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Abstract—The project aims to shorten a video while preserving the 

salient features by applying 3D Seam Carving to a video. The approach 
functions by removing a series of continuous sections of pixels to 
shorten the time duration of the video. 

The project will implement the algorithm in software for research 
purposes. The team will additionally develop a system to accelerate the 
computation on an FPGA board. The accelerating system comprises 
three main system components: a software application on an external 
computer, a system on chip (SoC) running the Linux kernel, and the 
FPGA’s programmable fabric to perform the acceleration. 

  
Index Terms—Direct Memory Access (DMA), Processing System 

(PS), Programmable Logic (PL), Seam Carving, System on Chip (SoC) 

I. INTRODUCTION 
E have all been in the situation where we had limited 

time and wanted to watch a video at 1.5x speed to acquire 
the gist of it faster. The standard method of increasing a video’s 
playback speed is by uniformly increasing playback rate. This 
method disregards the content of the video, which can lead to 
the important portion of the video being sped up too much for 
the viewer to understand effectively. Our project aims to tackle 
this issue by applying a three-dimensional seam carving 
algorithm to increase video playback speed in a content-aware 
manner. Our final system will shorten a video (less than 7.5 
seconds in length, 320p resolution) by 1.5x. It will complete 
processing within 3 times the video length, while the most 

salient part of the video remains smooth and is played at (or 
close to) the original playback rate. 

Our project comprises of two foci: research into the 
application of seam carving to video in the time dimension and 
acceleration of the seam carving algorithm. Our research will 
determine the families of videos on which seam carving is most 
effective, as well as heuristic improvements to the algorithm 
that improve the output quality and computation speed. To 
accelerate the computation, we will use a Xilinx FPGA with an 
embedded system on chip. While the specific uses of this 
algorithm are subject to our research, condensing video to 
emphasize its salient features has applications in monitoring 
security feeds, watching tutorial videos, and viewing sports 
footage. 

II. DESIGN REQUIREMENTS 
Our system will increase the playback speed of a video by 

1.5x. A modified playback speed of 1.5 times was commonly 
amongst fellow students when watching a video of a familiar 
topic at a higher speed. We aim to provide a 1.5 times playback 
speed for videos of all content, by preserving the salient features 
of the video using the seam carving algorithm. This requirement 
will be tested by comparing the frame count of the original 
video and the resulting video. 

The resulting video must retain the most salient part of the 
video. This is a key goal of the project. The more important 
parts of the video must be played back at or close to the original 
speed. Furthermore, the resulting video must be smooth and 
retain the original order of events. These requirements will be 
verified by subjective judgement and quantitative energy 
function comparison. 

The system must be able to finish processing a video within 
3 times its length. We chose this specification because seam 
carving is a computationally heavy algorithm, and it won’t be 
applicable in real life without significant acceleration 
mechanism. This requirement will be verified using on-system 
timing. 

The system must be capable of processing a 320p, 24 fps 
video. We have derived the quality requirements of the input 
video based on the most widespread standards. In particular, 
320p is the minimum resolution for a regular YouTube video, 
and 24 fps is a common standard among video formats. 
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Fig. 1.   An example of a seam in the three-dimensional representation of a 
video. 
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III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 
Fig. 2 shows the block diagram of our overall system. We 

have divided our system into three main hardware components: 
the external computer, the on-board system on chip, and the 
programmable fabric. We address the purpose and dataflow of 
each component individually. 

A. External Computer 
The computer is the user interface to our system. The process 

begins with the user selecting their video. The pre-processing 
application parses the video from a standard playable format 
into a three-dimensional array of pixels. It is in this format that 
the video is transferred to the FPGA board over an Ethernet 
connection. When the board completes processing, the resulting 
video is received over the same connection in the same 
decompressed format. The post-processing application formats 
the video into a standard playable format and saves the result to 
file.  

B. System on Chip 
The system on chip is a dual-core ARM A9 processor 

embedded in the programmable fabric of the FPGA. It runs a 
TCP server to transfer video to and from the external computer. 
It controls the DMA engine, which transfers data to and from 
the BRAM in the programmable fabric. The SoC performs the 
more dynamic computation of the algorithm; it analyzes the 
energy map of the video (output by the programmable fabric), 
determines a low-energy seam to remove, and performs the 
memory operations required to remove the seam. The video and 
energy map reside in the DDR3 RAM, which can be accessed 
by the SoC as well as the programmable fabric through the 
DMA engine. 

