
18-500 Final Project Report: May 8, 2019

1

Abstract—The project aims to shorten a video while preserving the

salient features by applying 3D Seam Carving to a video. The approach
functions by removing a series of continuous sections of pixels to
shorten the time duration of the video.

The project will implement the algorithm in software for research
purposes. The team will additionally develop a system to accelerate the
computation on an FPGA board. The accelerating system comprises
three main system components: a software application on an external
computer, a system on chip (SoC) running the Linux kernel, and the
FPGA’s programmable fabric to perform the acceleration.

Index Terms—Direct Memory Access (DMA), Processing System

(PS), Programmable Logic (PL), Seam Carving, System on Chip (SoC)

I. INTRODUCTION
E have all been in the situation where we had limited

time and wanted to watch a video at 1.5x speed to acquire
the gist of it faster. The standard method of increasing a video’s
playback speed is by uniformly increasing playback rate. This
method disregards the content of the video, which can lead to
the important portion of the video being sped up too much for
the viewer to understand effectively. Our project aims to tackle
this issue by applying a three-dimensional seam carving
algorithm to increase video playback speed in a content-aware
manner. Our final system will shorten a video (less than 7.5
seconds in length, 320p resolution) by 1.5x. It will complete
processing within 3 times the video length, while the most

salient part of the video remains smooth and is played at (or
close to) the original playback rate.

Our project comprises of two foci: research into the
application of seam carving to video in the time dimension and
acceleration of the seam carving algorithm. Our research will
determine the families of videos on which seam carving is most
effective, as well as heuristic improvements to the algorithm
that improve the output quality and computation speed. To
accelerate the computation, we will use a Xilinx FPGA with an
embedded system on chip. While the specific uses of this
algorithm are subject to our research, condensing video to
emphasize its salient features has applications in monitoring
security feeds, watching tutorial videos, and viewing sports
footage.

II. DESIGN REQUIREMENTS
Our system will increase the playback speed of a video by

1.5x. A modified playback speed of 1.5 times was commonly
amongst fellow students when watching a video of a familiar
topic at a higher speed. We aim to provide a 1.5 times playback
speed for videos of all content, by preserving the salient features
of the video using the seam carving algorithm. This requirement
will be tested by comparing the frame count of the original
video and the resulting video.

The resulting video must retain the most salient part of the
video. This is a key goal of the project. The more important
parts of the video must be played back at or close to the original
speed. Furthermore, the resulting video must be smooth and
retain the original order of events. These requirements will be
verified by subjective judgement and quantitative energy
function comparison.

The system must be able to finish processing a video within
3 times its length. We chose this specification because seam
carving is a computationally heavy algorithm, and it won’t be
applicable in real life without significant acceleration
mechanism. This requirement will be verified using on-system
timing.

The system must be capable of processing a 320p, 24 fps
video. We have derived the quality requirements of the input
video based on the most widespread standards. In particular,
320p is the minimum resolution for a regular YouTube video,
and 24 fps is a common standard among video formats.

Seam Carving Through Time

Maxwell Johnson, John Zhang, Riki Singh Khorana

Electrical and Computer Engineering, Carnegie Mellon University

W

Fig. 1. An example of a seam in the three-dimensional representation of a
video.

18-500 Final Project Report: May 8, 2019

2

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
Fig. 2 shows the block diagram of our overall system. We

have divided our system into three main hardware components:
the external computer, the on-board system on chip, and the
programmable fabric. We address the purpose and dataflow of
each component individually.

A. External Computer
The computer is the user interface to our system. The process

begins with the user selecting their video. The pre-processing
application parses the video from a standard playable format
into a three-dimensional array of pixels. It is in this format that
the video is transferred to the FPGA board over an Ethernet
connection. When the board completes processing, the resulting
video is received over the same connection in the same
decompressed format. The post-processing application formats
the video into a standard playable format and saves the result to
file.

B. System on Chip
The system on chip is a dual-core ARM A9 processor

embedded in the programmable fabric of the FPGA. It runs a
TCP server to transfer video to and from the external computer.
It controls the DMA engine, which transfers data to and from
the BRAM in the programmable fabric. The SoC performs the
more dynamic computation of the algorithm; it analyzes the
energy map of the video (output by the programmable fabric),
determines a low-energy seam to remove, and performs the
memory operations required to remove the seam. The video and
energy map reside in the DDR3 RAM, which can be accessed
by the SoC as well as the programmable fabric through the
DMA engine.

The algorithm for selecting a seam is one of the parts of the
system that has changed the most from the design report. We
tested several different implementations and ultimately chose
one that approximates the minimum-energy cut to improve

performance. Section IV.A has a full description of the
algorithm and its development.

