
18-500 Design Review Report: 03/04/2019

1

Abstract—The project aims to shorten a video while preserving the
salient features by applying 3D seam-carving to the video. The
approach functions by removing a series of continuous sections of
pixels to shorten the time duration of the video.

The project will implement the algorithm in software for research
purposes. The team will additionally develop a system to accelerate the
computation on an FPGA board. The accelerating system comprises
three main system components: a software application on an external
computer, a system on chip (SoC) running the Linux kernel, and the
FPGA’s programmable fabric to perform the acceleration.

Index Terms—FPGA, Seam carving, System on Chip

I. INTRODUCTION
HE most pervasive technique for shortening the length of

a video is to increase the playback rate. This method
disregards the content of the video. Our project is to

develop a content-aware video-shortening system with the goal
of producing shorter videos that look more natural than those
shortened using standard techniques. The system must be able
to shorten a video to two-thirds of its original length without
noticeably speeding up the salient features of the video.

In the context of our project, a seam is defined as a connected
set of pixels spanning the width and height of the video. It is a
surface, which may bend in the time dimension. Fig. 1 shows
an example seam cutting a video, represented with time
extending in the t dimension.

Fig. 1. An example of a seam in the three-dimensional representation of a video.

In the resulting video, different areas of a frame may contain
pixels that originate from different frames. Fig. 2 shows an
example of what a frame that intersects the seam may look like
in the resulting video.

Fig. 2. An example of a frame intersecting a removed seam.

The seam carving algorithm attempts to remove the seam

with the lowest cumulative energy. Energy is defined in terms
of the pixel difference δ between pixels a and b, defined below.

 d(a, b) = (ra – rb)2 + (ga – gb)2 + (ba – bb)2 (1)

Where rp, gp, and bp denote the intensity of the red, green, and
blue components of pixel p respectively. The energy function
defines an energy of a pixel p at coordinates (x, y, t) denoted as
px, y, t is shown below.

 E(px, y, t) = d(px,y,t, px+1,y,t) + d(px,y,t, px y+1 t) + d(px,y,t, px,y,t+1) (2)

The seam with the lowest energy corresponds with the
moment of the least action. By removing the seam of the lowest
energy, the seam carving through time algorithm produces a
video with the slowest parts of the video cut out.

Our project comprises of two foci: research into the
application of seam carving to video in the time dimension and
acceleration of the seam carving algorithm. Our research will
determine the families of videos on which seam carving is most
effective, as well as heuristic improvements to the algorithm
that improve the output quality and computation speed. To
accelerate the computation, we will use a Xilinx FPGA with an
embedded system on chip. The system must be able to process
the video in the same time the original video takes to play.
While the specific uses of this algorithm are subject to our
research, condensing video to emphasize its salient features has
applications in monitoring security feeds, watching tutorial
videos, and viewing sports footage.

Maxwell Johnson, John Zhang, Riki Singh Khorana

Electrical and Computer Engineering, Carnegie Mellon University

Seam Carving Through Time

T

18-500 Design Review Report: 03/04/2019

2

II. DESIGN REQUIREMENTS

A. High-level Requirements
Below are requirements that are set on the overall system.

They are divided into two categories: Spec and content. The
former specifies the technical constraints on the spec of the
video and the performance of the system itself. The latter aims
to quantify the quality of the processed video in terms of our
project goal.

Requirement 0.0.0: The system must process a video with
time length T in 3T time.

We will measure this requirement by timing how long the
system takes to process an arbitrary video. The system is timed
from the beginning of the pre-processing step to the end of the
post-processing step.

Holistically, we specify 3T as our benchmark because that is
generally the time it takes to manually inspect a video of time
T and crop out it’s salient features. Technically in production,
we would be able to use multiple (>3) FPGA boards to run the
algorithm in parallel, where the net effect would be processing
the video in time T.

Requirement 0.0.1: The system must process a 360p and
24fps video.

We will measure this requirement by simply inputting a
video of 360p with 24fps into the system and verify that the
system outputs some form of end product.

We have derived the quality requirements of the input video
based on the most widespread standards. In particular, we have
studied YouTube videos and its distribution system as an
example of a common standard. From this, we set 360p as a
video quality requirement, because that is the minimum
resolution for a regular YouTube video, and 24fps because that
was a common standard for common video formats.

Requirement 0.0.2: The system must increase playback
speed of a video by 1.5 times.

