REQUIREMENTS

Our track size was dependent on the size and the speed
of each vehicle. We used these metrics in order to determine
a minimum following distance between vehicles so that they
would still be able to safely come to a stop. We defined the
total following distance, sg, as consisting of 3 subdistances:
latency distance, stopping distance, and a buffer distance.
Latency distance is the distance the vehicle travels dur-
ing execution of the server’s computation, including object
detection, localization, and path planning. Stopping dis-
tance is the distance the vehicle travels between receiving
a stop command to actually coming to a complete stop.
Buffer distance is the distance between the stopped ve-
hicle and the obstacle. A breakdown of these distances is
shown below on Figure 1.

Total Following Distance

Obstacle

L) I
Figure 1: Breakdown of total following distance

Stopping Distance Buffer Distance

In order to compute the minimum necessary circum-
ference of each circle of the track, we used the following
equation,

c>(n+1)*(so+1), (1)

where [is the length of each vehicle and n is the number
of vehicles on each circle of the track. We acknowledged
that another vehicle from the second circle might occupy
the shared lane of the figure-8 track. Therefore, each circle
would need to have enough room for n + 1 vehicles at a
time.

In order to calculate specific values for these design met-
rics, we also set requirements for the latencies of each com-
ponent in our system, shown in Table 1 below.

18-500 Design Report - March 2, 2020

Page 2 of 12

Number of cars on one track | 3

Max vehicle speed 50 cm/s
Detection latency 100 ms
Computation latency 5 ms
Communication latency 50 ms
Latency distance 7.75 cm
Stopping distance 2 cm
Buffer distance 5 cm
Total following distance 14.75 cm
Length of each vehicle 15.25 cm
Width of each vehicle 10.16 cm
Circumference of one track 120 cm
Radius of one track 19.10 cm
Lane width in each track 15 cm

Table 1: Metrics for track design

Each of the distances were computed using the maxi-
mum vehicle speed, vy, and the individual latencies, t,

S0 = Vg * (tdet + tcomp + tcomm) (2)

This circumference value gave us a lower bound for our
design, and we decided to double the circumference to give
vehicles more room to operate, instead of always driving
at the minimum following distance. We chose to do this in
order to better simulate real world traffic.

We decided on a track size of 145 cm by 80 cm with an
outer radius of 40 cm, illustrated in Figure 2.

Outer Radius:
40 cm

Lane Width:

em Width: 80 cm

A
\

Length: 145 cm

Figure 2: Diagram of final metrics of track design

The individual latencies used in Equation 2 are core to
our design requirements as they define how many frames
we can process per second and how often we can update
each vehicle’s paths. Detection latency is defined as the
time taken to detect six vehicles within one frame using our
ArUco Marker Detection. Computation latency is the time
taken for server to localize the vehicles and perform the
path planning computation. Finally, the communication
latency is the time taken for the server to communicate
data to the vehicles. We estimated these latencies in Table
1 based on preliminary testing of individual components
of our system. These latencies are important goals for the

project and are necessary for constituting success.

Another project requirement is to validate the per-
formance of our localization method, which uses object
detection and homography. We aim to have at most a 3
cm precision accuracy when detecting a vehicle’s location.
This is less than % of the vehicle width and less than é of
the vehicle’s length, so it should be accurate enough to use
in our driver models.

After realizing that our motor control of each vehicle
might be imprecise, we also added a requirement to ensure
the vehicles stay within the circular track to a reasonable
extent. Our track lanes are 20 cm wide, leaving a 5 cm
margin of error on either side of each vehicle. Ensuring
that the vehicles stay within the track lanes will validate a
deviation of at most 5 cm from the center of the lane.

Based on our latency requirements we would require the
detection algorithm to detect all 6 cars at least 99% of the
time. Failing to detect a car in one processing iteration
will result in the car travelling at least the latency distance
before the vehicle can be detected in the next iteration. At
our estimated maximum vehicle speed, this would cause
a vehicle to cover roughly 5.75 cm. Because we doubled
the following distance when determining the circumference
of our track, unsuccessfully identifying 1% of the frames
should not necessarily cause any collisions, unless back to
back frames fail to identify the vehicle.

3 ARCHITECTURE OVERVIEW

Server WiFi Router
Python TCP Server Socket SSDiasoor
WiFi
WiFi Vehicle
T Motor Speed
Path Planning
- NodeMCU o | L2V
‘ IDM ‘ ‘ Scheduling | (3.3V) Battery
[Localization

| [Path Adjustment |
TLm:amn[Puse ‘ I

Video Processing

+5V

L298N Driver
(2 V drop)

ArUco Marker

Detection i iy

2DC
Motors

fuss @6V)

Camera

Logitech HD C920 Pro Webcam
I 3 dof H 30 fps H 70° |

ArUco Tag

Figure 3: Block Diagram of our system

Our system architecture is broken down into 4 main
components: Robotic Vehicles, Object Detection, Path
Planning, and Communication. The block diagram in Fig-

18-500 Design Report - March 2, 2020

Page 3 of 12

ure 3 shows all of the different modules and how they con-
nect/interact with one another.

