
AutoPuzzlr

A0 - Andrew Conduff, Connor Maggio, Aneek Mukherjee

Taking the fun out of puzzles

Application Area

Puzzles are fun, relaxing, and beneficial for mental acuity, but time consuming.

More people could reap those benefits if puzzles took less time.

We are creating a CV-based solution to help people get more enjoyment out of
puzzles.

Those who may want to improve their fine motor skills will be able to work on
puzzles without having to struggle through finding the pieces themselves.

Solution Approach

Big Changes: We removed the 4-legged PVC frame, the Leap Motion hand
tracker, and the Epson 1776W Projector from our design due to losing access to the
tools/spaces/stores necessary to build them.

AutoPuzzlr consists of two main components: 1) a laptop computer and 2) a
Logitech C920S webcam.

1. Finger Detection is now entirely in OpenCV and detects a hand holding a point
for 3 seconds instead of a tap

2. The laptop computer replaces the projector as the UI and displays the
instructions, predicted solutions, and other visuals.

Solution Approach - Finger Detection

Big Changes: The Leap Motion tracker was removed and a new method of user
input purely using OpenCV

AutoPuzzlr’s finger detection now tracks the user’s hand in the webcam view using
OpenCV and identifies the fingertip in each frame.

When the user holds a position for 3 seconds (by resting their hand on the table),
the detection will recognize it as a “point” and crop out the area pointed to and
report that to the puzzle matching pipeline

Solution Approach - Puzzle Matching Pipeline

Big Changes: Added extra safety to the end of the pipeline if the keypoint +
RANSAC method was not strong enough.

The user inputs a picture of the final image of the puzzle (potentially the front of the
box). Then as the user points at a piece that image data is captured and sent to a
RANSAC based pipeline, wherein the features are matched and then displayed to
the user. If there are not enough key points to match the piece, (i.e. a very
featureless swath of sky) there is a fallback method which involves a more brute
force method of template matching with intermittent rotations and it chooses the
best approximation for the placement of the piece.

Solution Approach - User Interface

Big Changes: Using PyGame to develop the UI

● Most interaction through webcamera
● Setup Phase:

○ Input final image
○ Upload or Take Photo

● Tap Phase:
○ Finger Detection

● Piece Place Phase:
○ Displays Puzzle with red square around placement

Block Diagram

Complete Solution

Through the UI the user inputs a completed picture of the puzzle, then the camera
is pointed at the assorted puzzle pieces, with the picture side facing up with space
in between each piece. Then the user will point or tap a piece. This is detected
using our finger detection software running OpenCV. Once a tap is detected, a
picture of the tapped piece will be sent through the piece placement pipeline and
display on the uploaded image of the final puzzle with a box surrounding where
that piece should go. Then the user is able to place that piece where it should go
on the surface where the puzzle is being completed.

Name Requirement Actual
Measurement

Description

End-to-End
Suggestion

Latency

<4 seconds 1.2 seconds- 4.8
seconds

Avg. 1.4

AutoPuzzlr must calculate the
suggested location of a piece
within 4 seconds of recognizing a
user tap.

Suggestion
Precision

<0.5 inch 0.0 - 1.5 inch (based on
a 20 inch puzzle and
pixel translations)

AutoPuzzlr must suggest a
location within .5 inch of the
piece’s actual location.

Suggestion
Accuracy

90% 82% AutoPuzzlr must meet the
precision requirement for at least
90% of the suggestions.

High-Level User Requirements

Technical Requirements - Camera & Projector
Name Requirement Actual Description

Camera
Field of

View
100% of workspace 100% of workspace AutoPuzzlr’s camera must be able to see

the entire workspace (defined by the 4 legs).

Camera
Sensor 12+ MP resolution 12+ MP resolution

AutoPuzzlr’s camera sensor must have high
enough resolution and color detection to
identify features in <1” puzzle pieces.

Projector
Image 100% of workspace N/A AutoPuzzlr’s projector should project an

image that covers the entire workspace
(defined by the 4 legs).

Projector
Brightness

Sufficient to be visible
against workspace N/A

AutoPuzzlr’s projector requires sufficient
brightness and contrast to be visible against
the workspace (puzzle pieces and
background).

Metrics and Validation
Name Requirement Actual Description

Tap
Detection

<50 ms 250-300ms AutoPuzzlr must detect a tap and its location
in the camera frame within 50 ms.

Piece
Identification

<500 ms 10ms AutoPuzzlr must identify the piece being
tapped within 500 ms.

Piece
Matching

<3 seconds .3s - 4.5s (worst
case) (avg. .86s)

AutoPuzzlr must identify a probable location
for the puzzle piece within 3 seconds.

Response
Latency

<50 ms 10ms AutoPuzzlr will display a response animation
within 50 ms of a user action (tap) or
suggestion.

Project Management & Schedule (COVID Revision)