The algorithm for selecting a seam is one of the parts of the 
system that has changed the most from the design report. We 
tested several different implementations and ultimately chose 
one that approximates the minimum-energy cut to improve 

performance. Section IV.A has a full description of the 
algorithm and its development. 

C. Programmable Fabric 
The programmable fabric contains several distinct 

components used by our system. The first one used in the flow 
of data is the DMA engine. It is controlled by the SoC to transfer 
pixel data to the programmable fabric and energy data from the 
fabric to the DDR3 RAM. The next component is the block 
RAM, or BRAM. This is temporary storage for the video 
frames being processed and the resulting energy data. The 
DMA engine can transfer data to and from the BRAM. 

The structure of memory transfer changed significantly since 
the design report. The original design had a structural conflict 
between the SoC and the programmable logic’s control of the 
DDR3 RAM. To avoid this issue, the current design uses the 
DMA engine described above to transfer data between the 
DDR3 and the BRAM. The decisions we made to reach this 
solution are documented in section IV.C. 

The last component in the data flow is the accelerator itself. 
This is custom RTL hardware that computes the energy of a 
video frame. The low-level design of the accelerator is 
described in detail in section IV.B. 

Every iteration of this data flow removes one seam. When 
the system on chip removes a seam, the programmable fabric 
must recompute the energy function of the altered frames. This 
process repeats until the desired video length is reached. 
 

 
 
 

  

 
Fig. 2.   High-level block diagram of system. 
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IV. SYSTEM DESCRIPTION 

A. Algorithm 
This subsection aims to describe the process in which our 

final algorithm was decided on. The general algorithm 
requirements consists of two main phases - mapping the video 
pixels to an energy map, and identifying a minimum energy 
sheet to carve out from the video. Throughout our project, we 
progressed through four different implementations as follows: 
The graph-cut approach, the sweep approach, the radix 
approach, and finally the improved radix approach. The original 
video used to produce output videos can be found at [Appendix 
B.1] 

The initial approach we took was to re-implement and adapt 
[1]’s approach of finding a min-cut on a directed graph. The 
algorithm first constructs an S-T graph with nodes representing 
video pixels and edges representing energy differences between 
nodes. This algorithm ensures a minimum energy sheet to be 
detected and removed per iteration, in addition to the sheet 
being monotonous and continuous. The algorithm also 
specified a forward-energy function be used to map energies, 
which aims to take into consideration the new energies 
introduced to the graph after removing a sheet from the video. 

This approach, although complete in terms of the conceptual 
requirements, did not meet our technical requirements of being 
able to process the video within a reasonable run time. The data 
structure used for the algorithm was also way too large for our 
accelerator to handle, especially when processing videos with 
high resolution. 

Given the discovery of our technical constraints, we decided 
to pivot to inventing an algorithm that would identify and 
remove seams frame by frame, which aggregates to construct a 
sheet. (Notice: frames here refer to planes in the height-time 
axis, not a literal video frame) Our initial implementation 
identifies a seam on the first frame of the video object using a 
well-established dynamic programming algorithm. The 
algorithm then proceeds to find a seam for the next frame, but 
with the frame width restricted by the width of the previous 
seam. The energy function used during this iteration does not 
take into account the concept of forward energy, by just taking 
the difference between adjacent pixels in time. 

This algorithm took less space and time to run, clearing our 
technical requirements. However the algorithm was far from 
ideal because 1.) the sheets are almost always discontinuous 
and 2.) the sheets always favor the minimum energy area of the 
first frame. The artifacts of the two flaws were seen as visual 
strips in the overall jittery output video [See Appendix B.2]. 

The new radix approach was therefore invented in order to 
fix the two problems that arose in our previous algorithm. In 
order to resolve the issue of having discontinuous sheets, we 
decided to refine the constraints on the iterative seam 
calculation; Instead of taking the minimum and maximum 
columns of the previously removed seam as constraints, we 
used the seam path itself ±1 pixel as the new constraint for the 
following seam calculation, ensuring the resulting sheet to be 
continuous. The issue of favoring a specific frame throughout 
the algorithm was mitigated by specifying a new radix frame 

per iteration. In detail, we decided to identify seams for all 
frames per iteration, take an average of the seams to identify 
which particular region of the frames had low energies, and 
finally pick out a frame with a seam that most closely followed 
the average seam. The radix frame that was picked out served 
as the starting point to constrain the following seam 
calculations, spanning out in both the front and back directions. 