3.1 Robotic Vehicles

For simplicity, the Vehicle block is representing one of
the 6 identical vehicles that will be used in our design. As
shown below in Figure 4, each vehicle will have a NodeMCU
ESP8266 board as its microcontroller. Similar to an Ar-
duino board, it has digital input/output pins that can be
connected to other devices. For our design, 6 of its GPIO
pins are used as inputs to the L298N driver, which con-
trols the motors. The connections from the NodeMCU to
L298N are the following: ENA-D5, ENB-D6, IN1-D8, IN2-
D7, IN3-4, IN4-3. The ENA and ENB pins control the
speed of the motors while IN# pins control the direction
of the motors. There are 2 digital pins per motor that de-
fine its control. The first pin enables or disables the motor
moving forward while the second pin controls the same mo-
tor moving backward. The motor controller is powered by
a 9 V battery that grounds both the NodeMCU and the
L298N driver. The module has an built-in 5 V regulator
jumper that changes the behavior of the 5 V pin. We have
the 5 V jumper enabled so it is used as an output source to
power our NodeMCU board. The driver also has a voltage
drop of about 2 V so with a 9 V battery, it will have a max
voltage of 7 V for the motor terminals. However, the DC
motors connected to it run between 4-6 V so the voltage
drop does not affect its behavior.

GP1016-{ USER | WAKE |

RARARAARARARR"

{ N9 EAE hi

Figure 4: NodeMCU Pinout

3.2 Object Detection

Mounted at the top of each vehicle is an ArUco marker
tag, which is a synthetic square marker composed of black
and white patterns as shown in Figure 5 below. Used as a

QR code, these robust markers will be detected by a Log-
itech HD C920 Webcam.

Arlden 42 Arlco 18 Arlco 12
Arllco 27 Arlco 43 Arllea 5

Figure 5: Sample ArUco marker tags

It will be positioned overhead the track to capture all
of the vehicles as they circle the track. Connected through
USB, this information is fed to the ArUco Marker Detec-
tion code to accurately identify all of the vehicles as they
move along the track and to determine the location and
position of each marker. Homography will then be applied
to ensure that the location of each vehicle is accurate, re-
gardless of the camera angle. It will warp the image to the
correct perspective to provide the accurate relative location
between the vehicles. This information will be given to the
path planning module of the server’s computation.

3.3 Path Planning

More specifically, each car will use the Intelligent Driver
Model (IDM) which is a time-continuous car-following
model; this will be used for the non-cooperative case. For
the cooperative case, in order to make collective decisions,
scheduling algorithms will be added to prevent starvation
for vehicles when they meet at the cross center lane. De-
tection of future path collisions will also be included in
determining a vehicle’s path. As there may be subtle vari-
ability in each car, path adjustment will ensure all cars are
moving on their intended path. All of the decisions made
for both the cooperative and non-cooperative modes will
return as a byte to represent the concatenated speeds of
each motor. This will indicate to the vehicle the direction
and speed to set.

3.4 Communication

In order to send the motor speed to each vehicle effi-
ciently, the server will need to be connected to all of the
vehicles at the same. This is done by connecting the server
and the NodeMCU boards on each vehicle through WiFi.
This allows the server and multiple client vehicles to be
under the same network which reduces connection latency.
Making each NodeMCU a client, the server will first con-
nect to all of the clients and create a separate thread for
each one. It will keep track of all of them to be able to send

18-500 Design Report - March 2, 2020

Page 4 of 12

messages to them individually when needed. The server
will specify the vehicle it needs to control and only send the
speeds of motors to the appropriate NodeMCU. As men-
tioned in the beginning of this section, the speed of the
car will be relayed to the NodeMCU and then the L298N
drivers that are connected to the DC motors.

4 DESIGN TRADE STUDIES

4.1 Localization

The main goal for this project is to simulate vehicle-to-
vehicle (v2v) communication and to show its advantages
in autonomous driving systems. To most accurately sim-
ulate v2v communication, we would have to supply all of
our robotic cars with their individual sensors and cameras.
This way, each car would be able to determine its location
and pass on that information to other vehicles nearby. Af-
ter some consideration, we decided to instead have a single
global camera which could detect all the cars at any point
in time.

The alternative individual camera approach introduces
a much more difficult localization problem. Although each
car has its own camera and can see its surroundings, it
would have no way of determining its global location rela-
tive to the entire system. The solution would be to mount
GPS sensors on each vehicle, however, GPS coordinates
have an accuracy of about 5m which would be too impre-
cise on our small scale model. Given that each vehicle is
15 cm x 10 cm, it is important to ensure that the location
of each vehicle is accurate enough to prevent collisions and
miscalculations. While there are algorithms for robot lo-
calization such as particle-filtering, we concluded that we
would need to invest a lot more time to get the localization
accurate enough for our purposes and doing so would only
detract from our main goal of exploring the benefits of co-
operative autonomous driving. Using a global camera, we
would be able to accurately determine every car’s location
relative to the track, and it greatly simplifies our problem.

