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Abstract—The project aims to shorten a video while preserving the 
salient features by applying 3D seam-carving to the video. The 
approach functions by removing a series of continuous sections of 
pixels to shorten the time duration of the video. 

The project will implement the algorithm in software for research 
purposes. The team will additionally develop a system to accelerate the 
computation on an FPGA board. The accelerating system comprises 
three main system components: a software application on an external 
computer, a system on chip (SoC) running the Linux kernel, and the 
FPGA’s programmable fabric to perform the acceleration. 
 
Index Terms—FPGA, Seam carving, System on Chip 
 

I. INTRODUCTION 
HE most pervasive technique for shortening the length of 

a video is to increase the playback rate. This method 
disregards the content of the video. Our project is to 

develop a content-aware video-shortening system with the goal 
of producing shorter videos that look more natural than those 
shortened using standard techniques. The system must be able 
to shorten a video to two-thirds of its original length without 
noticeably speeding up the salient features of the video. 

In the context of our project, a seam is defined as a connected 
set of pixels spanning the width and height of the video. It is a 
surface, which may bend in the time dimension. Fig. 1 shows 
an example seam cutting a video, represented with time 
extending in the t dimension. 
 

 
Fig. 1. An example of a seam in the three-dimensional representation of a video. 
 

In the resulting video, different areas of a frame may contain 
pixels that originate from different frames. Fig. 2 shows an 
example of what a frame that intersects the seam may look like 
in the resulting video. 

 
Fig. 2.   An example of a frame intersecting a removed seam. 

 
The seam carving algorithm attempts to remove the seam 

with the lowest cumulative energy. Energy is defined in terms 
of the pixel difference δ between pixels a and b, defined below. 

 d(a, b)  =  (ra – rb)2 + (ga – gb)2 + (ba – bb)2 (1) 

Where rp, gp, and bp denote the intensity of the red, green, and 
blue components of pixel p respectively. The energy function 
defines an energy of a pixel p at coordinates (x, y, t) denoted as 
px, y, t is shown below. 

 E(px, y, t)  =  d(px,y,t, px+1,y,t) + d(px,y,t, px y+1 t) + d(px,y,t, px,y,t+1) (2) 

The seam with the lowest energy corresponds with the 
moment of the least action. By removing the seam of the lowest 
energy, the seam carving through time algorithm produces a 
video with the slowest parts of the video cut out. 

Our project comprises of two foci: research into the 
application of seam carving to video in the time dimension and 
acceleration of the seam carving algorithm. Our research will 
determine the families of videos on which seam carving is most 
effective, as well as heuristic improvements to the algorithm 
that improve the output quality and computation speed. To 
accelerate the computation, we will use a Xilinx FPGA with an 
embedded system on chip. The system must be able to process 
the video in the same time the original video takes to play. 
While the specific uses of this algorithm are subject to our 
research, condensing video to emphasize its salient features has 
applications in monitoring security feeds, watching tutorial 
videos, and viewing sports footage. 
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II. DESIGN REQUIREMENTS 

A. High-level Requirements 
Below are requirements that are set on the overall system. 

They are divided into two categories: Spec and content. The 
former specifies the technical constraints on the spec of the 
video and the performance of the system itself. The latter aims 
to quantify the quality of the processed video in terms of our 
project goal. 
 
Requirement 0.0.0: The system must process a video with 
time length T in 3T time. 

We will measure this requirement by timing how long the 
system takes to process an arbitrary video. The system is timed 
from the beginning of the pre-processing step to the end of the 
post-processing step. 

Holistically, we specify 3T as our benchmark because that is 
generally the time it takes to manually inspect a video of time 
T and crop out it’s salient features. Technically in production, 
we would be able to use multiple (>3) FPGA boards to run the 
algorithm in parallel, where the net effect would be processing 
the video in time T. 
 
Requirement 0.0.1: The system must process a 360p and 
24fps video. 

We will measure this requirement by simply inputting a 
video of 360p with 24fps into the system and verify that the 
system outputs some form of end product. 

We have derived the quality requirements of the input video 
based on the most widespread standards. In particular, we have 
studied YouTube videos and its distribution system as an 
example of a common standard. From this, we set 360p as a 
video quality requirement, because that is the minimum 
resolution for a regular YouTube video, and 24fps because that 
was a common standard for common video formats. 
 
Requirement 0.0.2: The system must increase playback 
speed of a video by 1.5 times. 

We will measure this requirement by inputting a video of 
time T and verifying that the resulting video has time 2T/3. 