This algorithm inherited the benefits of the previous 
algorithm in terms of space, while enhancing the quality of the 
sheet selection. The output had less distortions and is overall 
more presentable than the previous one. [See Appendix B.3]. 

Although the new algorithm was conceptually and 
functionally correct, the output was still not satisfactory, as it 
was visually obvious that the video was processed in some way. 
This is when we decided to improve the energy mapping phase 
of the algorithm. The energy function of each pixel is a measure 
of how different it is from adjacent pixels. We define pixel 
difference as: 

𝛿𝛿(𝑎𝑎, 𝑏𝑏) = (𝑟𝑟𝑎𝑎 − 𝑟𝑟𝑏𝑏)2 + (𝑔𝑔𝑎𝑎 − 𝑔𝑔𝑏𝑏)2 + (𝑏𝑏𝑎𝑎 − 𝑏𝑏𝑏𝑏)2 
Our original formulation of the energy function summed the 

pixel difference between the target pixel and a neighbor in each 
direction: 

𝐸𝐸�𝑝𝑝𝑥𝑥,𝑦𝑦,𝑡𝑡� = 𝛿𝛿�𝑝𝑝𝑥𝑥,𝑦𝑦,𝑡𝑡 , 𝑝𝑝𝑥𝑥+1,𝑦𝑦,𝑡𝑡� + 𝛿𝛿�𝑝𝑝𝑥𝑥,𝑦𝑦,𝑡𝑡 , 𝑝𝑝𝑥𝑥,𝑦𝑦+1,𝑡𝑡�
+ 𝛿𝛿(𝑝𝑝𝑥𝑥,𝑦𝑦,𝑡𝑡 , 𝑝𝑝𝑥𝑥,𝑦𝑦,𝑡𝑡+1) 

This accurately matches the definition of energy. However, 
it evenly weights the differences in all dimensions, while we are 
only cutting in the time dimension. The main paper describing 
seam carving on video [1] uses “forward energy” as their energy 
function. This measures the energy of pixels that are adjacent 
after a cut, rather than before. We model forward energy by 
defining energy as the pixel difference between the previous 
and subsequent pixel in time. 

𝐸𝐸�𝑝𝑝𝑥𝑥,𝑦𝑦,𝑡𝑡� = 𝛿𝛿(𝑝𝑝𝑥𝑥,𝑦𝑦,𝑡𝑡−1, 𝑝𝑝𝑥𝑥,𝑦𝑦,𝑡𝑡+1) 
Removing the lowest-energy seam results in making the most 

similar pixels adjacent under this energy definition. Adopting 
this formulation of the energy function amazingly smoothed out 
the output. [See Appendix B.4] 

The new algorithm also introduced a new bottleneck, which 
was the time of having to re-identify seams for each frame just 
to take an average for every iteration. The average finding 
portions took over a minute for a 4 second video. Therefore in 
order to reduce the run time with a comparable effect on output 
quality, we decided to pick a small number of random frames 
to calculate the average seam. We also further constrained this 
method to include only frames from the middle 100 frames of 
the video data structure, because 1.) most of the actions of a 
video happen in the middle of the screen and 2.) some of our 
input videos needed to be processed to fit our 320x180 video 
resolution, resulting in black letterboxes on both sides of the 
image frame. 

Our improved radix approach reduced our computing time 
by 60x, and still produced results with qualities comparable to 
the old “more complete” algorithm. [See Appendix B.5] 
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B.  Energy Computation Accelerator 
Our energy computation accelerator interfaces with the 

BRAM to receive pixel data and to send energy data. Pixels are 
represented using three 8-bit intensities, one each for red, green, 
and blue. The total pixel width is 32 bits to align with the 
processor’s native word size. Each energy is represented using 
16 bits, which allows us to pack each energy map into half the 
space of the corresponding frame. 

The BRAM uses 1024-bit data words, equivalent to 32 pixels 
or 64 energies. Because pixels are twice as large as energies, we 
must read two words from the BRAM for every one word we 
write. We use a shift register to hold previous words so we can 
compute the energies of two words in the same clock cycle, as 
seen in Fig. 3. 

