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Abstract—AutoPuzzlr is an automatic puzzle-solving system 
that guides users as they work through a puzzle to speed up the 
sometimes lengthy process. We are using modern technology to 
allow our users to reap the mental benefits of solving puzzles while 
reducing the time committed and easing the difficulty, while also 
offering the benefit of ensuring that all pieces are accounted for. 
This is a niche and relatively untouched space commercially and 
no competing technology can claim the features that AutoPuzzlr 
will have, so we are pioneering a much more advanced and capable 
product for passionate puzzle solvers!

Index Terms—Computer Vision, Feature Matching, Hand-
tracking, Leap Motion, Projector, Puzzle, Solving, Tap Detection 

I. INTRODUCTION

utoPuzzlr is a project that is designed to help a user 
complete a puzzle using modern technology and an 

intuitive user interface for the user to interact with. Doing 
puzzles offer many benefits for their users, but sometimes these 
benefits can be hard to reap due to the time it takes to complete 
a puzzle as well as the difficulties puzzles can bring. 
Furthermore, the disappointment of finding out that there is a 
piece missing from the puzzle only after completing the rest of 
the puzzle can be minimized because of the capabilities of this 
project to rapidly count pieces. Given the niche area, there are 
few other competing technologies, and no other technology 
claims to be able to handle the same set of features this project 
is able to boast. This project can claim a more technologically 
advanced solution. (e.g. To count many pieces, a common 
strategy is just to weigh the total number of pieces and create 
an estimate). The goals of this project are to be able to guide a 
user to build a puzzle through a touch interface on the physical 
puzzle itself. This system, from user tap of a piece to display of 
where that piece should go in 4 seconds, for any piece within 
the workspace. This will be achieved through the use of a Leap 
Motion controller, a Logitech C920 webcam, and an Epson 
Powerlite projector all controlled by a Raspberry Pi Model 4.  
This project should achieve a 90% accuracy for piece placement 
within half an inch of the final piece placement.

II. DESIGN REQUIREMENTS

Our high-level user requirements are as follows:
 End-to-end suggestion latency: 4 seconds to provide a 

suggestion to the user

 Suggestion Precision: .5 inch between piece’s suggested 
and actual location

 Suggestion Accuracy: 90% of the time the piece will 
satisfy the precision requirement

We understand that we need to be able to account for some 
errors in the environment itself and that no computer vision 
code will be perfect so we thought that having a 90% suggestion 
accuracy would be a high enough placement accuracy score 
such that the user can rely on it, but if the piece does not fall 
within that half inch radius of where that piece should go, then 
that would be considered an inaccurate placement of a piece. 
Our design is robust for detailed pieces, but given that some 
puzzles have similar textures across wide swaths of the picture, 
there will be a circle of confidence of where that piece could be 
that will grow larger across similar areas. (e.g. in a puzzle with 
a lot of open sky with a lot of blank sky-blue pieces, then our 
accuracy will likely be a lot lower than a puzzle piece with a 
specific detail on it.) We chose a 4 second design time because 
of the limitations of technology and the algorithms we are 
using. We decided that 4 seconds was a tight enough constraint 
such that it would still feel intuitive and useful to a user, but 
gave us enough time to compute where these pieces should go. 

We have outlined that there is a 4 second response time 
between user input (tap) and the display of the projector onto 
the surface. We have further subdivided this into the following 
list:

 Tap Detection: 50 milliseconds from actual tap to tap 
notification in the back-end

 Piece Identification: 500 milliseconds from coordinates 
provided to CV system to identified piece

 Piece Matching: 3 seconds from identified piece to 
suggested location returned to back-end

 Response Latency: 50 milliseconds from a user tap 
notification or returned coordinates in the back-end a 
response graphic will be displayed.

Our timing requirements are derived from estimates of 
computation power required for the algorithms that we are 
using as well as our limited computation power of the 
Raspberry Pi.  Our 50ms timing requirement for tap detection 
is derived from the amount of time for a tap to be seen as highly 
responsive for human perception. 

Our hardware performance metrics are as follows:
 Camera Field of View: 100% of our ~24”x24” 

workspace

 Camera Sensor: 12+ MP resolution and good color 
identification

 Projector Image: 100% of our ~24”x24” workspace
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 Projector Brightness: Sufficient to be visible against 
workspace in varied light conditions

These requirements are based off of the size of the puzzle and 
we have an upper limit of about 20” by 20” for our maximum 
puzzle size. We came upon the 12+ MP resolution camera as 
this should be sufficient given the distance of the camera as well 
as the average size of puzzle pieces. The least technical of these 
requirements would be that of the projector’s brightness as it 
will be environmentally dependent, and that is up to the user’s 
light sensitivity. Some users may prefer a very bright projector 
light in a very dark room whereas others may want a softer 
display in a brighter environment. 