Like requirement 0.0.1, we have devised this requirement via 
observations made on the YouTube platform. A modified 
playback speed of 1.5 times was commonly amongst fellow 
students when watching a video of a familiar topic at a higher 
speed. We aim to provide a 1.5 times playback speed for videos 
of all content, by preserving the salient features of the video 
using the seam carving algorithm. 
 
Requirement 0.0.3: The system must support at least three 
popular video file formats as input. 

We will measure this requirement by inputting at least three 
videos of select file formats and verifying that the system 
produces a valid output. Currently, we are planning to 
support .MOV, .AVI, and .MP4 as the three popular video file 
formats. 
 
Requirement 0.1.0: The resulting video must have smooth 
frame transitions. 

We define videos with smooth transitions as ones where the 
average energy values of the frames computed by the energy 
function (2) does not exceed a certain threshold value. The 

threshold value will be set by us, after running the energy filter 
through at least 20 “normal” YouTube videos, and taking the 
average energy + 1 standard deviation. 
 
Requirement 0.1.1: The resulting video must have no 
obvious distortions to its content. 

We define videos with no distortions as ones that have its 
salient features properly preserved. For example, if a user 
cannot predict the original contents of the processed video after 
watching it, we determine that our video has somehow lost 
some of its salient features. 

We will quantify this requirement by conducting a user 
survey and asking the users to watch the processed video, 
predict the original video, watch the original video, and rate 
how close they imagined the original video to be on a scale of 
1 ~ 10. We require that we obtain an average score of above 8.5 
as a result of the user studies. 
 
Requirement 0.1.2: The resulting video must have its 
original order of events preserved. 

We aim to develop a specific test suite for this requirement, 
consisting of synthetic videos with well defined “events” as 
inputs. We will quantify the requirement by counting how many 
events were misplaced in the output video compared to the 
input video. 

 

B. Pre/Post Processing Requirements 
The pre/post processing applications are wrappers to the 

entire system, which determines how the input/output is 
presented both internally and externally. On top of fulfilling all 
video spec requirements from Requirement 0.0.x, the 
application has several requirements set to ensure efficient 
communication with the hardware. 

 
Requirement 1.0: The application must convert videos to an 
FPGA readable format. 

The video will be represented as a three-dimensional array of 
pixels. We denote the width (long dimension) of the video as 
the x dimension, the height (short dimension) of the video as the 
y dimension, and the time dimension of the video as the t 
dimension. Each pixel is represented as a three-byte vector 
representing the intensity of red, green, and blue intensities. The 
pre- and post-processing applications must be able to convert 
between popular video file formats and this decompressed 
format. 
 
Requirement 1.1: The application must transfer videos to 
the FPGA through Ethernet. 
 
 The FPGA board has a built-in ethernet port, which will be 
used to communicate with the pre/post processing application 
running on an external computer. Please see section IV Design 
Trade Studies for more details. 
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C. SoC and Algorithm Requirements 
The SoC runs on the FPGA and is used to run the seam 

carving algorithm while delegating some of its subroutines to 
the programmable fabric. 
 
Requirement 2.0: SoC runs Linux Kernel as embedded 
operating system. 

We choose to run a Linux kernel as the embedded operating 
system on the ARM Cortex-A9 cores because it is well-
documented, and all of our team members are familiar with it. 
The Linux kernel memory mapping layout has a specific area 
that’s directly mapped with the board’s DDR3 memory; this is 
in favor of our project as we intend to use the SoC for reading 
from the memory the energy map and write to the memory the 
video data after cutting out a seam.  
 
Requirement 2.1: The SoC reads from and writes to the 
RAM. 

One of the main tasks of the SoC is to read the energy map 
from the RAM that the programmable fabric has produced and 
write the resulting video data after calculating and cutting out a 
seam for the programmable fabric to recalculate the energy map. 
Therefore, it is crucial that the SoC can read from and write to 
the RAM directly. 

We will evaluate requirement 2.1 by testing memory 
manipulation through the Linux kernel. The Linux kernel 
should be able to run scripts to read and write to the DDR3 
memory on the board.  

 
Requirement 2.2: The SoC extracts a seam made of pixels 
with the lowest energy from a given energy map 

The SoC will take an energy map of a video calculated by the 
programmable fabric and find a seam to remove as described in 
the introduction. 

We will evaluate this functionality by unit testing and 
comparing the calculated seams with that of a software 
implementation. 
  
Requirement 2.3: The SoC reads the video data from the 
RAM and performs seam carving. 

After calculating the seams from the energy map, the SoC 
cuts out seams from the video data accordingly by reading 
video data from the RAM and writing the resulting data back to 
the RAM. 