4.2 Object Detection
4.2.1 YOLO-V3 and Image Thresholding

The two object detection algorithms we initially consid-
ered were YOLO-v3 and image thresholding. The former
is a robust method for object detection but we feared that
it would not perform well for our purposes. The YOLO-V3
neural network is primarily trained on the COCO dataset
which is a dataset of common items such as people and
cars. Our robotic cars however do not resemble real cars
and so they would be difficult for the network to detect.
To solve this problem, we had the option of training the
network to recognize our cars but that would require cre-
ating our own dataset which may be time consuming.

Furthermore, our project demands that the detection
of the vehicles meet mission critical latency requirements.
This is important for the vehicles to have enough time to
take any necessary actions to avoid collisions, and passing
every video frame through a neural network would prove
to be too slow for the task. The latter object detection
method seemed to be the better candidate for the job. By
assigning color codes to each of the cars, we would be able
to do some segmenting to identify the vehicles. Though
we would have to apply some morphological transforma-
tions on the image frames, this sort of computation is a lot
cheaper in comparison with that of a neural network.

4.2.2 ArUco Marker Detection

We came across yet another object detection frame-
work, ArUco Marker detection. This detection scheme
makes use of QR codes for object detection and boasts high
accuracy and speed. Realizing that an image thresholding
algorithm would be susceptible to varying light conditions,
we chose the ArUco detection because it is a more robust
alternative for the conditions of our experiment.

4.2.3 Homography

One problem we noticed in our design was the poten-
tial for inconsistencies in our track/camera set-up. When
moving our camera and track around for test and demo pur-
poses, we tried to keep the camera directly over the track
but there were still slight, inevitable shifts that would cause
our view of the track to be more angled than hoped for.
This would also lead to inconsistencies with the localized
car positions and their assumed location on the track. To
combat this problem, we have introduced a pre-processing
step that will compute a transformation matrix (homogra-
phy) to warp all localized car positions to a reference frame.
This homography would be computed once before any cars
are detected and during the demonstration, all we need to
do is apply a matrix multiplication to each car’s location
in order to map the pixel location to a reference frame. A
matrix multiplication is not a computationally expensive
operation so this process would fit well into our pipeline.

4.3 Vehicle to Server Communication

In a comparison of cooperative and non-cooperative au-
tonomous driving, the focus is not necessarily to optimize
communication between vehicles or even to implement v2v
communication. Rather we aim to demonstrate the ben-
efits that cooperation through v2v communication may
have. Therefore, it does not affect our proof of concept
project if we are simulating v2v communication using a
central server or if we actually implement it.

As mentioned in Section 4.1, the global camera sys-
tem provides the location and orientation of all the cars
in our system. For the cooperative case, the data from
the global camera system would need to be relayed to all

18-500 Design Report - March 2, 2020

Page 5 of 12

of the cars to then be communicated to each other as a
form of vehicle-to-vehicle communication. However, this
communication pipeline adds redundant latencies for send-
ing and receiving data between vehicles. Since the server
has all of the system information from the global camera
system and it must communicate with each of the vehicles
regardless, we decided to eliminate the intermediate step
and have all vehicles communicate to a centralized server.
This essentially imitates vehicle-to-vehicle communication
because each vehicle ultimately makes informed decisions,
knowing complete data from all the other vehicles in the
system.

4.3.1 NodeMCU

With a centralized system, all of the computation is
done on the server and not on each individual car device.
Therefore, we wanted to find a microcontroller that can
control motors and have multiple of them be connected
to the same server. After much research, we decided to
use a NodeMCU ESP8266 board for the logic circuitry
part. With a WiFi-based firmware, we thought this board
would be ideal to create a communication system for one
server and multiple clients; the laptop would be the server
and each vehicle would be a client. Having one WiFi net-
work that connects all of the devices would simplify the
communication processes. One alternative that we looked
into was using Bluetooth, as that is one of the other most
common ways of wireless connections. However, Bluetooth
connections are one-to-one, thus the server would have to
disconnect its current connection before making a new con-
nection. Since the cars are almost always in motion, this
communication latency could greatly affect how the cars
will make decisions.

Though the NodeMCU board is developed from Espres-
sif Systems, it is still compatible with Arduino IDE and can
be implemented as an Arduino board. This board can also
run on its own compared to an ESP8266-based module that
would have to be attached to a separate Arduino board. We
also faced a tradeoff between cost and CPU performance
with the selection of boards to pick from. Because the com-
putation was done on the server, we were able to pick the
cheapest option, not needing a dual-core processor such as
the ESP32.