III.ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Our system architecture is described visually in Fig. 1.
Our system is composed of a PVC frame containing all of our 

components and defining the workspace for the user. The frame 
will hold the hardware for the system - a webcam, projector, 
hand-tracking sensor, and a Raspberry Pi for computation. 
These components were chosen to satisfy the user interaction 
requirements we set and we discuss the selection process in the 
following Section (IV). 

The software system is broken down into 4 libraries 
functioning like microservices - the CV system, the tap 
detection, the animation & display builder, and the back-end. 
The former three components each represent a core system 
operation in the user’s interaction cycle with the system. 

The user’s taps are first recognized by the tap detection and 
localization service, which is triggered by the back-end to start 
looking for taps. Only the coordinates of the tap are reported 
back via local socket. 

Fig. 1. A complete block diagram of out system architecture

Then, the CV system takes the remapped coordinates from 
the back-end and identifies the piece, runs its feature and 
orientation matching algorithm, and reports the location of the 
suggested final location, as coordinates, back to the back-end. 

Finally, the animation & display builder service takes the tap 
and suggestion coordinates from the back-end and creates and 
outputs animations to the user via the projector. 

Our system is architected in this way so that there is clear 
separation of responsibilities between components and a high 
level of possible parallelization in the development process, 
since there is a clear API between otherwise independent 
components. It also allowed us to thoughtfully create the API 
so that minimal data is being transferred to help keep our 
latency down.
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IV.DESIGN TRADE STUDIES

A. Physical Components
Our project requires a camera, a projector, and a frame. 

We have specific functions for each of these components and 
carefully considered our options.

1) Frame
Our frame was designed keeping in mind that it needs to 

be portable, adjustable, and relatively cheap. We decided to use 
1.5” diameter Schedule 40 PVC due to its sturdiness, light 
weight, and price compared to wood. We decided on a 1.5” 
diameter because of its rigidity and reasonable weight. We will 
need to drill screws into some of the PVC connections in order 
to mount the projector. This diameter leaves room for this.

In addition, PVC piping has reliable connectors that 
include sliding components. We may need to adjust the heights 
of our projector or cameras in our prototyping efforts. Using 
PVC makes this easily possible. 

Our design is susceptible to toppling over from the weight 
of the projector. We considered preventing by adding a 
counterweight to the base of the frame or simply adding an 
extending pipe to the base. Adding an extension would have an 
effect on the user’s workspace. Thus, a counterweight was a 
better option.

2) Surface
The work surface cannot reflect too much light as this affects 

the Leap Motion controller’s performance. We considered 
making the work surface clear acrylic or using a light absorbing 
fabric. We decided we would like to avoid adding legs below 
the surface. Thus, we will instead be covering the surface of the 
table with a sheet of Duvetyne fabric, which absorbs IR light 
and provides an even dark background. Further discussion of 
this decision is contained in Section IV.C.5.

3) Camera
We considered a few options for our camera. Initially, we 

were debating whether to use a DSLR, a smart phone camera, 
or a personal web camera. Personal web cameras are the best 
choice for our project’s scope. That is to say, a DSLR camera 
or a smartphone have far too many functions that would go 
unused for us. 

The web camera we decided to use is the Logitech C920. In 
choosing this, we mainly considered camera sensor size, 
megapixel count, and price. Thanks to CMU’s IDeATe and 
ECE departments we had lending access to a couple models 
including Logitech’s C615 and C920 webcams, and 
Quickcam’s Pro 9000 model. While each camera had a similar 
sensor size, the C920 has the largest megapixel count at 15 MP. 
Upon further testing, we decided that we would require this 
resolution to ensure our image recognition requirements. Past 
projects that have used OpenCV have succeeded using this 
camera.

