
18-500 Design Report: 03/02/2020 1

Abstract—AutoPuzzlr is an automatic puzzle-solving system
that guides users as they work through a puzzle to speed up the
sometimes lengthy process. We are using modern technology to
allow our users to reap the mental benefits of solving puzzles while
reducing the time committed and easing the difficulty, while also
offering the benefit of ensuring that all pieces are accounted for.
This is a niche and relatively untouched space commercially and
no competing technology can claim the features that AutoPuzzlr
will have, so we are pioneering a much more advanced and capable
product for passionate puzzle solvers!

Index Terms—Computer Vision, Feature Matching, Hand-
tracking, Leap Motion, Projector, Puzzle, Solving, Tap Detection

I. INTRODUCTION

utoPuzzlr is a project that is designed to help a user
complete a puzzle using modern technology and an

intuitive user interface for the user to interact with. Doing
puzzles offer many benefits for their users, but sometimes these
benefits can be hard to reap due to the time it takes to complete
a puzzle as well as the difficulties puzzles can bring.
Furthermore, the disappointment of finding out that there is a
piece missing from the puzzle only after completing the rest of
the puzzle can be minimized because of the capabilities of this
project to rapidly count pieces. Given the niche area, there are
few other competing technologies, and no other technology
claims to be able to handle the same set of features this project
is able to boast. This project can claim a more technologically
advanced solution. (e.g. To count many pieces, a common
strategy is just to weigh the total number of pieces and create
an estimate). The goals of this project are to be able to guide a
user to build a puzzle through a touch interface on the physical
puzzle itself. This system, from user tap of a piece to display of
where that piece should go in 4 seconds, for any piece within
the workspace. This will be achieved through the use of a Leap
Motion controller, a Logitech C920 webcam, and an Epson
Powerlite projector all controlled by a Raspberry Pi Model 4.
This project should achieve a 90% accuracy for piece placement
within half an inch of the final piece placement.

II. DESIGN REQUIREMENTS

Our high-level user requirements are as follows:
 End-to-end suggestion latency: 4 seconds to provide a

suggestion to the user

 Suggestion Precision: .5 inch between piece’s suggested
and actual location

 Suggestion Accuracy: 90% of the time the piece will
satisfy the precision requirement

We understand that we need to be able to account for some
errors in the environment itself and that no computer vision
code will be perfect so we thought that having a 90% suggestion
accuracy would be a high enough placement accuracy score
such that the user can rely on it, but if the piece does not fall
within that half inch radius of where that piece should go, then
that would be considered an inaccurate placement of a piece.
Our design is robust for detailed pieces, but given that some
puzzles have similar textures across wide swaths of the picture,
there will be a circle of confidence of where that piece could be
that will grow larger across similar areas. (e.g. in a puzzle with
a lot of open sky with a lot of blank sky-blue pieces, then our
accuracy will likely be a lot lower than a puzzle piece with a
specific detail on it.) We chose a 4 second design time because
of the limitations of technology and the algorithms we are
using. We decided that 4 seconds was a tight enough constraint
such that it would still feel intuitive and useful to a user, but
gave us enough time to compute where these pieces should go.

We have outlined that there is a 4 second response time
between user input (tap) and the display of the projector onto
the surface. We have further subdivided this into the following
list:

 Tap Detection: 50 milliseconds from actual tap to tap
notification in the back-end

 Piece Identification: 500 milliseconds from coordinates
provided to CV system to identified piece

 Piece Matching: 3 seconds from identified piece to
suggested location returned to back-end

 Response Latency: 50 milliseconds from a user tap
notification or returned coordinates in the back-end a
response graphic will be displayed.

Our timing requirements are derived from estimates of
computation power required for the algorithms that we are
using as well as our limited computation power of the
Raspberry Pi. Our 50ms timing requirement for tap detection
is derived from the amount of time for a tap to be seen as highly
responsive for human perception.

Our hardware performance metrics are as follows:
 Camera Field of View: 100% of our ~24”x24”

workspace

 Camera Sensor: 12+ MP resolution and good color
identification

 Projector Image: 100% of our ~24”x24” workspace

A0: AutoPuzzlr

Authors: Andrew Conduff, Connor Maggio, Aneek Mukherjee: Electrical and Computer Engineering,
Carnegie Mellon University

A

18-500 Design Report: 03/02/2020 2

 Projector Brightness: Sufficient to be visible against
workspace in varied light conditions

These requirements are based off of the size of the puzzle and
we have an upper limit of about 20” by 20” for our maximum
puzzle size. We came upon the 12+ MP resolution camera as
this should be sufficient given the distance of the camera as well
as the average size of puzzle pieces. The least technical of these
requirements would be that of the projector’s brightness as it
will be environmentally dependent, and that is up to the user’s
light sensitivity. Some users may prefer a very bright projector
light in a very dark room whereas others may want a softer
display in a brighter environment.