4.3.2 Python Interface

To determine each vehicle’s next move, the server would
need data from the global camera system that provides in-
formation about each vehicle’s pose and location relative
to the other vehicles. Since this connection system is using
OpenCV in Python, we wanted the server to also imple-
ment its connection with the client in Python. At first,
we looked into Micropython, a software implementation
for a microcontroller compatible with Python; this would
allow us to utilize Arduino code in a Python interface.
After some testing, we found Micropython to be sufficient

for our solution, but unnecessary since the Arduino code
only needs to be used for the clients (NodeMCU). In other
words, since our centralized server is sending messages to
the clients, the server can be written in a Python interface
and send commands to the clients which has Arduino code
uploaded in its firmware. Therefore, Micropython was ul-
timately excessive in our implementation.

With that being said, we started testing with sockets
(socket programming) to allow different programs to send
and receive data at any given moment. To be compatible
with the data received from the camera, we implemented
in Python which also provides a socket class that can be
easily integrated in our source code. Data would be sent
via WiFi by defining a centralized host and port for all the
vehicles to connect to.

4.4 Motor Control

Another design change we made was changing from
the L293D IC motor controller to a L298N motor driver
shield. Though the former can control the speed and direc-
tion of 2 motors simultaneously and is compatible with the
NodeMCU board, the latter can do the same and also does
not overheat with higher voltages. The raw L293D driver
chip was able to provide us flexibility to wire it up as de-
sired, however we realized that we weren’t using it in some
custom-built way but instead a more standard usage of
the driver. Therefore, we decided to prioritize consistency
between vehicles over flexibility over the chip schematic di-
agram. For that reason, we decided to use a motor shield,
which is a circuit board with soldered connections on it
including an on-board voltage regulator and a heat sink
for overheating problems; it made the circuit more efficient
and safer to use. We also wanted to eliminate any vari-
ability in the cars as our main focus is the cooperative and
non-cooperative modes and not the cars themselves.

4.5 Steering Geometry

The most common steering mechanisms for vehicles are
the Ackermann and the Davis steering systems. These both
require a sliding pair of front wheels and a fixed set of back
wheels. The defining feature of these approaches is that the
steering angle of the front wheels determines where the cen-
ter of its turning circle is located. Figure 6 below depicts
the Ackermann mechanism. This is advantageous because
the vehicles are able to control their speed and direction in-
dependently. Their speed is naturally defined by how fast
their motors are spinning, and their direction is determined
by the steering angle, where the specific path can be solved
using Ackermann steering geometry.

18-500 Design Report - March 2, 2020

Page 6 of 12

O: entre of turming cinche _—

Figure 6: Diagram of Ackermann steering mechanism

The 4-wheel setup with a complex axle system was too
expensive to use in the scope of this project. Robotic vehi-
cles with this steering mechanism were primarily the pre-
built remote-controlled cars that were either out of our bud-
get range or required a lot of tinkering in order to repurpose
them for our project. Thus, we settled for two DC motor-
driven rear wheels with a third central wheel for stability,
as shown in Figure 7 below.

Figure 7: Underneath view of wheels on vehicle chassis

In this 3-wheel setup, speed and direction are no longer
independent. Because the wheels cannot turn, the turning
radius of the vehicle is determined by the ratio of speeds
in the left and right motors. Creating a speed difference
between the two motors would cause the vehicle to turn to-
wards the direction with the slower speed. The drawback of
this approach is that we need to create our own geometric
equations in order to model the turning point as a function
of the two motors’ speeds.

4.6 Shape of Track

The paper [2] that we wanted to model our project from
used a two lane track consisting of concentric circles. How-
ever, from a path planning side, this required both longi-
tudinal and lateral movements. Not only would we need
a car-following model to simulate highway driving, but we
would also need a lane-changing model in order for the ve-
hicles to maneuver around obstacles safely. We decided to
change this design into a figure-8 track where each set of
cars only travels in their respective circle of the track. This

would allow for the vehicles to follow a simple circular path,
without changing lanes, and focus on a car-following/object
detection model. When making decisions, each car would
only have to change it speeds as opposed to both its speed
and direction. The differences between the two tracks are
shown below in Figure 8.

“ -

L e

4

Design 1: Concentric circles track Design 2: Figure-8 track

Figure 8: Comparison of Proposed Track Designs

4.7 Car-Following Driver Model

With the new focus on the longitudinal movement, we
had a couple car-following models to select from. We de-
cided to use the Intelligent Driver Model instead of the
Newell or Gipps’s Model. The Gipps Model is a relatively
simple model, developed in the 1970s and details the rela-
tionship between each vehicle’s position, velocity, and brak-
ing severity. However, the Intelligent Driver Model is more
recently developed, and its main purpose was to improve
on Gipps’s model, since the latter loses realistic properties
in the deterministic limit. The paper [2] that attained sim-
ilar goals to our project also makes use of this driver model,
which can give us guidance on how to implement it.