Due to the simplified energy function, the energy 
computation has been significantly simplified from the design 
report. Only one pixel difference must be computed for each 
energy, rather than the three as in the design report. In general, 
this led to lower resource utilization (Table I) than projected, 
with the exception of block RAM. We introduced multi-
buffering to our design to prevent a conflict between the DMA 

transfer and the energy computation. This was the main reason 
for the increase in block RAM use from our design report. The 
other obvious change from the design report is the elimination 
of DSP block usage. This is a result of the synthesis tool. We 
hypothesize that because fewer multiplier blocks are required 
in the new design and more LUTs are free, the synthesizer has 
the freedom to implement the multiplications in LUTs instead 
of using the dedicated DSPs.  

One problem we encountered was working with little-endian 
data. The data from the BRAM is little-endian (as is the data 
stored in the DRAM), while the intuitive way to slice the 1024-
bit data word into 32-bit pixels is to interpret it as big-endian. 
This issue is easily dealt with once diagnosed, just be aware of 
it when designing hardware that works with data from the 
processor. 

C. Memory Transfer System 
In developing the system, we developed several iterations on 

the design of our memory transfer system. Fig. 4 shows the 
three versions we designed or developed. 

For the design report, we designed the system to include a 
DDR3 controller as a part of the accelerator. This design allows 
the programmable fabric to access the memory independently 
of the system on chip. We encountered practical problems when 
implementing this design because it requires connecting two 
interfaces to the DDR3’s one port. 

For the in-lab demo, we redesigned the system to avoid this 
conflict. Using Vivado’s block diagram tool, we connected the 
programmable system’s BRAM directly to the SoC’s memory 
system over AXI (Advanced eXtensible Interface). This design 
is simple to implement and to use. However, the SoC in the 
middle of all data transfers is a bottleneck. The processor is 
slow (1 GHz) and is already burdened with much of the 

 
Fig. 3.   Energy computation block diagram. 

TABLE I.  FPGA RESOURCE UTILIZATION 

Resource Design FPGA Capacity [3] Utilization 
Block RAM (Kib) 18738 19620 95.5% 
Look-Up Tables 35389 218000 16.2% 

Flip-Flops 26148 437000 5.98% 
DSP Slices 0 900 0% 

 

 
Fig. 4.   Three iterations on the memory transfer system at different project 
milestones. From top to bottom: design report, in-lab demo, and final demo. 
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computation. For the final demo we wanted to refine our system 
to remove the SoC from the data transfer pathway. 

We accomplished this by introducing a DMA engine. The 
DMA engine is controlled by the processing system to initiate 
transfers (see Fig. 3). The DMA engine is able to transfer data 
independently of the SoC because the DMA engine connects to 
the SoC’s main memory interconnect, so it avoids the problem 
we encountered with our original design. It removes the SoC 
from the data transfer pathway, making it possible to transfer 
memory while the processor calculates minimum seams. For a 
3.7 second video, the average time spent transferring data using 
the AXI to BRAM connection averages 144s, while the DMA 
system averages 11s. The DMA design provides a 13x speedup 
over the AXI BRAM system. 

D. System on Chip 
In our project, the system on chip has 3 main responsibilities: 

to transfer video data to/from the PC, to write the video data 
onto the DDR3 memory for the PL to use, and to perform the 
seam carving algorithm. 

At first, since we saw that the SoC must handle a variety of 
responsibilities that requires very different interfaces (Ethernet, 
memory reading/writing, etc.), we decided to boot a Linux 
kernel on the SoC, which has well established interfaces that 
meet our needs. The process of booting a Linux kernel is also 
well-documented, smoothing out the potential learning curve. 
We decided to abandon this approach because of two reasons: 
the first being that the Linux kernel uses virtual memory; 
therefore it would be hard for the PL to figure out where the 
data is actually written. The second being that mounting a 
software application onto the Linux kernel on the SoC wasn’t 
very straight forward. These are the two main factors that drove 
us from the Linux approach and started researching on a bare-
metal application based approach, which ended up being our 
final approach. In the following paragraphs, I will illustrate how 
we used bare metal applications on the SoC to handle the 
variety of it responsibilities. 

For the first part of its responsibility, transferring data 
to/from the PC, our design principle is to be as fast as possible 
and as accurate as possible. We had the options of using UART 
or the Ethernet, we chose Ethernet because it is way faster 
(14.4Kbps with UART vs 20Mbps for with Ethernet). For 
Ethernet we had 2 protocols to choose from, TCP and UDP. We 
chose TCP because of its fail-safe packet receipt 
acknowledgement mechanism. Fortunately, there is a bare 
metal TCP server template offered by Vivado SDK, the 
development tool we use, which made implementing the server 
much easier. 