III.ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Our system architecture is described visually in Fig. 1.
Our system is composed of a PVC frame containing all of our

components and defining the workspace for the user. The frame
will hold the hardware for the system - a webcam, projector,
hand-tracking sensor, and a Raspberry Pi for computation.
These components were chosen to satisfy the user interaction
requirements we set and we discuss the selection process in the
following Section (IV).

The software system is broken down into 4 libraries
functioning like microservices - the CV system, the tap
detection, the animation & display builder, and the back-end.
The former three components each represent a core system
operation in the user’s interaction cycle with the system.

The user’s taps are first recognized by the tap detection and
localization service, which is triggered by the back-end to start
looking for taps. Only the coordinates of the tap are reported
back via local socket.

Fig. 1. A complete block diagram of out system architecture

Then, the CV system takes the remapped coordinates from
the back-end and identifies the piece, runs its feature and
orientation matching algorithm, and reports the location of the
suggested final location, as coordinates, back to the back-end.

Finally, the animation & display builder service takes the tap
and suggestion coordinates from the back-end and creates and
outputs animations to the user via the projector.

Our system is architected in this way so that there is clear
separation of responsibilities between components and a high
level of possible parallelization in the development process,
since there is a clear API between otherwise independent
components. It also allowed us to thoughtfully create the API
so that minimal data is being transferred to help keep our
latency down.

18-500 Design Report: 03/02/2020 3

IV.DESIGN TRADE STUDIES

A. Physical Components
Our project requires a camera, a projector, and a frame.

We have specific functions for each of these components and
carefully considered our options.

1) Frame
Our frame was designed keeping in mind that it needs to

be portable, adjustable, and relatively cheap. We decided to use
1.5” diameter Schedule 40 PVC due to its sturdiness, light
weight, and price compared to wood. We decided on a 1.5”
diameter because of its rigidity and reasonable weight. We will
need to drill screws into some of the PVC connections in order
to mount the projector. This diameter leaves room for this.

In addition, PVC piping has reliable connectors that
include sliding components. We may need to adjust the heights
of our projector or cameras in our prototyping efforts. Using
PVC makes this easily possible.

Our design is susceptible to toppling over from the weight
of the projector. We considered preventing by adding a
counterweight to the base of the frame or simply adding an
extending pipe to the base. Adding an extension would have an
effect on the user’s workspace. Thus, a counterweight was a
better option.

2) Surface
The work surface cannot reflect too much light as this affects

the Leap Motion controller’s performance. We considered
making the work surface clear acrylic or using a light absorbing
fabric. We decided we would like to avoid adding legs below
the surface. Thus, we will instead be covering the surface of the
table with a sheet of Duvetyne fabric, which absorbs IR light
and provides an even dark background. Further discussion of
this decision is contained in Section IV.C.5.

3) Camera
We considered a few options for our camera. Initially, we

were debating whether to use a DSLR, a smart phone camera,
or a personal web camera. Personal web cameras are the best
choice for our project’s scope. That is to say, a DSLR camera
or a smartphone have far too many functions that would go
unused for us.

The web camera we decided to use is the Logitech C920. In
choosing this, we mainly considered camera sensor size,
megapixel count, and price. Thanks to CMU’s IDeATe and
ECE departments we had lending access to a couple models
including Logitech’s C615 and C920 webcams, and
Quickcam’s Pro 9000 model. While each camera had a similar
sensor size, the C920 has the largest megapixel count at 15 MP.
Upon further testing, we decided that we would require this
resolution to ensure our image recognition requirements. Past
projects that have used OpenCV have succeeded using this
camera.

4) Projector
Our projector was chosen based on size, throw ratio, lumens,

and price. We would have liked to use a mini projector in order
to cut down on weight, however they tended to have a low
number of lumens. Since our product will be used in the light,
we required at least 2500 lumens. In addition, we were looking

for a high throw ratio in order to meet our requirements of
projecting onto a 20” by 20” puzzle within a distance of 4 ft.
The Apeman M7 mini and the Epson Powerlite 1776W were
the only models that met the lumens and price specifications, as
the Apeman was quite affordable and the Epson Powerlite was
already owned by the ECE department. These and other
projectors considered are shown in Fig. 2. Upon testing, we
found that the Apeman projector projected a very wide screen
that would limit us down to around 16” puzzle heights. The
Epson Powerlite 1776W was the clear choice moving forward.