5 SYSTEM DESCRIPTION
5.1 Robotic Vehicles

For 6 cars, we initially decided to go for a thriftier ap-
proach and get individual parts to assemble. To reduce the
amount of variability between the cars, we also decided on
a minimalist approach. This included a NodeMCU (dis-
cussed in next section), a L293D IC Motor Controller, 2
DC gear motors, 2 wheels, a wheel ball, 9V battery and a
mini breadboard. After assembling the car, we noticed 2
problems with this design. First, the construction of the
car was difficult to maintain without any structure to it.
Though all the necessary parts were included in this de-
sign, there was no frame to keep car intact, which would
make it more inconvenient to ensure all of the cars were
built the same. As a result, we decided to buy Adafruit’s
Mini Robot Rover Chassis Kit. The kit included 2 wheels,
a support wheel, 2 DC motors, a metal chassis and a top
metal plate with mounting hardware. This kit not only
gave structure to our cars but also was affordable for our
budget. It will make our fleet of cars more uniform and
more realistic in the context of our project. In addition,
the large flat mount on top of the car was an ideal place to

18-500 Design Report - March 2, 2020

Page 7 of 12

put an identifiable tag for our camera system. Ultimately,
the kit adapted to our overall project better and we are
using this hardware design when building the rest of the
cars.

5.2 Communication

With the NodeMCU ESP8266 as our logic board, we
promptly started testing its connection with Arduino IDE.
In order to do so, we downloaded the CP210x drivers that
allows the computer to recognize the serial port of the
board when connected through USB. We then set up the
Arduino IDE by downloading the ESP8266 community
board manager package. With the toolchain setup, we
ran into a few issues connecting and getting the computer
to recognize the board as a ESP8266 board. After much
research and debugging with multiple NodeMCU boards,
we realized it was a manufacturer error and finally got it
to work with a NodeMCU from a different manufacturer.
After the initial connection was made, we decided to test
the NodeMCU with the L298N driver shield to test the
motors. We connected the 4 output pins of the driver to
the 2 motors (2 each), the +12V input and ground pin to
the 9V battery, the +5V output pin (with the 12V jumper
enabled in the driver) to the NodeMCU and the controller
pins (ENA, ENB, IN1, IN2, IN3, IN4) to input ports of
the NodeMCU. After testing, we noticed the motors only
behave appropriately when the battery and USB cable are
both connected to the board. When only the battery is
powering the board, the motors behave unexpectedly. As
a result, we suspected it is a power issue and are currently
working to resolve this issue.

As mentioned in Section 4.3.2, we began testing with
Python sockets for the communication system. For testing
purposes, we connected both our server (laptop) and the
NodeMCU board to the same WiFi network and was able
to successfully send data. We tested by running the Python
server script on terminal that prompted an input to send
to the NodeMCU. For simplicity, we had the NodeMCU re-
spond by blinking its built-in LED and printing the server’s
message on the serial monitor. We found that by sending
a string to the NodeMCU took roughly 6 seconds, which
was far too slow for our requirements. We had to reflect on
what kind of data we would need to send and realized that
with how our track is designed (figure-8) and how the cars
are moving, we only need to send data for speed. Therefore,
we reduced the number of bits being sent and changed our
message type from a string to byte. The NodeMCU was
able to receive bytes almost instantaneously; we are still
working to get exact metrics on how fast the NodeMCU
receives data. Since the client and server are on different
devices, we have not figured out a way to relate timestamps
across devices. One possible option that we thought about
is using the time it takes for a server to send a message
and receive a confirmation message back from the client as
an upper bound for the communication latency. As an ex-
tension, we started testing with multiple clients connected

to the network to see how data will be sent and received.
To reduce the amount of data being sent, we decided that
broadcasting all the data to all of the vehicles would be
excessive. Even though this would make communication
non-blocking, sending less data to each vehicle would be
more efficient and require less computation for each vehi-
cle to know which part of the data being sent is specific to
them. Thus, we opted to create separate threads for each
client and when the server needs to notify a specific client
to move a specific speed, it would only send those bytes to
that client. We performed a small trial with 2 clients and
was able to successfully send different messages to differ-
ent clients. We are planning on extending this to multiple
NodeMCUs and verifying the communication system as we
proceed with our implementation.

5.3 Camera

After researching into potential cameras to buy, we de-
cided on the Logitech HD C920 Pro Webcam. Not only
was this camera relatively inexpensive, but it integrated
well with Python and OpenCV, which is the language and
library that we intended to use for object detection. The
camera also has a horizontal field of view of 70 degrees
which we thought would be sufficient to view the whole
track at a reasonable height. The C920 has good reso-
lution and a frame rate of 30 fps which would suffice for
our purposes. We also noticed that a couple of teams in
previous years had also made use of the camera so we felt
more confident about its performance. Alongside the cam-
era, we also decided to get a mount that could place the
camera directly above the track. We found a cost-friendly
mount that could clamp onto a table or chair and hover
the camera over track. The mount has over 3 degrees of
freedom which allowed for much flexibility when configur-
ing the camera setup.