For the SoC to read/write data from/to the DDR3 memory, 
we used malloc and dereferencing pointers. As intuitive as this 
sounds, this was not the first thing we tried. We first tried to use 
pointers to directly write to a certain address to facilitate reading 
for the PL, yet since we don’t know which region of memory is 
used by the TCP server itself, there was a lot of segfault and 
system hanging. We then resorted to use the C malloc library 
and it worked. 

And finally, for the SoC to execute the 3D seam carving 

algorithm, we integrated the algorithm code with the server 
code. Thanks to Vivado SDK’s fully automated building and 
launching on board process, we didn’t spend much time on 
figuring out how to launching our C code onto the SoC 

V. DESIGN TRADE STUDIES 
We have requirements on the system as a whole as well as on 

the major project subsystems. We have repeated the 
requirements stated in our design report, along with the main 
justifications for the requirements. For in-depth motivations of 
our requirements, see the design report. 

A. High-level Requirements 
Below are requirements that were set on the overall system. 

They are divided into two categories: spec and content. The 
former specifies the technical constraints on the spec of the 
video and the performance of the system itself. The latter aims 
to quantify the quality of the processed video in terms of our 
project goal. 

Requirement 0.0.0: The system must process a video with 
time length T in 3T time. 
Holistically, we specified 3T as our benchmark because that 

is generally the time it takes to manually inspect a video of time 
T, and crop out its salient features. We measured this 
requirement by timing how long the system takes to process an 
arbitrary video. The system was timed from the beginning to 
the end of the processing on the FPGA. Originally we specified 
that the time be taken from the beginning to the end of the 
processing software. We decided to focus our efforts on the 
speed of computation, not transmission. This part of the 
application could be easily sped up had we more time. 

 
We evaluated our system on seven videos, ranging from 3.7 

to 6.4 seconds. The average computation time per video length 
is 4.01. The requirement was 3; however, the requirements is 
based on videos at 24 fps, but most of the videos we tested used 
29 or 30 fps. For the purposes of timing goals, we normalized 
the times to a video with the same frame count played back at 
24 fps. Under this scaling, the average computation time per 
video length is 3.28, slightly longer than the target of 3. While 
we did not quite meet the requirement, we are close enough to 
our goal to be content. The main bottleneck in our system is the 
data transfer time, as addressed below in requirement 3.2. 

Requirement 0.0.1: The system must process a 360p and 
24fps video. 
We have derived the quality requirements of the input video 

based on the most widespread standards. We set 360p as a video 
quality requirement, because that is the minimum acceptable 
resolution for a regular YouTube video, and 24fps because that 
was a common standard for common video formats. 

We were able to hit the requirement goals, as our system is 
able to process a 360p and 24fps video. However, as mentioned 
in Requirement 0.0.0, fulfilling the dimension requirement 
would break the timing requirement by setting back the 
computation time to roughly 6T. 
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Requirement 0.0.2: The system must increase playback 
speed of a video by 1.5 times. 
Similarly to Requirement 0.0.1, we devised this requirement 

via observations made on the YouTube platform. It is common 
to view videos at a playback rate 1.5 times greater than normal 
when skimming content. We have most definitely achieved this 
requirement. 

Requirement 0.0.3: The system must support at least three 
popular video file formats as input. 
We had this requirement set with public distributions of the 

program in mind. This requirement was achieved well because 
of the OpenCV library used in our pre- and post-processing 
application. We have tested and verified that the system is 
compatible of accepting input formats of .MOV, .AVI, and 
.MP4. 

Requirement 0.1.0: The resulting video must have smooth 
frame transitions. 
We define videos with smooth transitions as ones where the 

maximum energy difference value of the frames computed by 
the energy function (2) does not exceed that of the original 
video. We gauged whether we fulfilled our requirement by 
processing 7 videos, and outputting the energy difference per 
frame for both the original and the processed video. For the 7 
videos chosen, we achieved this requirement, probably due to 
the forward energy modification we made to the energy 
function. 