C. Programmable Fabric
The programmable fabric contains several distinct

components used by our system. The first one used in the flow
of data is the DMA engine. It is controlled by the SoC to transfer
pixel data to the programmable fabric and energy data from the
fabric to the DDR3 RAM. The next component is the block
RAM, or BRAM. This is temporary storage for the video
frames being processed and the resulting energy data. The
DMA engine can transfer data to and from the BRAM.

The structure of memory transfer changed significantly since
the design report. The original design had a structural conflict
between the SoC and the programmable logic’s control of the
DDR3 RAM. To avoid this issue, the current design uses the
DMA engine described above to transfer data between the
DDR3 and the BRAM. The decisions we made to reach this
solution are documented in section IV.C.

The last component in the data flow is the accelerator itself.
This is custom RTL hardware that computes the energy of a
video frame. The low-level design of the accelerator is
described in detail in section IV.B.

Every iteration of this data flow removes one seam. When
the system on chip removes a seam, the programmable fabric
must recompute the energy function of the altered frames. This
process repeats until the desired video length is reached.

Fig. 2. High-level block diagram of system.

18-500 Final Project Report: May 8, 2019

3

IV. SYSTEM DESCRIPTION

A. Algorithm
This subsection aims to describe the process in which our

final algorithm was decided on. The general algorithm
requirements consists of two main phases - mapping the video
pixels to an energy map, and identifying a minimum energy
sheet to carve out from the video. Throughout our project, we
progressed through four different implementations as follows:
The graph-cut approach, the sweep approach, the radix
approach, and finally the improved radix approach. The original
video used to produce output videos can be found at [Appendix
B.1]

The initial approach we took was to re-implement and adapt
[1]’s approach of finding a min-cut on a directed graph. The
algorithm first constructs an S-T graph with nodes representing
video pixels and edges representing energy differences between
nodes. This algorithm ensures a minimum energy sheet to be
detected and removed per iteration, in addition to the sheet
being monotonous and continuous. The algorithm also
specified a forward-energy function be used to map energies,
which aims to take into consideration the new energies
introduced to the graph after removing a sheet from the video.

This approach, although complete in terms of the conceptual
requirements, did not meet our technical requirements of being
able to process the video within a reasonable run time. The data
structure used for the algorithm was also way too large for our
accelerator to handle, especially when processing videos with
high resolution.

Given the discovery of our technical constraints, we decided
to pivot to inventing an algorithm that would identify and
remove seams frame by frame, which aggregates to construct a
sheet. (Notice: frames here refer to planes in the height-time
axis, not a literal video frame) Our initial implementation
identifies a seam on the first frame of the video object using a
well-established dynamic programming algorithm. The
algorithm then proceeds to find a seam for the next frame, but
with the frame width restricted by the width of the previous
seam. The energy function used during this iteration does not
take into account the concept of forward energy, by just taking
the difference between adjacent pixels in time.

This algorithm took less space and time to run, clearing our
technical requirements. However the algorithm was far from
ideal because 1.) the sheets are almost always discontinuous
and 2.) the sheets always favor the minimum energy area of the
first frame. The artifacts of the two flaws were seen as visual
strips in the overall jittery output video [See Appendix B.2].

The new radix approach was therefore invented in order to
fix the two problems that arose in our previous algorithm. In
order to resolve the issue of having discontinuous sheets, we
decided to refine the constraints on the iterative seam
calculation; Instead of taking the minimum and maximum
columns of the previously removed seam as constraints, we
used the seam path itself ±1 pixel as the new constraint for the
following seam calculation, ensuring the resulting sheet to be
continuous. The issue of favoring a specific frame throughout
the algorithm was mitigated by specifying a new radix frame

per iteration. In detail, we decided to identify seams for all
frames per iteration, take an average of the seams to identify
which particular region of the frames had low energies, and
finally pick out a frame with a seam that most closely followed
the average seam. The radix frame that was picked out served
as the starting point to constrain the following seam
calculations, spanning out in both the front and back directions.

This algorithm inherited the benefits of the previous
algorithm in terms of space, while enhancing the quality of the
sheet selection. The output had less distortions and is overall
more presentable than the previous one. [See Appendix B.3].