We will measure this requirement by inputting a video of
time T and verifying that the resulting video has time 2T/3.

Like requirement 0.0.1, we have devised this requirement via
observations made on the YouTube platform. A modified
playback speed of 1.5 times was commonly amongst fellow
students when watching a video of a familiar topic at a higher
speed. We aim to provide a 1.5 times playback speed for videos
of all content, by preserving the salient features of the video
using the seam carving algorithm.

Requirement 0.0.3: The system must support at least three
popular video file formats as input.

We will measure this requirement by inputting at least three
videos of select file formats and verifying that the system
produces a valid output. Currently, we are planning to
support .MOV, .AVI, and .MP4 as the three popular video file
formats.

Requirement 0.1.0: The resulting video must have smooth
frame transitions.

We define videos with smooth transitions as ones where the
average energy values of the frames computed by the energy
function (2) does not exceed a certain threshold value. The

threshold value will be set by us, after running the energy filter
through at least 20 “normal” YouTube videos, and taking the
average energy + 1 standard deviation.

Requirement 0.1.1: The resulting video must have no
obvious distortions to its content.

We define videos with no distortions as ones that have its
salient features properly preserved. For example, if a user
cannot predict the original contents of the processed video after
watching it, we determine that our video has somehow lost
some of its salient features.

We will quantify this requirement by conducting a user
survey and asking the users to watch the processed video,
predict the original video, watch the original video, and rate
how close they imagined the original video to be on a scale of
1 ~ 10. We require that we obtain an average score of above 8.5
as a result of the user studies.

Requirement 0.1.2: The resulting video must have its
original order of events preserved.

We aim to develop a specific test suite for this requirement,
consisting of synthetic videos with well defined “events” as
inputs. We will quantify the requirement by counting how many
events were misplaced in the output video compared to the
input video.

B. Pre/Post Processing Requirements
The pre/post processing applications are wrappers to the

entire system, which determines how the input/output is
presented both internally and externally. On top of fulfilling all
video spec requirements from Requirement 0.0.x, the
application has several requirements set to ensure efficient
communication with the hardware.

Requirement 1.0: The application must convert videos to an
FPGA readable format.

The video will be represented as a three-dimensional array of
pixels. We denote the width (long dimension) of the video as
the x dimension, the height (short dimension) of the video as the
y dimension, and the time dimension of the video as the t
dimension. Each pixel is represented as a three-byte vector
representing the intensity of red, green, and blue intensities. The
pre- and post-processing applications must be able to convert
between popular video file formats and this decompressed
format.

Requirement 1.1: The application must transfer videos to
the FPGA through Ethernet.

 The FPGA board has a built-in ethernet port, which will be
used to communicate with the pre/post processing application
running on an external computer. Please see section IV Design
Trade Studies for more details.

18-500 Design Review Report: 03/04/2019

3

C. SoC and Algorithm Requirements
The SoC runs on the FPGA and is used to run the seam

carving algorithm while delegating some of its subroutines to
the programmable fabric.

Requirement 2.0: SoC runs Linux Kernel as embedded
operating system.

We choose to run a Linux kernel as the embedded operating
system on the ARM Cortex-A9 cores because it is well-
documented, and all of our team members are familiar with it.
The Linux kernel memory mapping layout has a specific area
that’s directly mapped with the board’s DDR3 memory; this is
in favor of our project as we intend to use the SoC for reading
from the memory the energy map and write to the memory the
video data after cutting out a seam.

Requirement 2.1: The SoC reads from and writes to the
RAM.

One of the main tasks of the SoC is to read the energy map
from the RAM that the programmable fabric has produced and
write the resulting video data after calculating and cutting out a
seam for the programmable fabric to recalculate the energy map.
Therefore, it is crucial that the SoC can read from and write to
the RAM directly.

We will evaluate requirement 2.1 by testing memory
manipulation through the Linux kernel. The Linux kernel
should be able to run scripts to read and write to the DDR3
memory on the board.

Requirement 2.2: The SoC extracts a seam made of pixels
with the lowest energy from a given energy map

The SoC will take an energy map of a video calculated by the
programmable fabric and find a seam to remove as described in
the introduction.

We will evaluate this functionality by unit testing and
comparing the calculated seams with that of a software
implementation.

Requirement 2.3: The SoC reads the video data from the
RAM and performs seam carving.

After calculating the seams from the energy map, the SoC
cuts out seams from the video data accordingly by reading
video data from the RAM and writing the resulting data back to
the RAM.

