Cooperative vs Non-Cooperative Autonomous Driving

 $\bullet \bullet \bullet$

Team A1: Tito Anammah, Serris Lew, Kylee Santos

Application Area

- Autonomous driving will likely be the future framework of transportation
 - But not yet safe or trusted
- Simulate and measure the effects of non-cooperative vs cooperative autonomous driving
 - **Non-cooperative**: optimizing *individual* goals from sensing immediate surroundings
 - **Cooperative**: optimizing overall *system* goals by communicating with nearby vehicles
- Experiment with 6 cars moving in circles on a figure-8 track
- Compare throughput between approaches
 - Throughput: How many cars pass the center lane of track in certain amount of time

Solution Design Decisions

- Figure-8
 - Simplifies path planning
 - Vehicles only change speeds, not direction
- No individual sensors
 - Digresses from overall goal of project
- Global camera system
 - GPS location is imprecise on a small scale
 - Can more accurately detect pose and location of vehicles
- Communication with central server
 - Implement information constraints on server-side
 - Simulate "V2V communication"

System Specification

2

Aruco Marker Detection

- Determine positions

3

 Enforce information constraints

4

- Compute path planning

Robotic Vehicles / Communication

- Robot Rover Chassis Kit
 - \circ Large, flat mount on top for identifiable tag
- L298N Driver
 - Dual H-Bridge: controls speed and direction of motors
 - Compatible with NodeMCU board
- NodeMCU ESP8266 Board
 - Unlike bluetooth, allows multiple vehicles under the same network
 - Cost-effective
- Need to implement:
 - Centralized system between all vehicles and server
 - How data will be sent while minimizing latency

Vehicle Detection

- Logitech C920 camera
 - Integrates well with OpenCV
 - \circ 56.5° field of view
- ArUco Marker Detection
 - Integrates well with OpenCV
 - Fast, robust object detection
 - \circ Yolo only detects "standard" objects and vehicles
- Homography
 - Direct overhead camera placement required
 - Preprocess a transformation matrix
 - Map pixels from warped frame for accurate positions

Server Computation 3

- Individual vehicle and track position
 - ArUco detection \rightarrow Homography matrix \rightarrow Positions
 - 3 vehicles define properties of circle
- Adjust vehicle path on circular track
- Apply Intelligent Driver Model (non-cooperative)
 - Defines equations for car-following behavior
- Detect impending path collisions (cooperative)
 - Use knowledge of nearby vehicles' paths
- Apply scheduling algorithm (cooperative)
 - Prevent starvation for vehicles waiting to cross center lane

$$a_{ ext{IDM}} = lpha \left[1 - \left(rac{v}{v_0}
ight)^{\delta} - \left(rac{s^{\star}(v, \Delta v)}{s}
ight)^2
ight]$$

Driver Model

Total Following Distance

Latency: Distance traveled during ArUco detection, path planning, and communication

- Stopping: Distance traveled between receiving a stop command and coming to a complete stop
- **Buffer**: Distance remaining between stopped vehicle and obstacle

Metrics

Number of cars on a track	3	Latency Distance	10.25 cm		
Max Vehicle Speed	50 cm/sec	Stopping Distance	2 cm		
Detection Latency	150 ms	Buffer Distance	5 cm		
Computation Latency	5 ms	Total Following Distance	17.25 cm		
Communication Latency	50 ms	Circumference of one track	96.75 cm		

Length of track:145 cmWidth of track:80 cmHeight of camera:107 cm

Width Length

Requirements / Validation

- Video processing computation in **150 ms**
- Path planning computation in **5** ms
- Communication latency from laptop to vehicles in **50 ms**
- 3 cm precision in determining vehicle's position
 - Tests marker detection and homography
- **5 cm** deviation from track
- **0** collisions

30% increase in throughput in cooperative vs non-cooperative case

Final Design

Schedule

After testing our design, we made some changes to our implementation

- Discovered better alternatives
 - ArUco Object Detection
- Finalized metrics
 - Shape/size of track
 - Car interaction
- Hardware implementation
 - Car setup

	Feb	March			April							
Tasks	23	1	8	15	22	29	5	12	19	26		
Design Review Report (3/2)											Key	
Interim Demo (3/30-4/1)												Everyone
Final Presentation (4/26)												Kylee
Final Report (5/3)												Tito
												Serris
Build test robot and test server communication												
Create wireless connection between multiple devices												
Research on homography												
Test object detection with camera at an angle												
Implement framework code to simulate cars												
Test path planning code on robotic car												
Connect camera data to send to vehicles												
Test planning algos with multiple vehicles												
Build and connect all vehicles												
Test demo scenarios					1							
Verification and Testing Metrics												