Although the new algorithm was conceptually and
functionally correct, the output was still not satisfactory, as it
was visually obvious that the video was processed in some way.
This is when we decided to improve the energy mapping phase
of the algorithm. The energy function of each pixel is a measure
of how different it is from adjacent pixels. We define pixel
difference as:

𝛿𝛿(𝑎𝑎, 𝑏𝑏) = (𝑟𝑟𝑎𝑎 − 𝑟𝑟𝑏𝑏)2 + (𝑔𝑔𝑎𝑎 − 𝑔𝑔𝑏𝑏)2 + (𝑏𝑏𝑎𝑎 − 𝑏𝑏𝑏𝑏)2
Our original formulation of the energy function summed the

pixel difference between the target pixel and a neighbor in each
direction:

𝐸𝐸�𝑝𝑝𝑥𝑥,𝑦𝑦,𝑡𝑡� = 𝛿𝛿�𝑝𝑝𝑥𝑥,𝑦𝑦,𝑡𝑡 , 𝑝𝑝𝑥𝑥+1,𝑦𝑦,𝑡𝑡� + 𝛿𝛿�𝑝𝑝𝑥𝑥,𝑦𝑦,𝑡𝑡 , 𝑝𝑝𝑥𝑥,𝑦𝑦+1,𝑡𝑡�
+ 𝛿𝛿(𝑝𝑝𝑥𝑥,𝑦𝑦,𝑡𝑡 , 𝑝𝑝𝑥𝑥,𝑦𝑦,𝑡𝑡+1)

This accurately matches the definition of energy. However,
it evenly weights the differences in all dimensions, while we are
only cutting in the time dimension. The main paper describing
seam carving on video [1] uses “forward energy” as their energy
function. This measures the energy of pixels that are adjacent
after a cut, rather than before. We model forward energy by
defining energy as the pixel difference between the previous
and subsequent pixel in time.

𝐸𝐸�𝑝𝑝𝑥𝑥,𝑦𝑦,𝑡𝑡� = 𝛿𝛿(𝑝𝑝𝑥𝑥,𝑦𝑦,𝑡𝑡−1, 𝑝𝑝𝑥𝑥,𝑦𝑦,𝑡𝑡+1)
Removing the lowest-energy seam results in making the most

similar pixels adjacent under this energy definition. Adopting
this formulation of the energy function amazingly smoothed out
the output. [See Appendix B.4]

The new algorithm also introduced a new bottleneck, which
was the time of having to re-identify seams for each frame just
to take an average for every iteration. The average finding
portions took over a minute for a 4 second video. Therefore in
order to reduce the run time with a comparable effect on output
quality, we decided to pick a small number of random frames
to calculate the average seam. We also further constrained this
method to include only frames from the middle 100 frames of
the video data structure, because 1.) most of the actions of a
video happen in the middle of the screen and 2.) some of our
input videos needed to be processed to fit our 320x180 video
resolution, resulting in black letterboxes on both sides of the
image frame.

Our improved radix approach reduced our computing time
by 60x, and still produced results with qualities comparable to
the old “more complete” algorithm. [See Appendix B.5]

18-500 Final Project Report: May 8, 2019

4

B. Energy Computation Accelerator
Our energy computation accelerator interfaces with the

BRAM to receive pixel data and to send energy data. Pixels are
represented using three 8-bit intensities, one each for red, green,
and blue. The total pixel width is 32 bits to align with the
processor’s native word size. Each energy is represented using
16 bits, which allows us to pack each energy map into half the
space of the corresponding frame.

The BRAM uses 1024-bit data words, equivalent to 32 pixels
or 64 energies. Because pixels are twice as large as energies, we
must read two words from the BRAM for every one word we
write. We use a shift register to hold previous words so we can
compute the energies of two words in the same clock cycle, as
seen in Fig. 3.

Due to the simplified energy function, the energy
computation has been significantly simplified from the design
report. Only one pixel difference must be computed for each
energy, rather than the three as in the design report. In general,
this led to lower resource utilization (Table I) than projected,
with the exception of block RAM. We introduced multi-
buffering to our design to prevent a conflict between the DMA

transfer and the energy computation. This was the main reason
for the increase in block RAM use from our design report. The
other obvious change from the design report is the elimination
of DSP block usage. This is a result of the synthesis tool. We
hypothesize that because fewer multiplier blocks are required
in the new design and more LUTs are free, the synthesizer has
the freedom to implement the multiplications in LUTs instead
of using the dedicated DSPs.

One problem we encountered was working with little-endian
data. The data from the BRAM is little-endian (as is the data
stored in the DRAM), while the intuitive way to slice the 1024-
bit data word into 32-bit pixels is to interpret it as big-endian.
This issue is easily dealt with once diagnosed, just be aware of
it when designing hardware that works with data from the
processor.

C. Memory Transfer System
In developing the system, we developed several iterations on

the design of our memory transfer system. Fig. 4 shows the
three versions we designed or developed.