5) Computer
Our computation currently is being developed on a quad core

i7 with a 2.6 GHz processor. We are hoping to use a Raspberry
Pi in order to localize the entire project onto our frame.
However, the Raspberry Pi has a quad core with a 1.3 GHz
processor. If this does not meet our timing requirements upon
testing, we will likely revert the computation back to one of our
laptops, or offload to an AWS GPU instance, based on our
latency measurements at the time.

B. Computer Vision
Our computer vision relies heavily on a pipeline of image

processing techniques, however we need to balance both the
speed of these applications as well as how robust they are, and
there is still a lot of tweaking to be done as we get the parts we
need and see how everything translates computationally to the
Pi.

1) Technologies Used
We have decided to use the Python version of OpenCV

version 4.2.0, as it was the most up to date version at the start
of our project and the OpenCV community is vast and helpful
in case we ran into any problems.

2) Thresholding
We have tested many methods, but for now we are planning

on using OpenCV’s built in THRESH_BINARY_INV method
for thresholding, in combination with THRESH_OTSU, in
order to increase the confidence of our thresholding. (See
labeled picture #2 in Fig. 3). We felt like this gave us the best
combination of background filtering as well as the ability to
clearly choose what part of the image is the puzzle piece. Fig. 3
picture 4 preserves the picture, but that is not important for this
step of our algorithm. Once we have this piece separated, we
are able to extract only those pixel values and consequently
detect features across them.

3) Feature Detection
While we could go with methods like SIFT and SURF we

Fig. 2. A table of various projectors we considered

18-500 Design Report: 03/02/2020 4

Fig. 3. An image of a puzzle piece after various thresholding operations

didn’t feel like it was necessary as they are not open source in
all cases. We have opted to use the ORB method as it is not only
comparable to those methods, but also free and this means that
we will not have to write these functions, adding more time to
what would be our project.

4) Background Cloth
We have decided to use Duvetyne fabric as the base of our

operations as compared to table surfaces (glossy wood and
glossy capstone benches) as well as my laptop sleeve, we have
opted to get a fabric which is known to vastly limit these kinds
of reflection and should stop the creation of many of the
artifacts and noise seen in the background of the previous photo.

C. Tap Detection
We wanted user interaction with our service to be as close

to the reality of solving a puzzle, so we are utilizing the Leap
Motion controller to identify users’ hands and taps in the
workspace. This removes a hardware layer between users and
their puzzles and allows us to get user input in an unobtrusive
way. Some key design decisions for this subsystem included
choice of SDK, technologies used, API design, orientation of
the controller, and the surface of the workspace.

1) SDK
The Leap Motion controller was originally designed for

using as a touchscreen/keyboard replacement or creating a
virtual reality control surface. However, the company has since
pivoted toward Virtual Reality applications and their recent
libraries are exclusively for Unity/Unreal Engine. To use the
latest SDK with a Python program, we would have to spin up a
VR project on the Raspberry Pi. Therefore, we are utilizing an
older Python SDK rather than the latest version so that we can
avoid the unnecessary and significant computation overhead of
running a VR project.

2) Technologies Used
Our decision to use the older SDK constrained us to

Python 2.7 for interacting with the SDK and controller.
However, we wanted to take advantage of the modern features
and performant libraries available to us in Python 3.8.1, so we

decided to separate the entire Tap Detection & Localization
component into a separate process that communicates with the
back-end via local socket. This decision allows us to separate
the Python 2.7 code while still maintaining minimal latency by
using local sockets. We decided that since these modules were
part of the same program and would be running concurrently,
we will be setting up the socket on initialization and closing it
on teardown, which will greatly simplify development.

3) API Design
Since we are communicating with the back-end via local

socket, we needed to define an API so that we can minimize
data transferred and have a clear understanding of how both
sides will communicate to support parallel development. We
decided to have a call-and-response style of system, where the
backend sends a trigger, and the service responds with the data
on the following detected tap.

We considered alternatives, such as constantly running
detection and reporting every found tap, but this approach
required the back-end to continuously monitor the received
messages to make sure that it responded to the tap that the user
intended to make when they are prompted by the system to tap
a piece, rather than any randomly recognized taps made while
computation on a previous piece was occurring. It made the
most sense to only report a detected tap when the system was
expecting one.