Requirement 0.1.1: The resulting video must have no 
obvious distortions to its content. 
We defined videos with no distortions as ones that have its 

salient features properly preserved. For example, if a user 
cannot predict the original contents of the processed video after 
watching it, we determine that our video has somehow lost 
some of its salient features. Our way to measure this 
requirement was to conduct user surveys, but unfortunately did 
not have enough time. 

As this project was also carried out as a research project to 
find videos that fit and do not fit well with our algorithm, it is 
hard to tell whether we satisfied this requirement or not. We’ve 
noticed that our system processes well on videos that have 
energetic movements as its salient features, while videos 
focusing on pauses and frame cuts would not work well. There 
was little to no distortion for the former ones, and a considerable 
amount of distortion for the latter ones. 

Requirement 0.1.2: The resulting video must have its 
original order of events preserved. 
We aimed to develop a specific test suite for this requirement, 

consisting of synthetic videos with well defined “events” as 
inputs, quantifying the requirement by counting how many 
events were misplaced in the output video compared to the 
input video. Like Requirement 0.1.2, we did not have enough 
time (and video editing skills) to be able to measure this 
requirement. General observations however suggest that all 
orders of significant events that happen within a video were 
preserved. 

B. Pre- and Post-Processing 
The pre- and post-processing applications are the wrappers 

to the entire system, which determines how the input/output is 
presented both internally and externally. On top of fulfilling all 
video spec requirements from Requirement 0.0.x, the 
application has several requirements set to ensure efficient 
communication with the hardware. 

Requirement 1.0: The application must convert videos to an 
FPGA readable format. 
We required that the pre- and post-processing applications 

must be able to convert between popular video file formats and 
this decompressed format. We achieved this by writing the 
application on top of OpenCV, allowing us to extract pixel data 
and packing them into bytestreams. 

Requirement 1.1: The application must transfer videos to 
the FPGA through Ethernet. 
As described above, we used a TCP server on the SoC to 

accomplish the data transfer over Ethernet. Because the data 
transfer was not considered in evaluating the performance of 
the system, we did not place a requirement on the speed of this 
interface. We measured a speed of roughly 35 Mibps, which 
translates to transfer times on the order of five to ten seconds. 

C. System on a Chip (SoC) 

Requirement 2.0: SoC runs Linux Kernel as embedded 
operating system. 
We chose to run a Linux kernel as the embedded operating 

system on the ARM Cortex-A9 cores because it is well-
documented and all of our team members are familiar with it. 
However, in the final design we switched to bare metal 
applications -- no operating system, just application binaries 
executing on the SoC. We switched because the Linux kernel 
uses virtual memory instead of direct memory access, which 
adds difficulty to pinpointing where the PL should be reading 
the video data from. Moreover, mounting .elf binary files onto 
the running Linux kernel is not very straightforward. As we 
were falling behind schedule, we made the decision to switch. 
In our final system, we have a bare metal application running 
on the SoC which takes care of Ethernet communication, 
reading from and writing to memory, and execution of our 
algorithm on the video data. 

Requirement 2.1: The SoC reads from and writes to the 
RAM. 
One of the main task of the SoC is to read the energy map 

from the RAM that the programmable fabric has produced, and 
write the resulting video data after calculating and cutting out a 
seam for the programmable fabric to recalculate the energy 
map. Therefore, it is crucial that the SoC can read from and 
write to the RAM directly. 

Instead of using the Linux Kernel’s memory mapping 
mechanism, we used malloc in our bare metal application, 
which is a lot more straightforward. We’ve verified this 
requirement by testing allocation of memory with malloc, 
writing data to the allocated memory, and reading from it. 
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Requirement 2.2: The SoC extracts a seam made of pixels 
with the lowest energy from a given energy map 
The SoC takes an energy map of a video calculated by the 

PL, and find a seam to remove as described in the introduction. 
We evaluated this functionality by unit testing, and comparing 
the calculated seams with that of a software implementation. 
Since we have changed the design so that the algorithm does 
not extract the lowest energy sheet (See System Description - 
Algorithm), we verified our output by just naively comparing 
the SoC sheet to the software sheet. 