For the design report, we designed the system to include a
DDR3 controller as a part of the accelerator. This design allows
the programmable fabric to access the memory independently
of the system on chip. We encountered practical problems when
implementing this design because it requires connecting two
interfaces to the DDR3’s one port.

For the in-lab demo, we redesigned the system to avoid this
conflict. Using Vivado’s block diagram tool, we connected the
programmable system’s BRAM directly to the SoC’s memory
system over AXI (Advanced eXtensible Interface). This design
is simple to implement and to use. However, the SoC in the
middle of all data transfers is a bottleneck. The processor is
slow (1 GHz) and is already burdened with much of the

Fig. 3. Energy computation block diagram.

TABLE I. FPGA RESOURCE UTILIZATION

Resource Design FPGA Capacity [3] Utilization
Block RAM (Kib) 18738 19620 95.5%
Look-Up Tables 35389 218000 16.2%

Flip-Flops 26148 437000 5.98%
DSP Slices 0 900 0%

Fig. 4. Three iterations on the memory transfer system at different project
milestones. From top to bottom: design report, in-lab demo, and final demo.

18-500 Final Project Report: May 8, 2019

5

computation. For the final demo we wanted to refine our system
to remove the SoC from the data transfer pathway.

We accomplished this by introducing a DMA engine. The
DMA engine is controlled by the processing system to initiate
transfers (see Fig. 3). The DMA engine is able to transfer data
independently of the SoC because the DMA engine connects to
the SoC’s main memory interconnect, so it avoids the problem
we encountered with our original design. It removes the SoC
from the data transfer pathway, making it possible to transfer
memory while the processor calculates minimum seams. For a
3.7 second video, the average time spent transferring data using
the AXI to BRAM connection averages 144s, while the DMA
system averages 11s. The DMA design provides a 13x speedup
over the AXI BRAM system.

D. System on Chip
In our project, the system on chip has 3 main responsibilities:

to transfer video data to/from the PC, to write the video data
onto the DDR3 memory for the PL to use, and to perform the
seam carving algorithm.

At first, since we saw that the SoC must handle a variety of
responsibilities that requires very different interfaces (Ethernet,
memory reading/writing, etc.), we decided to boot a Linux
kernel on the SoC, which has well established interfaces that
meet our needs. The process of booting a Linux kernel is also
well-documented, smoothing out the potential learning curve.
We decided to abandon this approach because of two reasons:
the first being that the Linux kernel uses virtual memory;
therefore it would be hard for the PL to figure out where the
data is actually written. The second being that mounting a
software application onto the Linux kernel on the SoC wasn’t
very straight forward. These are the two main factors that drove
us from the Linux approach and started researching on a bare-
metal application based approach, which ended up being our
final approach. In the following paragraphs, I will illustrate how
we used bare metal applications on the SoC to handle the
variety of it responsibilities.

For the first part of its responsibility, transferring data
to/from the PC, our design principle is to be as fast as possible
and as accurate as possible. We had the options of using UART
or the Ethernet, we chose Ethernet because it is way faster
(14.4Kbps with UART vs 20Mbps for with Ethernet). For
Ethernet we had 2 protocols to choose from, TCP and UDP. We
chose TCP because of its fail-safe packet receipt
acknowledgement mechanism. Fortunately, there is a bare
metal TCP server template offered by Vivado SDK, the
development tool we use, which made implementing the server
much easier.

For the SoC to read/write data from/to the DDR3 memory,
we used malloc and dereferencing pointers. As intuitive as this
sounds, this was not the first thing we tried. We first tried to use
pointers to directly write to a certain address to facilitate reading
for the PL, yet since we don’t know which region of memory is
used by the TCP server itself, there was a lot of segfault and
system hanging. We then resorted to use the C malloc library
and it worked.

And finally, for the SoC to execute the 3D seam carving

algorithm, we integrated the algorithm code with the server
code. Thanks to Vivado SDK’s fully automated building and
launching on board process, we didn’t spend much time on
figuring out how to launching our C code onto the SoC

V. DESIGN TRADE STUDIES
We have requirements on the system as a whole as well as on

the major project subsystems. We have repeated the
requirements stated in our design report, along with the main
justifications for the requirements. For in-depth motivations of
our requirements, see the design report.

A. High-level Requirements
Below are requirements that were set on the overall system.

They are divided into two categories: spec and content. The
former specifies the technical constraints on the spec of the
video and the performance of the system itself. The latter aims
to quantify the quality of the processed video in terms of our
project goal.

Requirement 0.0.0: The system must process a video with
time length T in 3T time.
Holistically, we specified 3T as our benchmark because that

is generally the time it takes to manually inspect a video of time
T, and crop out its salient features. We measured this
requirement by timing how long the system takes to process an
arbitrary video. The system was timed from the beginning to
the end of the processing on the FPGA. Originally we specified
that the time be taken from the beginning to the end of the
processing software. We decided to focus our efforts on the
speed of computation, not transmission. This part of the
application could be easily sped up had we more time.