We will evaluate this functionality by unit testing and
comparing the calculated seams with that of a software
implementation.

D. Programmable Fabric Requirements
Processing video is memory-intensive, while reading from

memory is often the slowest operation. To anticipate this
bottleneck, we impose the requirement on the programmable
fabric that it be able to store the data of two frames in the block
RAM embedded in the fabric. This allows us to compare each
pixel in a frame against an adjacent pixel along each axis, as
required by (2), without accessing main memory. The size of
each frame is given by

320 vertical pix * 640 horizontal pix * 3 bytes/pix * 8 bits/byte
= 4.7 Mb per frame

Requirement 3.0: The FPGA block RAM must have
capacity of at least 9.4 Mb (1024^2 bits).

Requirement 3.0 defines a requirement on the choice of
board and the layout of block rams in the accelerator hardware
design. We will measure this requirement using the Vivado
synthesis report.

We will be using the programmable fabric to accelerate the
computation of the energy function of the video. This process
must be completed for every frame before the system on chip
can remove a seam. It is also used to recompute the energy of
altered frames after the removal of each seam. We estimate that
computing the energy function comprises roughly half of the
computation in our algorithm. Using an FPGA for a very
regular computation can potentially provide very speed-up;
however, by Amdahl’s law, there is diminishing return to
accelerating only a portion of computation. To achieve a
speedup of 1.98, 1% less than the optimal 2.0, the
programmable fabric must process frames roughly 100 times
faster than the non-accelerated system on chip portion. At our
overall target speed of 24 frames per second, the programmable
fabric must process the energy function at 100 * 24 fps = 2400
fps.

Requirement 3.1: The programmable fabric must process
the energy function at a rate of 2400 frames per second.

We will measure requirement 3.1 first using simulation tools
(VCS). On the board, we will use a hardware counter to confirm
the number of cycles used per computation at a known clock
rate.

Our final requirement on the programmable fabric is that it
must be able to store the energy map back to RAM quickly. We
must be able to write the processed frames back to memory as
we generate them, so the required processing speed matches
requirement 3.1.

Requirement 3.2: The programmable fabric must write the
result of the energy function to RAM at a rate of 2400
frames per second.

A simulation model of the RAM and controller may be
inaccurate, so we will only measure this requirement on-chip
using hardware counters, in the same style as requirement 3.1.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Fig. 3. High-level block diagram of system.

Fig. 3 shows the block diagram of our overall system. We

have divided our system into three main hardware components:
the external computer, the on-board system on chip, and the
programmable fabric. We will address the purpose and dataflow
of each component individually.

18-500 Design Review Report: 03/04/2019

4

A. External Computer
The computer is the user interface to our system. This is

where the user will select their video and the new playback rate.
The pre-processing application will parse the video from a
standard playable format into a three-dimensional array of
pixels. Each pixel will be represented as three bytes,
representing the intensity in that pixel of red, green, and blue,
respectively. It is in this format that the video will be transferred
to the FPGA board over ethernet connection. The resulting
video is received over the same connection in the same
decompressed format. The post-processing application formats
the video into a standard playable format and saves the result to
file.

B. SoC
The system on chip is a core embedded in our FPGA. We

will use it to perform the more dynamic portions of seam
carving: seam selection and seam removal. It is responsible for
analyzing the energy map of a video output by the
programmable fabric, determining a low-energy seam to
remove, and performing the memory operations required to
remove the seam. To determine a seam to remove, the system
on chip will read the energy map from RAM. After selecting a
seam, it will read the video data from RAM, modify it, and write
it back.

C. Programmable Fabric
The programmable fabric will accelerate the computation of

the energy function given in (2). The input to this component is
the video in the uncompressed format stored in the RAM. It is
accessed through the Xilinx DDR3 controller IP [6] instantiated
in the programmable fabric. The programmable fabric
computes the energy function of the video, storing temporary
data in block RAM within the programmable fabric. The energy
map of the video is written back to the RAM through the same
DDR3 controller. When the system on chip removes a seam, the
programmable fabric will recompute the energy function of the
altered frames.

IV. DESIGN TRADE STUDIES

A. Algorithm
We have decided to utilize the OpenCV library as part of

the pre/post processing applications. In order to achieve high
speed while leveraging the rich functionality of OpenCV, we
decided to use the C++ distribution instead of the familiar
Python version. A naive implementation of video pixel
processing showed a speed up from 14.9 seconds to 3.5
seconds using C++ instead of Python. We have made a
tradeoff between faster implementation and learning cost of a
new language.