4) Orientation
Due to the original design goals of the Leap Motion

controller, the software was optimized for using the controller
face-up on a surface, tracking hands above it. Further research
also showed that this older SDK included optimizations for
tracking palms, since it assumed the upward-facing orientation.
This orientation is not possible for our purposes, since the user
will be tapping puzzle pieces directly on the work surface rather
than tapping the air above them, so we experimented with the
hand tracking under viable orientations - mainly, mounted
overhead facing down, and mounted on a vertical column and
facing sideways.

We utilized software from Leap Motion to view the actual IR
camera inputs to make these observations. We realized
immediately that the tracking was extremely poor when
oriented sideways, as most of the hand is blocked and only the
side of a palm is visible to the camera. This proved to be nearly
impossible for the tracking software to recognize, with the
palm-tracking optimizations enabled or disabled. Overhead
tracking was better, but the effective range was far lower than
claimed in the data sheet. We were able to track hands up to
approximately 10”, while the datasheet claimed two feet. One
issue was certainly that our use case necessitated that the
controller track the backs of users’ hands rather than the palms,
but another issue was the work surface itself, which we discuss
in the following section. Regardless, the downward-facing
orientation is clearly the better option, and that is the orientation
we decided to move forward with.

5) Work Surface
We had determined that the downward-facing orientation

was our best option, but we hadn’t yet been able to reach the
performance levels we were looking for and were promised in

18-500 Design Report: 03/02/2020 5

the device specifications. We continued to use the visualization
tool and compared performance between the down-facing and
standard, upward-facing orientations. We observed that the
primary difference in the images between the orientations was
the contrast of the hands against the background in the camera
input, as shown in Fig. 4.A and Fig. 4.C. The surface below the
hands was reflecting IR light back into the camera and washing
out the image when the controller was down-facing, but there
was no such reflection in the up-facing orientation and any
hands in-frame were clearly contrasted against the background.

We tested this hypothesis by holding the controller 6’ above
the ground and tracking hands 4’-5’ above the ground. The
distance to the ground would ensure that little to no IR light was
reflected back into the camera and would accurately simulate
the upward-facing orientation. With that setup, we were able to
achieve the 2’ tracking distance that we were looking for, and
looking at the image in the visualization tool, shown in Fig. 4.B,
confirmed our hypothesis that the reflected IR light from a
nearby surface was causing the tracking issues.

We researched mitigations and discovered that an IR
absorbent material covering the workspace would increase the
contrast of the users’ hands and still allow them to work on a
surface rather than 4’ in air. We found a few options, including
Aktar foil and Duvetyne fabric. Aktar was an order of
magnitude more expensive than Duvetyne ($199 and $17 for
comparable amounts, respectively), so we decided to use a
Duvetyne sheet to cover the work surface under the frame and
to provide the necessary contrast for the Leap Motion
controller.

D. Software Back-end
The software back-end is crucial to orchestrating the

different components of the system and the key design decision
made to fit our requirements and the requirements of each other
service was the choice of language used.

1) Language Used
Taking into account the skills and experience of the team, our

primary language options are Python and C/C++. There are
definite performance benefits to using C/C++, since it is a
compiled language. However, we decided to use Python 3.8.1
(the latest version) for the bulk of this project because it is much
more familiar to us and thus allows for a higher speed of
development. Additionally, the OpenCV implementation in
Python uses compiled C++ under-the-hood, so we are able to
utilize the benefits of compiled OpenCV and use Python.

Fig. 4. Images of the camera input from the Leap Motion controller

V. SYSTEM DESCRIPTION

A. Physical Components
1) Frame

The frame will be made of PVC and hold all the hardware
components. Its base defines the work surface for the user to
complete the puzzle within. From the base, two horizontal bars
providing mount points extend upward at variable heights so
that the resolution can be fine-tuned after construction. One
mount point will be at approximately 2 ft., and the other at
approximately 3 ft. The PVC opposite the higher mount point
will be filled with sand or a similar material to provide a
counterweight for balance. The frame is displayed in Fig. 5.

2) Surface
The work surface will be covered by a sheet of Duvetyne

fabric, which the frame will sit on top of. Duvetyne absorbs IR
light and will provide an evenly dark background for the
webcam, so it will improve the accuracy of both the tap
detection and the computer vision systems.