We evaluated our system on seven videos, ranging from 3.7

to 6.4 seconds. The average computation time per video length
is 4.01. The requirement was 3; however, the requirements is
based on videos at 24 fps, but most of the videos we tested used
29 or 30 fps. For the purposes of timing goals, we normalized
the times to a video with the same frame count played back at
24 fps. Under this scaling, the average computation time per
video length is 3.28, slightly longer than the target of 3. While
we did not quite meet the requirement, we are close enough to
our goal to be content. The main bottleneck in our system is the
data transfer time, as addressed below in requirement 3.2.

Requirement 0.0.1: The system must process a 360p and
24fps video.
We have derived the quality requirements of the input video

based on the most widespread standards. We set 360p as a video
quality requirement, because that is the minimum acceptable
resolution for a regular YouTube video, and 24fps because that
was a common standard for common video formats.

We were able to hit the requirement goals, as our system is
able to process a 360p and 24fps video. However, as mentioned
in Requirement 0.0.0, fulfilling the dimension requirement
would break the timing requirement by setting back the
computation time to roughly 6T.

18-500 Final Project Report: May 8, 2019

6

Requirement 0.0.2: The system must increase playback
speed of a video by 1.5 times.
Similarly to Requirement 0.0.1, we devised this requirement

via observations made on the YouTube platform. It is common
to view videos at a playback rate 1.5 times greater than normal
when skimming content. We have most definitely achieved this
requirement.

Requirement 0.0.3: The system must support at least three
popular video file formats as input.
We had this requirement set with public distributions of the

program in mind. This requirement was achieved well because
of the OpenCV library used in our pre- and post-processing
application. We have tested and verified that the system is
compatible of accepting input formats of .MOV, .AVI, and
.MP4.

Requirement 0.1.0: The resulting video must have smooth
frame transitions.
We define videos with smooth transitions as ones where the

maximum energy difference value of the frames computed by
the energy function (2) does not exceed that of the original
video. We gauged whether we fulfilled our requirement by
processing 7 videos, and outputting the energy difference per
frame for both the original and the processed video. For the 7
videos chosen, we achieved this requirement, probably due to
the forward energy modification we made to the energy
function.

Requirement 0.1.1: The resulting video must have no
obvious distortions to its content.
We defined videos with no distortions as ones that have its

salient features properly preserved. For example, if a user
cannot predict the original contents of the processed video after
watching it, we determine that our video has somehow lost
some of its salient features. Our way to measure this
requirement was to conduct user surveys, but unfortunately did
not have enough time.

As this project was also carried out as a research project to
find videos that fit and do not fit well with our algorithm, it is
hard to tell whether we satisfied this requirement or not. We’ve
noticed that our system processes well on videos that have
energetic movements as its salient features, while videos
focusing on pauses and frame cuts would not work well. There
was little to no distortion for the former ones, and a considerable
amount of distortion for the latter ones.

Requirement 0.1.2: The resulting video must have its
original order of events preserved.
We aimed to develop a specific test suite for this requirement,

consisting of synthetic videos with well defined “events” as
inputs, quantifying the requirement by counting how many
events were misplaced in the output video compared to the
input video. Like Requirement 0.1.2, we did not have enough
time (and video editing skills) to be able to measure this
requirement. General observations however suggest that all
orders of significant events that happen within a video were
preserved.

B. Pre- and Post-Processing
The pre- and post-processing applications are the wrappers

to the entire system, which determines how the input/output is
presented both internally and externally. On top of fulfilling all
video spec requirements from Requirement 0.0.x, the
application has several requirements set to ensure efficient
communication with the hardware.

Requirement 1.0: The application must convert videos to an
FPGA readable format.
We required that the pre- and post-processing applications

must be able to convert between popular video file formats and
this decompressed format. We achieved this by writing the
application on top of OpenCV, allowing us to extract pixel data
and packing them into bytestreams.

Requirement 1.1: The application must transfer videos to
the FPGA through Ethernet.
As described above, we used a TCP server on the SoC to

accomplish the data transfer over Ethernet. Because the data
transfer was not considered in evaluating the performance of
the system, we did not place a requirement on the speed of this
interface. We measured a speed of roughly 35 Mibps, which
translates to transfer times on the order of five to ten seconds.