To test the ArUco detection, we started by printing out
12 markers on a grid and assessed the algorithm’s speed
and accuracy on the markers. We ran the test a couple
of times and chose the worst performance as a baseline.
We defined the algorithm’s accuracy by the percentage of
frames where all 12 markers were identified. It was able to
achieve 100% accuracy on all tests and a worst case com-
putation time of 70 ms. We then tried spreading out the
tags and again testing its performance. We printed out six
tags and spread them out at about 2 feet away from each
other. We mounted the camera above the markers at ap-
proximately 4.5 feet from the ground. The six tags were
detected at roughly 28 frames per second which evaluates
to about 35 ms for processing one frame. This process-
ing time corroborates evidence from our test with the 12
tags which took about 70 ms to process. Lastly, we tested
out the algorithms performance on moving tags. Since we
did not yet have our robotic vehicles moving, we moved
the tags in front of the camera manually. There were brief
moments when the tags were not detected and we suspect
that it might be due to a slight blur of the video frame

18-500 Design Report - March 2, 2020

Page 8 of 12

induced by a moving tag or some error with moving the
tags manually. We do recognize the fact that this may lead
to problems so we will run a more accurate test once we
get the cars moving. In the worst case scenario, we can
fall back to the image thresholding method which is more
robust to blurring.

5.4 Car-Following Model

The Intelligent Driver Model relates the positions and
velocities of individual vehicles based on the the vehicles
directly in front. The model defines the following notation
[2]:

e v is the velocity the vehicle drives at in free traffic,

e 5g is the minimum following distance necessary be-
tween vehicles,

e T is the minimum possible time to the vehicle in front,
e ¢ is the maximum vehicle acceleration,

e b is the comfortable braking deceleration (positive
number),

e § is the acceleration exponent (usually set at 4),
e 1, is the position of the front of vehicle « at time ¢,
e v, is the speed of the vehicle « at time ¢, and

e [, is the length of the vehicle.

The model defines the net distance between two vehicles
as,

3)

Sa ‘= Ta—1 — Ta — loz—l

and the approaching rate between two vehicles as,

Avy = Vg — Va—1- (4)

Using Equations 1 and 2, the model is able to define
the function of acceleration of an individual vehicle as a
function of time,

5 so + vaT + VaAvg \ 2
accy, = a |:[— <’Ua) _ (o 2Vab) (5)
Vo Sa

Due to some obstacles with powering the circuits on-
board the vehicles, we have yet to test these parameters to
define maximum acceleration, minimum time to vehicle in
front, etc. Because the robotic vehicles in our simulation
are not robo-taxis with passengers, we are able to increase
our maximum acceleration and have harsher braking in or-
der to loosen our constraints slightly.

5.5 Information Constraints

For the non-cooperative case, since we decided not
to include individual sensors on the vehicles, we needed
our constraints to accurately simulate what vehicles would
”see” in a non-cooperative setting. We will enforce a ra-
dius around each vehicle and when making its decision,
only expose the vehicle to the obstacles within the radius.
The server, which will be performing the computation and
decision-making on behalf of the vehicle, will plan based
on this constrained information and relay the decision to
the car.

For the cooperative case, the information available to
each vehicle will also be bound by some radius. But a key
difference is that each vehicle will also have information on
the other vehicles’ intended paths, which provides a much
more thorough picture of the moving parts in the system.
This extra knowledge does not benefit the vehicles in our
case with a figure-8 track because each vehicle only has one
path to travel in, thus the speed of the vehicle will also de-
note the vehicle’s intended path. However, if we were to
consider our previous track design with two lanes, a vehicle
could continue in its own lane or change lanes. Even if a
vehicle is slowing down, its intended path could be to come
to a stop or to switch into the other lane. Knowing if/when
a vehicle would change into a lane in the cooperative case
would allow other cars to prepare ahead of time and slow
down rather than react abruptly to the lane change. While
this is important for real-world advantages to cooperative
autonomous driving, we probably will not be able to ex-
plicitly demonstrate it in this project.

5.6 Scheduling Algorithm

A key difference in the cooperative case that will be
highlighted in the figure-8 demo is that the vehicles will be
able to make a collective decision that optimizes the entire
system’s goals. When examining contention in the shared
center lane in the non-cooperative case, vehicles in the left
track would view a stopped car in the right track as an
obstacle that does not interfere with their path through
the center lane. Thus, each car in the left track would con-
tinue through the center lane, starving the vehicles in the
right track. However, to optimize the throughput in the
overall system, we can implement a scheduling algorithm
on the server side that will ensure fairness by granting cars
that have been waiting longer by the center lane a higher
priority to pass through.