3) Computer
Our software will run on a Raspberry Pi 4 Model B mounted

upward-facing on the lower mount point of the frame, along
with the webcam and Leap Motion controller.

4) Camera
The Logitech C920 webcam will be mounted downward-

facing on the lower mount point of the frame. It will be
connected to the Pi via an attached USB cable and centered over
the work surface.

5) Projector
The Epson PowerLite 1776W projector will be mounted

downward-facing on the higher mount point of the frame. It will
be connected to the Pi via an HDMI cable and offset to the edge
of the work surface, since it projects at an angle.

6) Leap Motion Controller
Our Leap Motion controller will be mounted downward-

facing on the lower mount point of the frame. It will be
connected to the Pi via an included USB cable, and slightly
offset toward the side of the frame closer to the user, as their
hands will likely be working in the space closer to them rather
than at the far edges of the work surface, and this positioning
will improve accuracy in the most-used space.

Fig. 5. An AutoCAD drawing of our frame design

18-500 Design Report: 03/02/2020 6

B. Computer Vision
Our computer vision relies heavily on a pipeline of image

processing techniques.
1) The Tap

While not purely computer vision, this sets off the pipeline.
This is discussed further in the following Section V.C.

2) Segmentation
Once we have resolved the user’s tap location, through our

software back-end’s coordinate re-mapping, we are able to
determine the exact piece that is tapped by the user, and
segment that piece out away from the background. This is
accomplished through a variety of thresholding techniques as
well as some other effects to reduce the effects of glaring on
any puzzle piece so that the features are more easily identified
within the piece itself.

3) Feature Extraction
Once we have the piece we are looking to match isolated, we

can run our feature extraction method to try to find parts of the
puzzle piece with notable features like corners and edges, and
map them to that piece.

4) Feature Matching
Once we have these features, we are able to match them with

the features extracted from the puzzle’s final image. From there
we will perform different confidence checks to ensure that the
algorithm is confident that it has found the right piece. These
features are also fairly rotationally robust, meaning when the
user taps a piece that piece will not have to be in the correct
orientation for it to be recognized as the correct piece by our
algorithm.

Once the system is confident, it will communicate this
information to the software back-end, which will display a
graphic showing a circle around the piece, a circle around where
that piece should go, and an arrow pointing between them.
These graphics are discussed further in Section V.D.

C. Tap Detection
The Tap Detection & Localization component will run as an

independent Python 2.7 process and will interact with the Leap
Motion controller over USB 2.0 and the software back-end via
local socket. The Leap Motion v2 SDK will be used to interact
with the controller, which provides functions for examining
frames and identifying tap gestures. The service will
communicate with backend using a very simple API. The back-
end triggers the service by sending a single byte of data: a “T”
character. The service then waits until it detects a tap, identifies
the coordinates of the tap in its own 3D coordinate system,
makes sure that the tap was within the bounds of the work
surface (in 3D space, so taps in air or outside the frame will be
filtered), and then sends the 2D coordinates back to the back-
end as 2 floats, using Python’s built in functions struct.pack and
struct,unpack to make sure the data is as small as possible.
There will be no time-out period.

D. Animations & Display Builder
The Animations & Display Builder component will be a

Python 3.8.1 library that uses PyGame as a graphics library. It
will output the PyGame display via HDMI to the projector and

provide functions for the back-end to call to display animations
and text to the user. There are only a few unique animations and
graphics necessary for our service, limited to: a general text
display, animated circles of various sizes for identifying
locations, and arrows for tracing paths between locations. Thus,
the library will provide 6 functions for adding and removing
these graphics from the outputted display, as well as
initialization and teardown functions for the display.

E. Software Back-end
The software back-end will be a Python 3.8.1 process that

orchestrates the operations of the three preceding software
components and runs the user interaction cycle, as well as
initialization of the puzzle solving. It will provide the prompts
to the Display Builder to instruct the user, trigger the CV system
to store the solved puzzle solution when it is placed below the
webcam by the user, and then enter the puzzle solving cycle.
The cycle is composed of a few steps. First, the back-end adds
a prompt instructing the user to tap a piece to the display and
triggers the tap detection service. The user taps a piece, and
when it is reported by the tap detection service, the back-end
removes the text prompt, adds a circle animation around the
coordinates of the tap, and reports the coordinates to the CV
library. Once the CV library responds with the coordinates of
the identified piece and the suggested location, the back-end
clears the display and adds animations for both locations and an
arrow between them. Finally, after some time, the back-end
clears the display and calls the CV system to check if a
completed rectangle could be identified, signaling the end of the
puzzle solving loop. If one cannot be found, the puzzle is still
incomplete and the back-end outputs the text prompt and starts
the loop again.