C. System on a Chip (SoC)

Requirement 2.0: SoC runs Linux Kernel as embedded
operating system.
We chose to run a Linux kernel as the embedded operating

system on the ARM Cortex-A9 cores because it is well-
documented and all of our team members are familiar with it.
However, in the final design we switched to bare metal
applications -- no operating system, just application binaries
executing on the SoC. We switched because the Linux kernel
uses virtual memory instead of direct memory access, which
adds difficulty to pinpointing where the PL should be reading
the video data from. Moreover, mounting .elf binary files onto
the running Linux kernel is not very straightforward. As we
were falling behind schedule, we made the decision to switch.
In our final system, we have a bare metal application running
on the SoC which takes care of Ethernet communication,
reading from and writing to memory, and execution of our
algorithm on the video data.

Requirement 2.1: The SoC reads from and writes to the
RAM.
One of the main task of the SoC is to read the energy map

from the RAM that the programmable fabric has produced, and
write the resulting video data after calculating and cutting out a
seam for the programmable fabric to recalculate the energy
map. Therefore, it is crucial that the SoC can read from and
write to the RAM directly.

Instead of using the Linux Kernel’s memory mapping
mechanism, we used malloc in our bare metal application,
which is a lot more straightforward. We’ve verified this
requirement by testing allocation of memory with malloc,
writing data to the allocated memory, and reading from it.

18-500 Final Project Report: May 8, 2019

7

Requirement 2.2: The SoC extracts a seam made of pixels
with the lowest energy from a given energy map
The SoC takes an energy map of a video calculated by the

PL, and find a seam to remove as described in the introduction.
We evaluated this functionality by unit testing, and comparing
the calculated seams with that of a software implementation.
Since we have changed the design so that the algorithm does
not extract the lowest energy sheet (See System Description -
Algorithm), we verified our output by just naively comparing
the SoC sheet to the software sheet.

D. Programmable Fabric
The accelerator operates on frames in the y-t plane, so the

size requirement on the BRAM has changed from the design
report. Each frame is now:

320 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑝𝑝𝑝𝑝𝑝𝑝 × 180 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝 × 32
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑝𝑝𝑝𝑝𝑝𝑝

= 1.8 𝑀𝑀𝑀𝑀𝑀𝑀

We store energies in the BRAM separately, which occupies
half the space, or 0.9 Mib. The multi-buffering scheme keeps
four frames in memory, giving us requirement 3.0:

Requirement 3.0: The FPGA block RAM must have capacity
of at least 10.6 Mib.
This requirement is still met by our choice of board, the

ZC706. We verify the block RAM usage using the Vivado
synthesis report. The overall usage is 18.3 Mib (see Table I).
This is higher than the requirement for two reasons. First, we
increase the temporal dimension to 256 pixels to align each
frame to a binary boundary, which is required for the DMA
engine. Second, our design includes an integrated logic
analyzer IP block for debugging, which uses BRAM to store
sampled values. We pass this requirement.

Requirement 3.1: The programmable fabric must process
the energy function at a rate of 2400 frames per second.
This requirement arises from the desired speedup of 100x

over the non-accelerated energy computation, which is high
because the seam finding and removal are not accelerated on
our system. We measure this requirement using simulation in
VCS. The energy computation takes the same number of cycles
regardless of the data, so this simulation is accurate. For one
frame of height 320 pixels and length 180 pixels, an average
number of frames for the videos tested, the accelerator takes
4161 cycles to read the pixels from the BRAM, compute the
energy, and write the energy back to BRAM. At the system
clock of 50 MHz, this equates to 12000 frames per second. We
pass this requirement, however, requirement 3.2 is the limiting
factor for our speedup.

Requirement 3.2: The programmable fabric must write the
result of the energy function to RAM at a rate of 2400
frames per second.
This is necessary to match the throughput of the energy

function computation itself. To measure this, we cannot
accurately use a simulation model of the RAM, so we time the
system while processing actual videos. The SoC initiates the
transfer and receives the interrupt upon completion, so we time
the data transfers on the SoC rather than the programmable

fabric. For a 320 x 180 video, we measure a very consistent
average DMA rate of 1054 frames per second (278 MiBps).
This is a rate limited by the DMA engine and the memory
hierarchy. To increase this transfer rate, we increased the word
size from 32 bits to 1024 bits, the maximum word size
supported by the AXI interconnects on the ZC706. We also
enabled “narrow burst” mode, which transfers data in bursts of
32 words, because the blocks of data we are transferring are
large enough to be evenly divided by these bursts. These
optimizations helped increase our data transfer rate up to its
current rate. Unfortunately, this is still the bottleneck of our
system. Over the videos we tested, moving data between the
SoC and the accelerator takes an average of 74.6% of the total
computation time. To meet this requirement, we would need a
fundamentally faster method of transferring data between the
DDR3 RAM and the BRAM.