We will evaluate this functionality by unit testing and 
comparing the calculated seams with that of a software 
implementation. 
 

D. Programmable Fabric Requirements 
Processing video is memory-intensive, while reading from 

memory is often the slowest operation. To anticipate this 
bottleneck, we impose the requirement on the programmable 
fabric that it be able to store the data of two frames in the block 
RAM embedded in the fabric. This allows us to compare each 
pixel in a frame against an adjacent pixel along each axis, as 
required by (2), without accessing main memory. The size of 
each frame is given by 
 
320 vertical pix * 640 horizontal pix * 3 bytes/pix * 8 bits/byte 
= 4.7 Mb per frame 

Requirement 3.0: The FPGA block RAM must have 
capacity of at least 9.4 Mb (1024^2 bits). 

Requirement 3.0 defines a requirement on the choice of 
board and the layout of block rams in the accelerator hardware 
design. We will measure this requirement using the Vivado 
synthesis report. 

We will be using the programmable fabric to accelerate the 
computation of the energy function of the video. This process 
must be completed for every frame before the system on chip 
can remove a seam. It is also used to recompute the energy of 
altered frames after the removal of each seam. We estimate that 
computing the energy function comprises roughly half of the 
computation in our algorithm. Using an FPGA for a very 
regular computation can potentially provide very speed-up; 
however, by Amdahl’s law, there is diminishing return to 
accelerating only a portion of computation. To achieve a 
speedup of 1.98, 1% less than the optimal 2.0, the 
programmable fabric must process frames roughly 100 times 
faster than the non-accelerated system on chip portion. At our 
overall target speed of 24 frames per second, the programmable 
fabric must process the energy function at 100 * 24 fps = 2400 
fps. 
 
Requirement 3.1: The programmable fabric must process 
the energy function at a rate of 2400 frames per second. 

We will measure requirement 3.1 first using simulation tools 
(VCS). On the board, we will use a hardware counter to confirm 
the number of cycles used per computation at a known clock 
rate. 

Our final requirement on the programmable fabric is that it 
must be able to store the energy map back to RAM quickly. We 
must be able to write the processed frames back to memory as 
we generate them, so the required processing speed matches 
requirement 3.1. 
 
Requirement 3.2: The programmable fabric must write the 
result of the energy function to RAM at a rate of 2400 
frames per second. 

A simulation model of the RAM and controller may be 
inaccurate, so we will only measure this requirement on-chip 
using hardware counters, in the same style as requirement 3.1. 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 
 

 
Fig. 3.   High-level block diagram of system. 

 
Fig. 3 shows the block diagram of our overall system. We 

have divided our system into three main hardware components: 
the external computer, the on-board system on chip, and the 
programmable fabric. We will address the purpose and dataflow 
of each component individually. 
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A. External Computer 
The computer is the user interface to our system. This is 

where the user will select their video and the new playback rate. 
The pre-processing application will parse the video from a 
standard playable format into a three-dimensional array of 
pixels. Each pixel will be represented as three bytes, 
representing the intensity in that pixel of red, green, and blue, 
respectively. It is in this format that the video will be transferred 
to the FPGA board over ethernet connection. The resulting 
video is received over the same connection in the same 
decompressed format. The post-processing application formats 
the video into a standard playable format and saves the result to 
file. 
 

B. SoC 
The system on chip is a core embedded in our FPGA. We 

will use it to perform the more dynamic portions of seam 
carving: seam selection and seam removal. It is responsible for 
analyzing the energy map of a video output by the 
programmable fabric, determining a low-energy seam to 
remove, and performing the memory operations required to 
remove the seam. To determine a seam to remove, the system 
on chip will read the energy map from RAM. After selecting a 
seam, it will read the video data from RAM, modify it, and write 
it back.  
 

C. Programmable Fabric 
The programmable fabric will accelerate the computation of 

the energy function given in (2). The input to this component is 
the video in the uncompressed format stored in the RAM. It is 
accessed through the Xilinx DDR3 controller IP [6] instantiated 
in the programmable fabric. The programmable fabric 
computes the energy function of the video, storing temporary 
data in block RAM within the programmable fabric. The energy 
map of the video is written back to the RAM through the same 
DDR3 controller. When the system on chip removes a seam, the 
programmable fabric will recompute the energy function of the 
altered frames. 