D. Programmable Fabric 
The accelerator operates on frames in the y-t plane, so the 

size requirement on the BRAM has changed from the design 
report. Each frame is now:  

320 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑝𝑝𝑝𝑝𝑝𝑝 × 180 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝 × 32
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑝𝑝𝑝𝑝𝑝𝑝

= 1.8 𝑀𝑀𝑀𝑀𝑀𝑀 

We store energies in the BRAM separately, which occupies 
half the space, or 0.9 Mib. The multi-buffering scheme keeps 
four frames in memory, giving us requirement 3.0: 

Requirement 3.0: The FPGA block RAM must have capacity 
of at least 10.6 Mib. 
This requirement is still met by our choice of board, the 

ZC706. We verify the block RAM usage using the Vivado 
synthesis report. The overall usage is 18.3 Mib (see Table I). 
This is higher than the requirement for two reasons. First, we 
increase the temporal dimension to 256 pixels to align each 
frame to a binary boundary, which is required for the DMA 
engine. Second, our design includes an integrated logic 
analyzer IP block for debugging, which uses BRAM to store 
sampled values. We pass this requirement. 

Requirement 3.1: The programmable fabric must process 
the energy function at a rate of 2400 frames per second. 
This requirement arises from the desired speedup of 100x 

over the non-accelerated energy computation, which is high 
because the seam finding and removal are not accelerated on 
our system. We measure this requirement using simulation in 
VCS. The energy computation takes the same number of cycles 
regardless of the data, so this simulation is accurate. For one 
frame of height 320 pixels and length 180 pixels, an average 
number of frames for the videos tested, the accelerator takes 
4161 cycles to read the pixels from the BRAM, compute the 
energy, and write the energy back to BRAM. At the system 
clock of 50 MHz, this equates to 12000 frames per second. We 
pass this requirement, however, requirement 3.2 is the limiting 
factor for our speedup. 

Requirement 3.2: The programmable fabric must write the 
result of the energy function to RAM at a rate of 2400 
frames per second. 
This is necessary to match the throughput of the energy 

function computation itself. To measure this, we cannot 
accurately use a simulation model of the RAM, so we time the 
system while processing actual videos. The SoC initiates the 
transfer and receives the interrupt upon completion, so we time 
the data transfers on the SoC rather than the programmable 

fabric. For a 320 x 180 video, we measure a very consistent 
average DMA rate of 1054 frames per second (278 MiBps). 
This is a rate limited by the DMA engine and the memory 
hierarchy. To increase this transfer rate, we increased the word 
size from 32 bits to 1024 bits, the maximum word size 
supported by the AXI interconnects on the ZC706. We also 
enabled “narrow burst” mode, which transfers data in bursts of 
32 words, because the blocks of data we are transferring are 
large enough to be evenly divided by these bursts. These 
optimizations helped increase our data transfer rate up to its 
current rate. Unfortunately, this is still the bottleneck of our 
system. Over the videos we tested, moving data between the 
SoC and the accelerator takes an average of 74.6% of the total 
computation time. To meet this requirement, we would need a 
fundamentally faster method of transferring data between the 
DDR3 RAM and the BRAM. 
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VI. PROJECT MANAGEMENT 

A. Schedule 
In Fig. 5. below, Maxwell’s tasks are in red, John’s are in 

yellow, Riki’s are in blue, and joint work uses the secondary 
colors made by combining the relevant individuals’ colors. 

A lot of our earlier scheduled tasks were pushed back, 
resulting in most of our later tasks to have only a day or two of 
working time. The whole schedule slid into slack time that we 
preserved for ourselves. There were a few tasks that we had to 
knock off the schedule, mainly for testing and verifying outputs. 
This was because the algorithm implementation on the SoC and 
the optimization took longer than expected, alongside the 
integration step. 

B. Team Member Responsibilities 
The design and implementation work were divided as 

follows. Maxwell was in charge of the FPGA fabric design and 
implementation, as well as general integration management. 
Maxwell served as our project lead. John was in charge of 
setting up the SoC and parts of the pre- and post-processing 
applications. Riki was in charge of the seam carving algorithm 
design and software implementation. All members were 
involved in design reviews, and collaborated during the 
integration step to connect the various components to make up 
the whole system. 

C. Budget 
We had no external orders planned at midpoint, and ended up 

not making any orders at all. All of our work was implemented 
locally on our laptops and the Xilinx ZC706 FPGA provided to 
us by Professor Bill Nace. We are very grateful to him for 
lending us this platform that allowed us to create a successful 
project. 

D. Risk Management 
There were several risk factors that were recurring themes 

throughout the project. Listed below are the risks that were 
visited by us most often, and were also highlighted in the status 
report. 