18-500 Final Project Report: May 8, 2019

8

VI. PROJECT MANAGEMENT

A. Schedule
In Fig. 5. below, Maxwell’s tasks are in red, John’s are in

yellow, Riki’s are in blue, and joint work uses the secondary
colors made by combining the relevant individuals’ colors.

A lot of our earlier scheduled tasks were pushed back,
resulting in most of our later tasks to have only a day or two of
working time. The whole schedule slid into slack time that we
preserved for ourselves. There were a few tasks that we had to
knock off the schedule, mainly for testing and verifying outputs.
This was because the algorithm implementation on the SoC and
the optimization took longer than expected, alongside the
integration step.

B. Team Member Responsibilities
The design and implementation work were divided as

follows. Maxwell was in charge of the FPGA fabric design and
implementation, as well as general integration management.
Maxwell served as our project lead. John was in charge of
setting up the SoC and parts of the pre- and post-processing
applications. Riki was in charge of the seam carving algorithm
design and software implementation. All members were
involved in design reviews, and collaborated during the
integration step to connect the various components to make up
the whole system.

C. Budget
We had no external orders planned at midpoint, and ended up

not making any orders at all. All of our work was implemented
locally on our laptops and the Xilinx ZC706 FPGA provided to
us by Professor Bill Nace. We are very grateful to him for
lending us this platform that allowed us to create a successful
project.

D. Risk Management
There were several risk factors that were recurring themes

throughout the project. Listed below are the risks that were
visited by us most often, and were also highlighted in the status
report.

1) Research Nature of Project
Given the research nature of this project, the outcome of

seam carving through time was unknown. We knew that it can
be applied to video as in [1], but this paper did not apply seam
carving to the time dimension. To mitigate the risk of not having
a viable output in the end, we’ve planned out the schedule such
that the first task was to implement a prototype of seam carving
through time. This allowed our team the time to perform the
necessary refinement and evaluation to successfully apply the
seam carving algorithm in the time dimension. We also stocked
up on possible videos to test the algorithm on, so we would be
able to find out the efficacy of seam carving on different classes
of videos as soon as it was ready.

2) Algorithm Design
The algorithm design was not set in stone in the early stages

of this project, and was decided on much later in the process
than we originally planned. As seen in section System
Description - Algorithm, there were many pivots and design

iterations taken by us when coming up with the software
algorithm. We foresaw the risk of the original graph-cut
algorithm to be too difficult to implement or divide up into
subcomponents, and had a back-up plan for a simpler design
ready. We did end up going for the back-up plan, which was
good risk mitigation on our part.

3) Integration
The risk of not being able to 1.) establish a viable interface

for system integration and 2.) testing the system end-to-
end because of pressing time was always a risk that we faced
during the project. The first half of the project period was
dominated by team members doing individual research and
work. This resulted in us not discussing in depth about the
possible steps to integration that we could make and most
importantly the division of labor between the hardware and the
software in executing the algorithm. We noticed this risk half-
way through, and took measures to mitigate it by holding extra
meetings in lab to update each other on the progress we were
making on our subcomponents. The risk of not being able to test
end-to-end was a big threat to our project until the end. We
decided to make sure that our interfacing and in/out values were
complete individually, so that we would have a near perfect
system when integrating the whole system.

VII. RELATED WORK
Our project was inspired by the concepts of Rubinstein et al.

in the paper “Improved Seam Carving for Video Retargeting”.
In the paper, they suggest that the algorithm can be directly
applied to increase video playback speed, which was what we
aimed to achieve in this project. Although we retreated from re-
implementing their algorithm, it would’ve been interested to
pursue their path.

 Team B2 in the same Capstone Design class had a similar
goal of accelerating seam carving via the usage of FPGAs.
Although they aimed to apply the algorithm in the conventional
way of retargeting full image frames, it was interesting to
discuss the similarities and differences in our approaches to
implementing seam carving via hardware.

VIII. SUMMARY
Our system was able to meet most of our design

specifications. The 3T time requirement was almost met, with
the bottleneck being memory transfer, something that could be
further honed by researching more into efficient protocols. We
were also looking into leveraging the Dual ARM core by
implementing software level parallelism, but never got to it.
Overall there is definitely space for speed optimization - which
is good news to us because we know this project may be taken
further for deployment.

Our evaluation on researching and verifying videos that work
well with our algorithm turned out as follows:

1) We found out that the videos that work well with our
algorithm were those with salient features with large
movements. This was expected because the seam carving
algorithm inherently favors pixel locations with large changes.
A consequence of this feature is a general loss in content

18-500 Final Project Report: May 8, 2019

9

information when the background of a video was moving too
rapidly. The algorithm didn’t include the detection of
foreground and background objects within each frame, which
lead to some jittery outputs for those kind of videos.