IV. DESIGN TRADE STUDIES 

A. Algorithm 
We have decided to utilize the OpenCV library as part of 

the pre/post processing applications. In order to achieve high 
speed while leveraging the rich functionality of OpenCV, we 
decided to use the C++ distribution instead of the familiar 
Python version. A naive implementation of video pixel 
processing showed a speed up from 14.9 seconds to 3.5 
seconds using C++ instead of Python. We have made a 
tradeoff between faster implementation and learning cost of a 
new language. 
 
A recurring suggestion for the seam carving algorithm was to 
use grayscale instead of color for edge detection, allowing us 
to implement a faster and less memory-intensive solution. 
However, we have decided to keep the pixel information in 
color, as we would like to aim for a high-quality solution. The 
added memory of the color will also likely not be the 
bottleneck. 
 

B. Accelerator 
As part of our design, we will use an FPGA board with an 

embedded system on chip. The system on chip will perform the 
more dynamic stages of the seam carving algorithm, while 
delegating tasks to the programmable fabric, which will 
accelerate the more regular computation. Using an embedded 
system on chip will reduce the communications overhead 
between the two processing-heavy components of our system. 

The primary decision to be made in the accelerator subsystem 
is what FPGA board to use. The board provides all the hardware 
used by the accelerator, which we decompose into the following 
subsections: 

 
• Programmable fabric 
• System on chip 
• Main memory 
• Off-board communication 

 
The programmable fabric is the portion of the board that will 

be directly used to accelerate computation. This is the source of 
our primary constraints on board choice. Design requirement 
3.0 requires that the block RAM of the FPGA be able to hold 
the data of at least two frames to reduce memory accesses, 
which totals 9.4 Mb of block RAM. Table 1 shows the block 
RAM capacities of the available boards. Only the Xilinx ZC706, 
which uses a Zynq 7045 FPGA [1], has the block RAM capacity 
to hold the required two frames. 

TABLE I.  PROJECTED RESOURCE UTILIZATION 

 
All four boards use the same system on chip, a dual-core 

ARM Cortex-A9 [2][3][4]. They are clocked at comparable 
speeds, though again the Xilinx ZC706 is the most performant 
at a 1 GHz clock rate. 

The main memory dictates the length of video that we can 
process at one time on the FPGA. The pre-processing 
application can break the video into shorter chunks to be 
processed independently, so we will only require that the main 
memory hold roughly 10 seconds of video. 4.7 Mb/frame * 24 
fps * 10 sec = 141 MB. The ZC706 has 1 GB of DDR3 RAM 
[1], which provides ample space for the video and leaves space 
for the system on chip’s operating system and seam carving 
application. 

Direct memory access (DMA) provides a way for off-board 
communication to write directly to memory, which provides the 
highest-throughput communication. On the ZC706, there are 
three connections that provide DMA: USB 2.0, Ethernet, and 
SDIO. SDIO is not designed for inter-processor communication. 
The maximum speed of USB 2.0 is specified as 57 MB/s [5]. 
The maximum speed that our ethernet controller supports is 

Board Block RAM capacity 

Xilinx ZC706 19.2 Mb [2] 

DE10-Standard 5.6 Mb [3] 

ZedBoard 4.9 Mb [2] 

Pynq-Z1 4.9 Mb [4] 
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1000 Mbps = 125 MB/s [2]. Both devices can transfer our video 
faster than it can be played and are likely sufficient. Xilinx 
provides IP cores allowing the programmable fabric to interface 
with either controller. We decided to use ethernet because of its 
ease-of-use on the software side as well as the higher data rate. 

V. SYSTEM DESCRIPTION 

A. Pre/Post Processing 
The role of this unit is to disassemble and reassemble original 

and processed videos into user-readable formats, and to apply 
additional filters to the video as needed. It also serves as the 
master to the hardware application, and therefore requires 
ethernet network programming to optimize the communication. 

The pre/post processing application runs on the external 
computer and is implemented using C++. Most of the dissection 
of the video file into FPGA readable bitstreams and the 
assembly of it into a video output uses the OpenCV library. 
Additional processing on the video itself also uses OpenCV, but 
primitive pixel-level manipulations may be directly 
implemented without using the library. The network interface 
to the FPGA board also lives in this application. 
 

B. SoC 
The SoC takes up the tasks of calculating lowest energy 

seams from the energy map calculated by the programmable 
fabric. It will also read video data from the DDR3 memory and 
use the cut out the calculated seams of pixels from the video.  

The SoC will run a Linux kernel as an embedded OS, 
enabling direct mapping to the DDR3 memory and therefore 
facilitated memory reading and writing. 