A recurring suggestion for the seam carving algorithm was to
use grayscale instead of color for edge detection, allowing us
to implement a faster and less memory-intensive solution.
However, we have decided to keep the pixel information in
color, as we would like to aim for a high-quality solution. The
added memory of the color will also likely not be the
bottleneck.

B. Accelerator
As part of our design, we will use an FPGA board with an

embedded system on chip. The system on chip will perform the
more dynamic stages of the seam carving algorithm, while
delegating tasks to the programmable fabric, which will
accelerate the more regular computation. Using an embedded
system on chip will reduce the communications overhead
between the two processing-heavy components of our system.

The primary decision to be made in the accelerator subsystem
is what FPGA board to use. The board provides all the hardware
used by the accelerator, which we decompose into the following
subsections:

• Programmable fabric
• System on chip
• Main memory
• Off-board communication

The programmable fabric is the portion of the board that will

be directly used to accelerate computation. This is the source of
our primary constraints on board choice. Design requirement
3.0 requires that the block RAM of the FPGA be able to hold
the data of at least two frames to reduce memory accesses,
which totals 9.4 Mb of block RAM. Table 1 shows the block
RAM capacities of the available boards. Only the Xilinx ZC706,
which uses a Zynq 7045 FPGA [1], has the block RAM capacity
to hold the required two frames.

TABLE I. PROJECTED RESOURCE UTILIZATION

All four boards use the same system on chip, a dual-core

ARM Cortex-A9 [2][3][4]. They are clocked at comparable
speeds, though again the Xilinx ZC706 is the most performant
at a 1 GHz clock rate.

The main memory dictates the length of video that we can
process at one time on the FPGA. The pre-processing
application can break the video into shorter chunks to be
processed independently, so we will only require that the main
memory hold roughly 10 seconds of video. 4.7 Mb/frame * 24
fps * 10 sec = 141 MB. The ZC706 has 1 GB of DDR3 RAM
[1], which provides ample space for the video and leaves space
for the system on chip’s operating system and seam carving
application.

Direct memory access (DMA) provides a way for off-board
communication to write directly to memory, which provides the
highest-throughput communication. On the ZC706, there are
three connections that provide DMA: USB 2.0, Ethernet, and
SDIO. SDIO is not designed for inter-processor communication.
The maximum speed of USB 2.0 is specified as 57 MB/s [5].
The maximum speed that our ethernet controller supports is

Board Block RAM capacity

Xilinx ZC706 19.2 Mb [2]

DE10-Standard 5.6 Mb [3]

ZedBoard 4.9 Mb [2]

Pynq-Z1 4.9 Mb [4]

18-500 Design Review Report: 03/04/2019

5

1000 Mbps = 125 MB/s [2]. Both devices can transfer our video
faster than it can be played and are likely sufficient. Xilinx
provides IP cores allowing the programmable fabric to interface
with either controller. We decided to use ethernet because of its
ease-of-use on the software side as well as the higher data rate.

V. SYSTEM DESCRIPTION

A. Pre/Post Processing
The role of this unit is to disassemble and reassemble original

and processed videos into user-readable formats, and to apply
additional filters to the video as needed. It also serves as the
master to the hardware application, and therefore requires
ethernet network programming to optimize the communication.

The pre/post processing application runs on the external
computer and is implemented using C++. Most of the dissection
of the video file into FPGA readable bitstreams and the
assembly of it into a video output uses the OpenCV library.
Additional processing on the video itself also uses OpenCV, but
primitive pixel-level manipulations may be directly
implemented without using the library. The network interface
to the FPGA board also lives in this application.

B. SoC
The SoC takes up the tasks of calculating lowest energy

seams from the energy map calculated by the programmable
fabric. It will also read video data from the DDR3 memory and
use the cut out the calculated seams of pixels from the video.

The SoC will run a Linux kernel as an embedded OS,
enabling direct mapping to the DDR3 memory and therefore
facilitated memory reading and writing.

C. Programmable Fabric
To compute the energy function defined in (2), our design

must square nine differences. The Zynq 7045 has 900 discrete
signal processing (DSP) units [2], each of which contains a
multiplier with a pre-adder that can be used to compute the
square of a difference. The required horizontal resolution is 640
(see Requirement 0.0.1), so our design seeks to parallelize the
energy function computation across a row of pixels in a frame.
The design consists of 640 processing units, one of which is
pictured in Fig. 4.