1) Research Nature of Project 
Given the research nature of this project, the outcome of 

seam carving through time was unknown. We knew that it can 
be applied to video as in [1], but this paper did not apply seam 
carving to the time dimension. To mitigate the risk of not having 
a viable output in the end, we’ve planned out the schedule such 
that the first task was to implement a prototype of seam carving 
through time. This allowed our team the time to perform the 
necessary refinement and evaluation to successfully apply the 
seam carving algorithm in the time dimension. We also stocked 
up on possible videos to test the algorithm on, so we would be 
able to find out the efficacy of seam carving on different classes 
of videos as soon as it was ready. 

2) Algorithm Design 
The algorithm design was not set in stone in the early stages 

of this project, and was decided on much later in the process 
than we originally planned. As seen in section System 
Description - Algorithm, there were many pivots and design 

iterations taken by us when coming up with the software 
algorithm. We foresaw the risk of the original graph-cut 
algorithm to be too difficult to implement or divide up into 
subcomponents, and had a back-up plan for a simpler design 
ready. We did end up going for the back-up plan, which was 
good risk mitigation on our part. 

3) Integration 
The risk of not being able to 1.) establish a viable interface 

for system integration and 2.) testing the system end-to-
end  because of pressing time was always a risk that we faced 
during the project. The first half of the project period was 
dominated by team members doing individual research and 
work. This resulted in us not discussing in depth about the 
possible steps to integration that we could make and most 
importantly the division of labor between the hardware and the 
software in executing the algorithm. We noticed this risk half-
way through, and took measures to mitigate it by holding extra 
meetings in lab to update each other on the progress we were 
making on our subcomponents. The risk of not being able to test 
end-to-end was a big threat to our project until the end. We 
decided to make sure that our interfacing and in/out values were 
complete individually, so that we would have a near perfect 
system when integrating the whole system. 

VII. RELATED WORK 
Our project was inspired by the concepts of Rubinstein et al. 

in the paper “Improved Seam Carving for Video Retargeting”. 
In the paper, they suggest that the algorithm can be directly 
applied to increase video playback speed, which was what we 
aimed to achieve in this project. Although we retreated from re-
implementing their algorithm, it would’ve been interested to 
pursue their path. 

    Team B2 in the same Capstone Design class had a similar 
goal of accelerating seam carving via the usage of FPGAs. 
Although they aimed to apply the algorithm in the conventional 
way of retargeting full image frames, it was interesting to 
discuss the similarities and differences in our approaches to 
implementing seam carving via hardware. 

VIII. SUMMARY 
Our system was able to meet most of our design 

specifications. The 3T time requirement was almost met, with 
the bottleneck being memory transfer, something that could be 
further honed by researching more into efficient protocols. We 
were also looking into leveraging the Dual ARM core by 
implementing software level parallelism, but never got to it. 
Overall there is definitely space for speed optimization - which 
is good news to us because we know this project may be taken 
further for deployment. 

Our evaluation on researching and verifying videos that work 
well with our algorithm turned out as follows: 

1) We found out that the videos that work well with our 
algorithm were those with salient features with large 
movements. This was expected because the seam carving 
algorithm inherently favors pixel locations with large changes. 
A consequence of this feature is a general loss in content 
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information when the background of a video was moving too 
rapidly. The algorithm didn’t include the detection of 
foreground and background objects within each frame, which 
lead to some jittery outputs for those kind of videos. 

2) Whereas we expected videos with clear scene changes to 
fool our algorithm by a certain degree, we found out that the 
algorithm worked pretty well on them. We processed some 
Vine videos as inputs when testing for event ordering, and 
found out that the scene switches almost always had a complete 
frame. We hypothesize this to be a result of no sheets cutting 
through the scene switches because of the high energy 
difference. This was a pleasant surprise, as our initial expected 
application area of this project was for sport videos, which tend 
to have many camera angle changes during the match. 

We’ve learned several lessons along the journey of this 
project. First off, do not underestimate the learning curves of 
new tools and new platforms. Before the project, none of our 
team has worked with Vivado, Zynq boards, or any SoCs. We 
were overly confident of our ability to learn and work with these 
new tools and devices; we were forced to push back our 
schedule because we allocated too little time for learning and 
researching. 

Secondly, integration comes first. Looking back at our 
semester, we spent the most time and effort trying to achieve 
the PC-PS-PL communication chain. Once that was achieved, 
mounting the algorithm onto the system did not take as much 
time. Thus we conclude that integration should come first for 
every project. 
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