This algorithm is similar to protocols defining how re-
sources are shared between threads fairly, except in this
case, the mutually exclusive resource is access to the center
lane and each thread’s priority is dynamic. We intend to
devise this algorithm from scratch, and it could be as sim-
ple as keeping a running counter for number of ticks each
vehicle has been waiting. However, the algorithm might
include some minimum waiting threshold for a vehicle be-

18-500 Design Report - March 2, 2020

Page 9 of 12

fore its priority is elevated, and the solution would require
a detailed driving model for the interaction between cars
around the center lane in order for the yielding cars to slow
down and allow the prioritized cars to accelerate through
the center lane. It will be difficult to formally prove that
this algorithm is optimal, therefore we will focus on just
being able to achieve improvements in our throughput.

6 PROJECT MANAGEMENT
6.1 Schedule

Refer to Figures 9 and 10 for our project’s schedules.
As shown, there are 2 schedules: our initial plan (Figure 9)
and our updated plan after making a few design changes
(Figure 10). As we began implementing and testing our de-
signs, we discovered better alternatives and improvements
to our original design. Some of these updates including
using the ArUco Object Detection, the shape and size of
the track, the motion and interactions between the car and
hardware implementation of the vehicles. Though we made
changes to our plan, we anticipated this from the beginning
and allocated enough time for implementation and testing.
In both schedules, it is apparent from the different colors
the parallelism in our work.

6.2 Team Member Responsibilities

By the nature of our project, we split the responsibili-
ties into 3 parts: Robotic Vehicles/Communication, Object
Detection and Path Planning. Serris is taking lead on the
design of the robotic vehicles and how they will communi-
cate with one another. This includes deciding on tradeoffs
in order to maximize control over vehicles while minimiz-
ing communication latency. She will also work with Kylee
to test the vehicles with various motor speeds to establish
metrics for the driving models.

Tito is in charge of the global camera system. His tasks
include deciding on an object detection model for the scope
of our project. He will also work on incorporating homog-
raphy or any other solution to ensure accurate localization
of the vehicles. Tito will get metrics for testing this model
and also help Kylee with the Path Planning algorithm.

Lastly, Kylee is in charge of the path planning algo-
rithms for both the cooperative and non-cooperative modes
as well as other computation necessary for keeping the ve-
hicles on track. This entails being able to find the relative
positions of the vehicles and the track. It also requires im-
plementing the Intelligent Driver Model, and devising then
implementing a scheduling algorithm for the cooperative
case.

6.3 Budget

Refer to Table 2 for our project’s budget. This includes
components we have already purchased and components we

plan on purchasing. As shown below, there are some parts
that overlap in functionality including individual parts for a
car and motor driver. As mentioned in Section 5, these pur-
chases were due to design changes that we thought would
simplify and benefit our project.

6.4 Risk Management

Our project involved many components which none of
us had much experience with. In order to mitigate the
budget risk, we decided to get the bare minimum that we
needed of each component in order to begin preliminary
testing and assess its performance. After researching pos-
sible robot car models, we settled on two relatively cheap
robot kits. One of them was slightly cheaper than the other
but also wasn’t as sturdy. We decided to get one of each
and compare the two before choosing a design for the rest
of the cars.

We realized that our solution approach was very reliant
on the communication between the server and the cars
so we decided to test out the simplest scenario of server
communication. Since the server will be connecting with
all the nodes we decided to get two NodeMCUs which was
the minimum amount needed to test out multi-client server
communication. We reasoned that once we were able to
communicate to two NodeMCUs, we could then scale out
to multiple clients. We made the order for our parts as
soon as possible so we could get familiar with the different
components of our project. Doing so allowed us to discover
problems early on which allowed us to make the neces-
sary design changes. For example, we noticed that it took
roughly 6 seconds for the server to communicate a string
to the NodeMCU while it took practically no time to com-
municate a byte. These tests allowed us to reconsider our
design for what and how we were communicating in order
to meet our requirements. When calculating our budget,
we took into account the possibility of damaged parts so
we made allowances for extra components if needed. We
plan to have 6 cars on the track but budgeted for 8. We
also made the decision to do all the path planning on the
server rather than on the microcontroller. This lessens the
load on the microcontroller enabling us to get a less pow-
erful and cheaper device like the NodeMCU as opposed to
a more capable but expensive Raspberry Pi.

For every decision made, we tried to have at least one
other fallback option. Instead of the NodeMCU microcon-
troller, we also held the option of an ESP32 chip mounted
on an Arduino Uno for the server-client communication.
We also considered communication via Bluetooth. For the
object detection, we had 3 options in mind; the YOLO-v3
neural network, Image thresholding, and ArUco marker de-
tection. Upon hearing of the ArUco detection library, we
immediately began testing its performance on our project
setting. We tested the detection speed and accuracy and
confirmed that they met the requirements. When bench-
marking the performance of the object detection library,

18-500 Design Report - March 2, 2020

Page 10 of 12

we focused on the worst case performance. We kept track
of the longest amount of time it took to detect a set of
markers, across multiple test iterations.