A key component of the back-ends operations is re-mapping
coordinates in between systems, since each device will have a
different point-of-view and coordinate system. Since we will
know the final positions of all the physical components, we will
hard-code this transformation once we have measured and
calculated it once. This allows each device to report native
coordinates and allows the back-end to perform whatever
conversion are necessary between each system.

VI.PROJECT MANAGEMENT

A. Schedule
Our schedule is expanded at the end of the document. In

general, each team member has a task to complete every week.
In general, we’ve been following a cycle of research, then into
implementation-refinement cycle, and then into integration.
This has worked well so far, but we have yet to integrate the
pieces together.

B. Team Member Responsibilities
Andrew is taking the lead on the Computer Vision aspects

with a secondary responsibility in the integration of the
software with the raspberry pi and hardware integration insofar
as it is helpful for the computer vision. Aneek is taking the lead
on gesture controls and shares a bulk of the integration of the

18-500 Design Report: 03/02/2020 7

project with Connor. Connor is heading the projector
interfacing and design of the frame, as well as helping Andrew
with the Computer Vision aspects.

C. Budget
We have utilized less than half our budget so far. The

complete Bill of Materials and their associated costs is included
at the end of the report.

D. Risk Management
So far, our risk management has revolved around alternative

computational methods, such as exchanging the raspberry pi for
a laptop or AWS, and giving ourselves some slack. As
showcased in the budget subheading, we have plenty of budget
left in case we need to pivot our design or if we break something
or there are any other surprise budgetary needs, we have left
room for those extra pieces as well as potentially rushed
shipping. We also have given ourselves the ability to forego the
Leap Motion and go back with our fall back design which
would involve little more computer vision, where we designate
a spot on the workspace for the user to place a piece for which
then the computer vision pipeline is run.

VII.RELATED WORK

There is very little related work available commercially. We
have seen some other attempts on physical puzzles, but they
were only preliminary results and didn’t end up working. We
also found a simulation that was able to match pieces to a
puzzle, but they had the pieces in the right orientation
originally. Furthermore, the simulation was only working with
virtual pieces which used perfect pieces, instead of the
imperfections we are dealing with by using real world pieces.

VIII.SUMMARY

We are hoping that our project will be able to meet our
requirements, but since we have not fully completed our
project, there could be bugs we run into.

A. Future work
This will depend on how far we get, but we would like to

expand this algorithm to not require a visual of the box front.
This felt like it would be out of the scope of the time and budget
constraints.

B. Lessons Learned
We think that there is a lot that can be learned from accurately

and realistically giving yourself a good schedule. We think that
a lot can be learned by accurately tuning your values to grab the
relevant images as well as making sure that you take into
account your development platform early on into development.

REFERENCES

[1] Leap Motion Datasheet,
https://www.ultraleap.com/datasheets/Leap_Motion_Controller_Datashe
et.pdf

[2] OpenCV, https://opencv.org/
[3] Research paper on Leap Motion latency,

https://pdfs.semanticscholar.org/3aab/d55945b1460620e78ff040e23a819
f1523dc.pdf

https://www.ultraleap.com/datasheets/Leap_Motion_Controller_Datasheet.pdf
https://www.ultraleap.com/datasheets/Leap_Motion_Controller_Datasheet.pdf
https://opencv.org/
https://pdfs.semanticscholar.org/3aab/d55945b1460620e78ff040e23a819f1523dc.pdf
https://pdfs.semanticscholar.org/3aab/d55945b1460620e78ff040e23a819f1523dc.pdf

18-500 Design Report: 03/02/2020 8

18-500 Design Report: 03/02/2020 9

18-500 Design Report: 03/02/2020 10

Item Cost Description Status

Epson
Powerlite

1776W
Projector

0.00
Borrowed
from ECE

dept.
Arrived

Logitech
C920

Webcam
69.99 Purchased

on Amazon Waiting

Raspberry Pi
4 Model B 73.11 Purchased

on Adafruit Arrived

Duvetyne
Sheet 22.68

Purchased
via

independent
distributor

Waiting

Leap Motion
controller 106.64 Purchased

on Adafruit Waiting

PVC piping TBD
PVC pipes
are not yet
purchased

Yet to be
purchased

Total 272.42