4) Projector
Our projector was chosen based on size, throw ratio, lumens, 

and price. We would have liked to use a mini projector in order 
to cut down on weight, however they tended to have a low 
number of lumens. Since our product will be used in the light, 
we required at least 2500 lumens. In addition, we were looking 

for a high throw ratio in order to meet our requirements of 
projecting onto a 20” by 20” puzzle within a distance of 4 ft. 
The Apeman M7 mini and the Epson Powerlite 1776W were 
the only models that met the lumens and price specifications, as 
the Apeman was quite affordable and the Epson Powerlite was 
already owned by the ECE department. These and other 
projectors considered are shown in Fig. 2. Upon testing, we 
found that the Apeman projector projected a very wide screen 
that would limit us down to around 16” puzzle heights. The 
Epson Powerlite 1776W was the clear choice moving forward.

5) Computer
Our computation currently is being developed on a quad core 

i7 with a 2.6 GHz processor. We are hoping to use a Raspberry 
Pi in order to localize the entire project onto our frame. 
However, the Raspberry Pi has a quad core with a 1.3 GHz 
processor. If this does not meet our timing requirements upon 
testing, we will likely revert the computation back to one of our 
laptops, or offload to an AWS GPU instance, based on our 
latency measurements at the time.

B. Computer Vision
Our computer vision relies heavily on a pipeline of image 

processing techniques, however we need to balance both the 
speed of these applications as well as how robust they are, and 
there is still a lot of tweaking to be done as we get the parts we 
need and see how everything translates computationally to the 
Pi. 

1) Technologies Used
We have decided to use the Python version of OpenCV 

version 4.2.0, as it was the most up to date version at the start 
of our project and the OpenCV community is vast and helpful 
in case we ran into any problems.

2) Thresholding
We have tested many methods, but for now we are planning 

on using OpenCV’s built in THRESH_BINARY_INV method 
for thresholding, in combination with THRESH_OTSU, in 
order to increase the confidence of our thresholding. (See 
labeled picture #2 in Fig. 3). We felt like this gave us the best 
combination of background filtering as well as the ability to 
clearly choose what part of the image is the puzzle piece. Fig. 3 
picture 4 preserves the picture, but that is not important for this 
step of our algorithm. Once we have this piece separated, we 
are able to extract only those pixel values and consequently 
detect features across them.

3) Feature Detection
While we could go with methods like SIFT and SURF we 

Fig. 2. A table of various projectors we considered
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Fig. 3. An image of a puzzle piece after various thresholding operations

didn’t feel like it was necessary as they are not open source in 
all cases. We have opted to use the ORB method as it is not only 
comparable to those methods, but also free and this means that 
we will not have to write these functions, adding more time to 
what would be our project.

4) Background Cloth
We have decided to use Duvetyne fabric as the base of our 

operations as compared to table surfaces (glossy wood and 
glossy capstone benches) as well as my laptop sleeve, we have 
opted to get a fabric which is known to vastly limit these kinds 
of reflection and should stop the creation of many of the 
artifacts and noise seen in the background of the previous photo.

C. Tap Detection
We wanted user interaction with our service to be as close 

to the reality of solving a puzzle, so we are utilizing the Leap 
Motion controller to identify users’ hands and taps in the 
workspace. This removes a hardware layer between users and 
their puzzles and allows us to get user input in an unobtrusive 
way. Some key design decisions for this subsystem included 
choice of SDK, technologies used, API design, orientation of 
the controller, and the surface of the workspace.

1) SDK
The Leap Motion controller was originally designed for 

using as a touchscreen/keyboard replacement or creating a 
virtual reality control surface. However, the company has since 
pivoted toward Virtual Reality applications and their recent 
libraries are exclusively for Unity/Unreal Engine. To use the 
latest SDK with a Python program, we would have to spin up a 
VR project on the Raspberry Pi. Therefore, we are utilizing an 
older Python SDK rather than the latest version so that we can 
avoid the unnecessary and significant computation overhead of 
running a VR project.

2) Technologies Used
Our decision to use the older SDK constrained us to 

Python 2.7 for interacting with the SDK and controller. 
However, we wanted to take advantage of the modern features 
and performant libraries available to us in Python 3.8.1, so we 

decided to separate the entire Tap Detection & Localization 
component into a separate process that communicates with the 
back-end via local socket. This decision allows us to separate 
the Python 2.7 code while still maintaining minimal latency by 
using local sockets. We decided that since these modules were 
part of the same program and would be running concurrently, 
we will be setting up the socket on initialization and closing it 
on teardown, which will greatly simplify development.

3) API Design
Since we are communicating with the back-end via local 

socket, we needed to define an API so that we can minimize 
data transferred and have a clear understanding of how both 
sides will communicate to support parallel development. We 
decided to have a call-and-response style of system, where the 
backend sends a trigger, and the service responds with the data 
on the following detected tap. 