 

C. Programmable Fabric 
To compute the energy function defined in (2), our design 

must square nine differences. The Zynq 7045 has 900 discrete 
signal processing (DSP) units [2], each of which contains a 
multiplier with a pre-adder that can be used to compute the 
square of a difference. The required horizontal resolution is 640 
(see Requirement 0.0.1), so our design seeks to parallelize the 
energy function computation across a row of pixels in a frame. 
The design consists of 640 processing units, one of which is 
pictured in Fig. 4. 

 
Fig. 4.   Hardware design diagram 

 
Each unit receives pixel values from the shared block RAM. 

In the first clock cycle of the process, cur_pix_en is asserted to 
load the value of the reference pixel. In subsequent cycles, 
cmp_pix is loaded with adjacent pixels and δ(cur_pix, 
cmp_pix) is computed (see (2) for function definition). The 
final energy is held in the output register so the writeback 
module can write the resulting data to RAM. A final component 
of the system is the module to load the block RAM with video 
data from main RAM, which will use the Xilinx DDR3 RAM 
IP block [6]. 
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Computing each δ takes three multiplications, each of which 
require one cycle. Three such computations are required, for a 
total of nine cycles of computation. One cycle is required to 
load cur_pix, which cannot be overlapped with the first load of 
cmp_pix, so we can expect the computation of each energy to 
use ten cycles. At a 50 MHz clock, we will be able to process 
50 MHz / (10 cycles/row * 320 rows/frame) = 15.6 kfps, which 
satisfies requirement 3.1. 

We have designed and synthesized one processing unit, from 
which we can extrapolate the overall usage of board resources. 
These numbers are reported in table 1. 

TABLE II.  PROJECTED RESOURCE UTILIZATION 

Resource 640 Units FPGA capacity [2] Utilization 

Block RAM (Kb) 9600 19620 48.9% 

Look Up Tables 41600 218000 19.1% 

Flip-Flops 51200 437000 11.7% 

DSP slices 640 900 71.1% 

 
Our projected utilization is closest to 100% in DSP slices, as 

designed. We could introduce more processing units at the cost 
of more complexity in the division of labor; however, it is 
advantageous to leave some DSP slices unused to ease the 
place-and-route process and to keep the clock frequency high. 

VI. PROJECT MANAGEMENT 

A. Team Member Responsibilities 
The design and implementation work are divided as follows. 

Maxwell is in charge of the FPGA fabric design and 
implementation, aiming to accelerate parts of the seam carving 
algorithm. John is in charge of the SoC on the FPGA, aiming to 
establish a seamless communication channel between the 
FPGA and the external computer. Riki is in charge of the pre-
processing and post-processing applications on the external 
computer, aiming to process the video in a way that would 
optimize the seam carving results. All members are involved in 
design reviews, and plan to collaborate during the integration 
of the various components to make up the whole system. 
 

B. Budget 
We have no external orders planned at this time, as all of 

our work can be implemented locally on our laptops and the 
Xilinx FPGA provided to us by the school. 

 

C. Risk Management 
The team has identified several risk factors that could 

potentially hinder the progress or outcome of the project. 
 
I. Uncertainty of outcome 

 
Given the research nature of this project, the outcome of 

seam carving through time is unknown. We know that it can be 
applied to video as in [9], but this project did not apply seam 

carving to the time dimension. To mitigate this important risk, 
we’ve planned out the schedule such that the first task is to 
implement a prototype of seam carving through time. This will 
allow our team the time to perform the necessary refinement 
and evaluation to apply the seam carving algorithm in the time 
dimension. 
 
II. Unfamiliarity with SoC 

 
None of the team members have previously worked with the 

system on chip, a key component in running the dynamic 
portions of the seam carving algorithm. To minimize the impact 
of this, we have prioritized the task of interfacing to the SoC 
and we have assigned two of our team members to contribute 
to the development of the SoC application and interface. 
 
III. Unknown processing time to find a seam 
 

We will be accelerating the computation of the energy 
function, but we will be running the seam-finding portion of the 
algorithm on the embedded core. Without our prototype seam 
carving application, our estimates of processing time are still 
very approximate. Again, we are mitigating this risk by 
prioritizing the development of the software prototype. In the 
worst case, we can move the seam-finding off of the SoC and 
to the external computer. This comes at the cost of increased 
communication to the external computer, but if the embedded 
SoC does not have enough processing power, this may be a 
worthwhile trade. 

 

D. Schedule 
 
In Fig. 5. (following page), Maxwell’s tasks are in red, John’s 
are in yellow, Riki’s are in blue, and joint work uses the 
secondary colors made by combining the relevant individuals’ 
colors. 
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Fig. 5.   Team Gantt Chart 
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