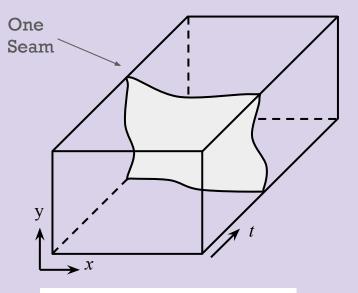
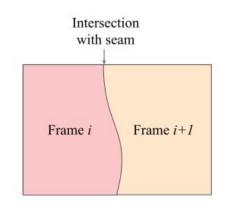

# Seam Carving Through Time

Team BD: Maxwell Johnson, Riki Khorana, John Zhang

# Previously on SCTT...

- Seam Carving
  - An algorithm for content-aware
    - image resizing
      - Calculate Energy Map(pixel difference)
      - Find Lowest Energy Seam
      - Remove the Seams





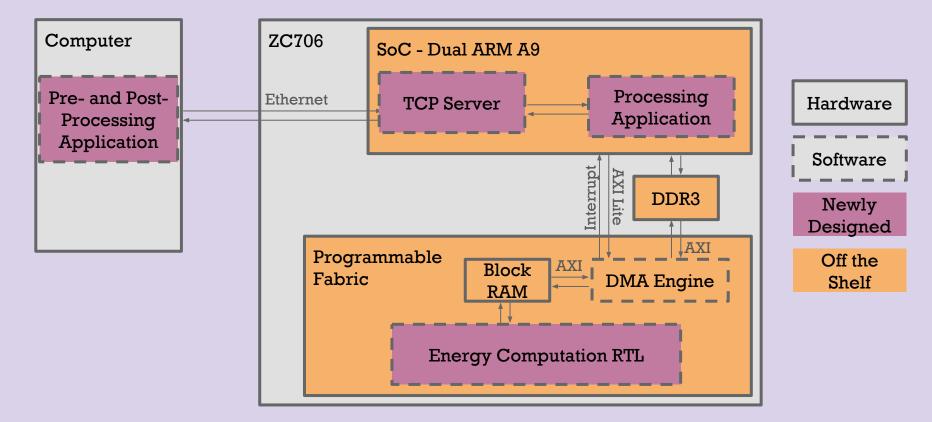

# **Our Project**

- Seam Carving videos across time
  - Content-aware alteration of video playback speed
    - Find 3D energy map
    - Find 2D lowest energy seams
    - Remove the seams to shorten videos
    - Result: Output video frames comprise pixels from multiple frames
  - Speed up by delegating homogenous computation to FPGA

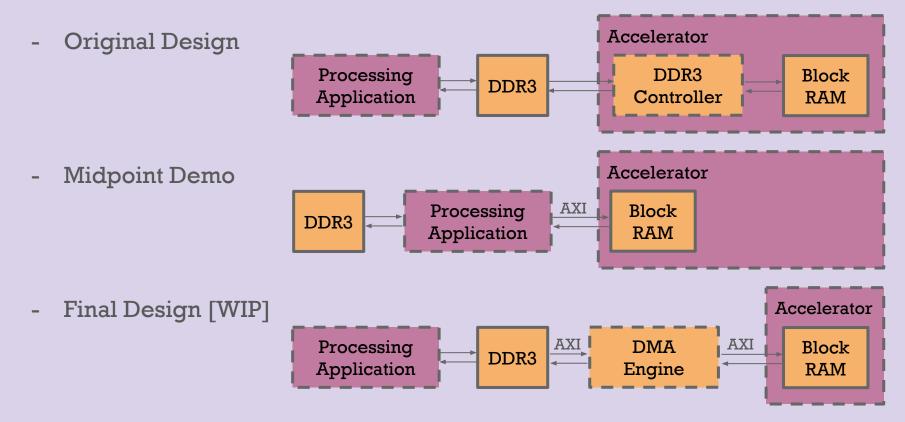




### **Our Latest Output Video**




Input video: Length: 3.7s




Output video: Length: 2.4s

### **Final Implementation**



## Major Design Changes – Memory Transfer



# Major Design Changes – Algorithm

- 1.) Graph-cut algorithm
  - + Ensures optimal seam (min-cut)
  - + Properly implements "forward energy"
  - Graph size too big for FPGA

- 2.) Dynamic programming (sweep)
  - + Takes less space
  - Right-most column dominates
  - Seams are discontinuous

- 3.) Dynamic programming (radix)
  - + Seams are continuous
  - + Properly prioritize areas with less action

#### **Design Changes - Energy Function**

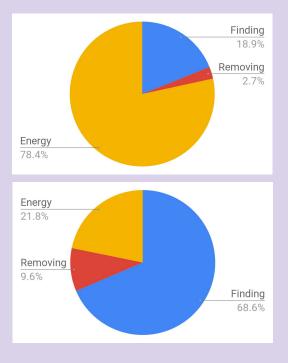


**Conventional Energy Mapping** 



"Forward Energy" Mapping

## **System Metrics**


| Process                                     | Metric                                       | Where we currently are                  |
|---------------------------------------------|----------------------------------------------|-----------------------------------------|
| Increase playback speed by<br>1.5x          | Frame count                                  | Playback speed goal reached             |
| Video is smooth                             | Subjective appraisal, energy function        | Qualitative: Great<br>Quantitative: TBD |
| Send byte stream of seam carved video to PC | Bits / second                                | 20 Mbps                                 |
| Process a video of duration T in time 3T    | On-board timing from processing start to end | For 3.7s video: 184s [WIP]              |

# Timing

Reference time: 22 s (Macbook Pro, 2.9 GHz i5)

- Receive from computer: 10.5 s
- Total compute time: 184.6 s
  - Total time finding seams (SoC): 34.9 s
  - Total time removing seams (SoC): 4.9 s
  - $\circ$  Total time computing energy (PL): 144.6 s\*
- Transmit to computer: 8.4 s

\*Energy computing time using DMA: 11.1 s



#### Schedule

| Week<br>l  | PHASE 1: Design                                                    |  |
|------------|--------------------------------------------------------------------|--|
| Week 2-6   | PHASE 2: Research + Implementation + Testing on individual modules |  |
| Week 7-10  | PHASE 3: Integration                                               |  |
| Week 11-12 | PHASE 4: Testing + Application Survey, Optimization, Final Demo    |  |

### Lessons Learned

- Know your tools
  - Vivado learning curve
  - Platform architecture
  - Integration first
- Understand the timeline
  - Don't put the horse before the cart
  - Optimism is not your friend
- Trade-offs
  - Implementation time is part of the equation