We considered alternatives, such as constantly running 
detection and reporting every found tap, but this approach 
required the back-end to continuously monitor the received 
messages to make sure that it responded to the tap that the user 
intended to make when they are prompted by the system to tap 
a piece, rather than any randomly recognized taps made while 
computation on a previous piece was occurring. It made the 
most sense to only report a detected tap when the system was 
expecting one.

4) Orientation
Due to the original design goals of the Leap Motion 

controller, the software was optimized for using the controller 
face-up on a surface, tracking hands above it. Further research 
also showed that this older SDK included optimizations for 
tracking palms, since it assumed the upward-facing orientation. 
This orientation is not possible for our purposes, since the user 
will be tapping puzzle pieces directly on the work surface rather 
than tapping the air above them, so we experimented with the 
hand tracking under viable orientations - mainly, mounted 
overhead facing down, and mounted on a vertical column and 
facing sideways. 

We utilized software from Leap Motion to view the actual IR 
camera inputs to make these observations. We realized 
immediately that the tracking was extremely poor when 
oriented sideways, as most of the hand is blocked and only the 
side of a palm is visible to the camera. This proved to be nearly 
impossible for the tracking software to recognize, with the 
palm-tracking optimizations enabled or disabled. Overhead 
tracking was better, but the effective range was far lower than 
claimed in the data sheet. We were able to track hands up to 
approximately 10”, while the datasheet claimed two feet. One 
issue was certainly that our use case necessitated that the 
controller track the backs of users’ hands rather than the palms, 
but another issue was the work surface itself, which we discuss 
in the following section. Regardless, the downward-facing 
orientation is clearly the better option, and that is the orientation 
we decided to move forward with.

5) Work Surface
We had determined that the downward-facing orientation 

was our best option, but we hadn’t yet been able to reach the 
performance levels we were looking for and were promised in 



18-500 Design Report: 03/02/2020 5

the device specifications. We continued to use the visualization 
tool and compared performance between the down-facing and 
standard, upward-facing orientations. We observed that the 
primary difference in the images between the orientations was 
the contrast of the hands against the background in the camera 
input, as shown in Fig. 4.A and Fig. 4.C. The surface below the 
hands was reflecting IR light back into the camera and washing 
out the image when the controller was down-facing, but there 
was no such reflection in the up-facing orientation and any 
hands in-frame were clearly contrasted against the background.

We tested this hypothesis by holding the controller 6’ above 
the ground and tracking hands 4’-5’ above the ground. The 
distance to the ground would ensure that little to no IR light was 
reflected back into the camera and would accurately simulate 
the upward-facing orientation. With that setup, we were able to 
achieve the 2’ tracking distance that we were looking for, and 
looking at the image in the visualization tool, shown in Fig. 4.B, 
confirmed our hypothesis that the reflected IR light from a 
nearby surface was causing the tracking issues. 

We researched mitigations and discovered that an IR 
absorbent material covering the workspace would increase the 
contrast of the users’ hands and still allow them to work on a 
surface rather than 4’ in air. We found a few options, including 
Aktar foil and Duvetyne fabric. Aktar was an order of 
magnitude more expensive than Duvetyne ($199 and $17 for 
comparable amounts, respectively), so we decided to use a 
Duvetyne sheet to cover the work surface under the frame and 
to provide the necessary contrast for the Leap Motion 
controller.

D. Software Back-end
The software back-end is crucial to orchestrating the 

different components of the system and the key design decision 
made to fit our requirements and the requirements of each other 
service was the choice of language used.

1) Language Used
Taking into account the skills and experience of the team, our 

primary language options are Python and C/C++. There are 
definite performance benefits to using C/C++, since it is a 
compiled language. However, we decided to use Python 3.8.1 
(the latest version) for the bulk of this project because it is much 
more familiar to us and thus allows for a higher speed of 
development. Additionally, the OpenCV implementation in 
Python uses compiled C++ under-the-hood, so we are able to 
utilize the benefits of compiled OpenCV and use Python.