7 RELATED WORK

The Prorok lab supervised by a Cambridge University
professor, Amanda Prorok, also worked on a similar project
[1]. The project involved an experimental testbed consist-
ing of 16 miniature RC vehicles. Their experiment was ex-
ecuted on a multi-lane track with an obstacle placed on one
of the lanes. The demonstration showed how the communi-
cation between vehicles could prevent a buildup of traffic on
the blocked lane. Their primary goal was on safety as they
tested the fleet in both driving modes with normal and
aggressive driving behaviors. In their experiments, from
non-cooperative to cooperative driving, they were able to
see a 35% improvement of traffic flow with normal driving
and a 45% improvement with aggressive driving.

8 SUMMARY

From our initial solution approach, our project has un-
dergone many design changes. However, they are a result of
refining our design requirements and simplifying the prob-
lem to focus on our main goal: comparing the effects be-
tween cooperative and non-cooperative autonomous driv-
ing. To get an accurate measurement of our system’s per-
formance, we immediately began implementing and test-
ing our designs to make the necessary design changes early
on. From what we have encountered, we have been able to
address most of our design challenges with concrete met-
rics through testing or potential alternatives as we continue
to experiment. Overall, we believe we have made good
progress in our project, and it will continue to advance as
we finalize our project.

References

[1] Nicholas Hyldmar, Yijun He, Amanda Prorok. A Fleet
of Miniature Cars for Experiments in Cooperative Driv-
ing. Paper presented at the International Conference
on Robotics and Automation (ICRA 2019). Montréal,
Canada, 2019.

[2] Treiber, Martin, Hennecke, Ansgar, Helbing, Dirk.
”Congested traffic states in empirical observations and
microscopic simulations”, Physical Review E, 62 (2):
1805-1824. 2000.

18-500 Design Report - March 2, 2020

Page 11 of 12

Tasks

Abstract (1/23)

Proposal Presentation (2/3)
Design Review Presentation (2/16)
Design Review Report (3/2)
Interim Demo (3/30-4/1)

Final Presentation (4/26)

Final Report (5/3)

Order supplies + shipping

Research on Arduino, L293D, WiFi

Research on OpenCV, object detection
Research on Path Planning algos

Set up track/camera

Build test robot and test server communication
Create wireless connection between multiple devices
Write starter opencv code

Interface camera with python code

Test object detection algorithms with camera
Implement framework code to simulate cars
Test path planning code on robotic car

Find Python interface for Arduino IDE

|dentify each vehicle's location and orientation with camera

Connect camera data to send to vehicles
Test planning algos with multiple vehicles
Build and connect all vehicles

Test demo scenarios

Verification and Testing Metrics

Tasks

Design Review Report (3/2)
Interim Demo (3/30-4/1)
Final Presentation (4/26)
Final Report (5/3)

Build test robot and test server communication

Appendix A

March

15 22 29 5

- Everyone
Kylee
Tito
Serris
| [T]
|
Figure 9: Initial Gantt Chart
Feb March April
23 1 8 15 22 29 5 12 19 26
T Key
- Everyone
Kylee
Tito
Serris

Create wireless connection between multiple devices

Research on homography

Test object detection with camera at an angle
Implement framework code to simulate cars
Test path planning code on robotic car
Connect camera data to send to vehicles
Test planning algos with multiple vehicles
Build and connect all vehicles

Test demo scenarios

Verification and Testing Metrics

Figure 10: Updated Gantt Chart after design changes

18-500 Design Report - March 2, 2020

Page 12 of 12

Purchased
Item Quantity per | Order Quan- | Total Price
Order tity
Mini Robot Chassis Kit 1 1 29.95
L293D IC 10 1 8.00
DC Motors + Wheels 4 1 14.59
Roller Ball 1 1 5.68
Mini Breadboard 6 2 13.96
NodeMCU 3 3 38.97
9 Volt Batteries 8 1 10.99
Logitech HD Pro Webcam C290 || 1 1 59.99
Logitech Webcam Mount 1 1 19.98
L298N Motor Controllers 5 1 13.99
On and Off Switches 12 1 9.88
TOTAL 225.98
Need to Purchase

Item Quantity per | Order Quan- | Total Price

Order tity
Mini Robot Chassis Kit 1 5 149.75
L298N Motor Controllers 5 1 13.99
TOTAL 163.74

Used from Lab
Ttem
Jumper Wires
Battery Clips

Total Budget
State Price
Purchased 225.98
Need to Purchase 163.74
TOTAL 389.72

Table 2: Budget of tools needed for the project