2) Whereas we expected videos with clear scene changes to
fool our algorithm by a certain degree, we found out that the
algorithm worked pretty well on them. We processed some
Vine videos as inputs when testing for event ordering, and
found out that the scene switches almost always had a complete
frame. We hypothesize this to be a result of no sheets cutting
through the scene switches because of the high energy
difference. This was a pleasant surprise, as our initial expected
application area of this project was for sport videos, which tend
to have many camera angle changes during the match.

We’ve learned several lessons along the journey of this
project. First off, do not underestimate the learning curves of
new tools and new platforms. Before the project, none of our
team has worked with Vivado, Zynq boards, or any SoCs. We
were overly confident of our ability to learn and work with these
new tools and devices; we were forced to push back our
schedule because we allocated too little time for learning and
researching.

Secondly, integration comes first. Looking back at our
semester, we spent the most time and effort trying to achieve
the PC-PS-PL communication chain. Once that was achieved,
mounting the algorithm onto the system did not take as much
time. Thus we conclude that integration should come first for
every project.

REFERENCES
[1] Improved Seam Carving for Video Retargeting, Rubinstein, Shamir,

Avidan. http://www.faculty.idc.ac.il/arik/SCWeb/vidret/index.html
[2] Xilinx ZC706 Evaluation Kit. https://www.xilinx.com/products/boards-

and-kits/ek-z7-zc706-g.html#hardware
[3] Xilinx Zynq-7000 SoC Family Guide.

https://www.xilinx.com/support/documentation/selection-guides/zynq-
7000-product-selection-guide.pdf

APPENDIX B
[1] https://youtu.be/LC8zf1NFIBY
[2] https://youtu.be/Hjlph2fEreY
[3] https://youtu.be/mGOVQqY29WY
[4] https://youtu.be/Ubk82D_tBGQ
[5] https://youtu.be/KTM4xQe910U

http://www.faculty.idc.ac.il/arik/SCWeb/vidret/index.html
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html#hardware
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html#hardware
https://www.xilinx.com/support/documentation/selection-guides/zynq-7000-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/zynq-7000-product-selection-guide.pdf
https://youtu.be/LC8zf1NFIBY
https://youtu.be/Hjlph2fEreY
https://youtu.be/mGOVQqY29WY
https://youtu.be/Ubk82D_tBGQ
https://youtu.be/KTM4xQe910U

18-500 Final Project Report: May 8, 2019

10

Fi

g.
 5

.
 U

pd
at

ed
 S

ch
ed

ul
e

	I. Introduction
	II. Design Requirements
	III. Architecture and/or Principle of Operation
	A. External Computer
	B. System on Chip
	C. Programmable Fabric

	IV. System Description
	A. Algorithm
	B. Energy Computation Accelerator
	C. Memory Transfer System
	D. System on Chip

	V. Design Trade Studies
	A. High-level Requirements
	Requirement 0.0.0: The system must process a video with time length T in 3T time.
	Requirement 0.0.1: The system must process a 360p and 24fps video.
	Requirement 0.0.2: The system must increase playback speed of a video by 1.5 times.
	Requirement 0.0.3: The system must support at least three popular video file formats as input.
	Requirement 0.1.0: The resulting video must have smooth frame transitions.
	Requirement 0.1.1: The resulting video must have no obvious distortions to its content.
	Requirement 0.1.2: The resulting video must have its original order of events preserved.
	B. Pre- and Post-Processing
	Requirement 1.0: The application must convert videos to an FPGA readable format.
	Requirement 1.1: The application must transfer videos to the FPGA through Ethernet.
	C. System on a Chip (SoC)
	Requirement 2.0: SoC runs Linux Kernel as embedded operating system.
	Requirement 2.1: The SoC reads from and writes to the RAM.
	Requirement 2.2: The SoC extracts a seam made of pixels with the lowest energy from a given energy map
	D. Programmable Fabric
	Requirement 3.0: The FPGA block RAM must have capacity of at least 10.6 Mib.
	Requirement 3.1: The programmable fabric must process the energy function at a rate of 2400 frames per second.
	Requirement 3.2: The programmable fabric must write the result of the energy function to RAM at a rate of 2400 frames per second.

	VI. Project Management
	A. Schedule
	B. Team Member Responsibilities
	C. Budget
	D. Risk Management
	1) Research Nature of Project
	2) Algorithm Design
	3) Integration

	VII. Related Work
	VIII. Summary
	References
	Appendix B