Fig. 4. Images of the camera input from the Leap Motion controller

V. SYSTEM DESCRIPTION

A. Physical Components
1) Frame

The frame will be made of PVC and hold all the hardware 
components. Its base defines the work surface for the user to 
complete the puzzle within. From the base, two horizontal bars 
providing mount points extend upward at variable heights so 
that the resolution can be fine-tuned after construction. One 
mount point will be at approximately 2 ft., and the other at 
approximately 3 ft. The PVC opposite the higher mount point 
will be filled with sand or a similar material to provide a 
counterweight for balance. The frame is displayed in Fig. 5.

2) Surface
The work surface will be covered by a sheet of Duvetyne 

fabric, which the frame will sit on top of. Duvetyne absorbs IR 
light and will provide an evenly dark background for the 
webcam, so it will improve the accuracy of both the tap 
detection and the computer vision systems.

3) Computer
Our software will run on a Raspberry Pi 4 Model B mounted 

upward-facing on the lower mount point of the frame, along 
with the webcam and Leap Motion controller.

4) Camera
The Logitech C920 webcam will be mounted downward-

facing on the lower mount point of the frame. It will be 
connected to the Pi via an attached USB cable and centered over 
the work surface.

5) Projector
The Epson PowerLite 1776W projector will be mounted 

downward-facing on the higher mount point of the frame. It will 
be connected to the Pi via an HDMI cable and offset to the edge 
of the work surface, since it projects at an angle.

6) Leap Motion Controller
Our Leap Motion controller will be mounted downward-

facing on the lower mount point of the frame. It will be 
connected to the Pi via an included USB cable, and slightly 
offset toward the side of the frame closer to the user, as their 
hands will likely be working in the space closer to them rather 
than at the far edges of the work surface, and this positioning 
will improve accuracy in the most-used space.

Fig. 5. An AutoCAD drawing of our frame design
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B. Computer Vision
Our computer vision relies heavily on a pipeline of image 

processing techniques. 
1) The Tap

While not purely computer vision, this sets off the pipeline. 
This is discussed further in the following Section V.C.

2) Segmentation
Once we have resolved the user’s tap location, through our 

software back-end’s coordinate re-mapping, we are able to 
determine the exact piece that is tapped by the user, and 
segment that piece out away from the background. This is 
accomplished through a variety of thresholding techniques as 
well as some other effects to reduce the effects of glaring on 
any puzzle piece so that the features are more easily identified 
within the piece itself.

3) Feature Extraction 
Once we have the piece we are looking to match isolated, we 

can run our feature extraction method to try to find parts of the 
puzzle piece with notable features like corners and edges, and 
map them to that piece.

4) Feature Matching 
Once we have these features, we are able to match them with 

the features extracted from the puzzle’s final image. From there 
we will perform different confidence checks to ensure that the 
algorithm is confident that it has found the right piece. These 
features are also fairly rotationally robust, meaning when the 
user taps a piece that piece will not have to be in the correct 
orientation for it to be recognized as the correct piece by our 
algorithm. 

Once the system is confident, it will communicate this 
information to the software back-end, which will display a 
graphic showing a circle around the piece, a circle around where 
that piece should go, and an arrow pointing between them. 
These graphics are discussed further in Section V.D.

C. Tap Detection
The Tap Detection & Localization component will run as an 

independent Python 2.7 process and will interact with the Leap 
Motion controller over USB 2.0 and the software back-end via 
local socket. The Leap Motion v2 SDK will be used to interact 
with the controller, which provides functions for examining 
frames and identifying tap gestures. The service will 
communicate with backend using a very simple API. The back-
end triggers the service by sending a single byte of data: a “T” 
character. The service then waits until it detects a tap, identifies 
the coordinates of the tap in its own 3D coordinate system, 
makes sure that the tap was within the bounds of the work 
surface (in 3D space, so taps in air or outside the frame will be 
filtered), and then sends the 2D coordinates back to the back-
end as 2 floats, using Python’s built in functions struct.pack and 
struct,unpack to make sure the data is as small as possible. 
There will be no time-out period.

D. Animations & Display Builder
The Animations & Display Builder component will be a 

Python 3.8.1 library that uses PyGame as a graphics library. It 
will output the PyGame display via HDMI to the projector and 

provide functions for the back-end to call to display animations 
and text to the user. There are only a few unique animations and 
graphics necessary for our service, limited to: a general text 
display, animated circles of various sizes for identifying 
locations, and arrows for tracing paths between locations. Thus, 
the library will provide 6 functions for adding and removing 
these graphics from the outputted display, as well as 
initialization and teardown functions for the display.

E. Software Back-end
The software back-end will be a Python 3.8.1 process that 

orchestrates the operations of the three preceding software 
components and runs the user interaction cycle, as well as 
initialization of the puzzle solving. It will provide the prompts 
to the Display Builder to instruct the user, trigger the CV system 
to store the solved puzzle solution when it is placed below the 
webcam by the user, and then enter the puzzle solving cycle. 
The cycle is composed of a few steps. First, the back-end adds 
a prompt instructing the user to tap a piece to the display and 
triggers the tap detection service. The user taps a piece, and 
when it is reported by the tap detection service, the back-end 
removes the text prompt, adds a circle animation around the 
coordinates of the tap, and reports the coordinates to the CV 
library. Once the CV library responds with the coordinates of 
the identified piece and the suggested location, the back-end 
clears the display and adds animations for both locations and an 
arrow between them. Finally, after some time, the back-end 
clears the display and calls the CV system to check if a 
completed rectangle could be identified, signaling the end of the 
puzzle solving loop. If one cannot be found, the puzzle is still 
incomplete and the back-end outputs the text prompt and starts 
the loop again. 

A key component of the back-ends operations is re-mapping 
coordinates in between systems, since each device will have a 
different point-of-view and coordinate system. Since we will 
know the final positions of all the physical components, we will 
hard-code this transformation once we have measured and 
calculated it once. This allows each device to report native 
coordinates and allows the back-end to perform whatever 
conversion are necessary between each system.

VI.PROJECT MANAGEMENT

A. Schedule
Our schedule is expanded at the end of the document. In 

general, each team member has a task to complete every week. 
In general, we’ve been following a cycle of research, then into 
implementation-refinement cycle, and then into integration. 
This has worked well so far, but we have yet to integrate the 
pieces together.

B. Team Member Responsibilities
Andrew is taking the lead on the Computer Vision aspects 

with a secondary responsibility in the integration of the 
software with the raspberry pi and hardware integration insofar 
as it is helpful for the computer vision.  Aneek is taking the lead 
on gesture controls and shares a bulk of the integration of the 
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project with Connor.  Connor is heading the projector 
interfacing and design of the frame, as well as helping Andrew 
with the Computer Vision aspects.

C. Budget
We have utilized less than half our budget so far. The 

complete Bill of Materials and their associated costs is included 
at the end of the report. 

D. Risk Management
So far, our risk management has revolved around alternative 

computational methods, such as exchanging the raspberry pi for 
a laptop or AWS, and giving ourselves some slack. As 
showcased in the budget subheading, we have plenty of budget 
left in case we need to pivot our design or if we break something 
or there are any other surprise budgetary needs, we have left 
room for those extra pieces as well as potentially rushed 
shipping. We also have given ourselves the ability to forego the 
Leap Motion and go back with our fall back design which 
would involve little more computer vision, where we designate 
a spot on the workspace for the user to place a piece for which 
then the computer vision pipeline is run.

VII.RELATED WORK

There is very little related work available commercially. We 
have seen some other attempts on physical puzzles, but they 
were only preliminary results and didn’t end up working. We 
also found a simulation that was able to match pieces to a 
puzzle, but they had the pieces in the right orientation 
originally. Furthermore, the simulation was only working with 
virtual pieces which used perfect pieces, instead of the 
imperfections we are dealing with by using real world pieces.

VIII.SUMMARY

We are hoping that our project will be able to meet our 
requirements, but since we have not fully completed our 
project, there could be bugs we run into.

A. Future work
This will depend on how far we get, but we would like to 

expand this algorithm to not require a visual of the box front. 
This felt like it would be out of the scope of the time and budget 
constraints.

B. Lessons Learned
We think that there is a lot that can be learned from accurately 

and realistically giving yourself a good schedule. We think that 
a lot can be learned by accurately tuning your values to grab the 
relevant images as well as making sure that you take into 
account your development platform early on into development.
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Item Cost Description Status

Epson 
Powerlite 

1776W 
Projector

0.00
Borrowed 
from ECE 

dept.
Arrived

Logitech 
C920 

Webcam
69.99 Purchased 

on Amazon Waiting

Raspberry Pi 
4 Model B 73.11 Purchased 

on Adafruit Arrived

Duvetyne 
Sheet 22.68

Purchased 
via 

independent 
distributor

Waiting

Leap Motion 
controller 106.64 Purchased 

on Adafruit Waiting

PVC piping TBD
PVC pipes 
are not yet 
purchased

Yet to be 
purchased

Total 272.42