Fig. 4. Hardware design diagram

Each unit receives pixel values from the shared block RAM.

In the first clock cycle of the process, cur_pix_en is asserted to
load the value of the reference pixel. In subsequent cycles,
cmp_pix is loaded with adjacent pixels and δ(cur_pix,
cmp_pix) is computed (see (2) for function definition). The
final energy is held in the output register so the writeback
module can write the resulting data to RAM. A final component
of the system is the module to load the block RAM with video
data from main RAM, which will use the Xilinx DDR3 RAM
IP block [6].

18-500 Design Review Report: 03/04/2019

6

Computing each δ takes three multiplications, each of which
require one cycle. Three such computations are required, for a
total of nine cycles of computation. One cycle is required to
load cur_pix, which cannot be overlapped with the first load of
cmp_pix, so we can expect the computation of each energy to
use ten cycles. At a 50 MHz clock, we will be able to process
50 MHz / (10 cycles/row * 320 rows/frame) = 15.6 kfps, which
satisfies requirement 3.1.

We have designed and synthesized one processing unit, from
which we can extrapolate the overall usage of board resources.
These numbers are reported in table 1.

TABLE II. PROJECTED RESOURCE UTILIZATION

Resource 640 Units FPGA capacity [2] Utilization

Block RAM (Kb) 9600 19620 48.9%

Look Up Tables 41600 218000 19.1%

Flip-Flops 51200 437000 11.7%

DSP slices 640 900 71.1%

Our projected utilization is closest to 100% in DSP slices, as

designed. We could introduce more processing units at the cost
of more complexity in the division of labor; however, it is
advantageous to leave some DSP slices unused to ease the
place-and-route process and to keep the clock frequency high.

VI. PROJECT MANAGEMENT

A. Team Member Responsibilities
The design and implementation work are divided as follows.

Maxwell is in charge of the FPGA fabric design and
implementation, aiming to accelerate parts of the seam carving
algorithm. John is in charge of the SoC on the FPGA, aiming to
establish a seamless communication channel between the
FPGA and the external computer. Riki is in charge of the pre-
processing and post-processing applications on the external
computer, aiming to process the video in a way that would
optimize the seam carving results. All members are involved in
design reviews, and plan to collaborate during the integration
of the various components to make up the whole system.

B. Budget
We have no external orders planned at this time, as all of

our work can be implemented locally on our laptops and the
Xilinx FPGA provided to us by the school.

C. Risk Management
The team has identified several risk factors that could

potentially hinder the progress or outcome of the project.

I. Uncertainty of outcome

Given the research nature of this project, the outcome of

seam carving through time is unknown. We know that it can be
applied to video as in [9], but this project did not apply seam

carving to the time dimension. To mitigate this important risk,
we’ve planned out the schedule such that the first task is to
implement a prototype of seam carving through time. This will
allow our team the time to perform the necessary refinement
and evaluation to apply the seam carving algorithm in the time
dimension.

II. Unfamiliarity with SoC

None of the team members have previously worked with the

system on chip, a key component in running the dynamic
portions of the seam carving algorithm. To minimize the impact
of this, we have prioritized the task of interfacing to the SoC
and we have assigned two of our team members to contribute
to the development of the SoC application and interface.

III. Unknown processing time to find a seam

We will be accelerating the computation of the energy
function, but we will be running the seam-finding portion of the
algorithm on the embedded core. Without our prototype seam
carving application, our estimates of processing time are still
very approximate. Again, we are mitigating this risk by
prioritizing the development of the software prototype. In the
worst case, we can move the seam-finding off of the SoC and
to the external computer. This comes at the cost of increased
communication to the external computer, but if the embedded
SoC does not have enough processing power, this may be a
worthwhile trade.

D. Schedule

In Fig. 5. (following page), Maxwell’s tasks are in red, John’s
are in yellow, Riki’s are in blue, and joint work uses the
secondary colors made by combining the relevant individuals’
colors.

18-500 Design Review Report: 03/04/2019

7

Fig. 5. Team Gantt Chart

VII. REFERENCES

[1] Xilinx ZC706 Evaluation Kit. https://www.xilinx.com/products/boards-

and-kits/ek-z7-zc706-g.html#hardware
[2] Xilinx Zynq-7000 SoC Family Guide.

https://www.xilinx.com/support/documentation/selection-guides/zynq-
7000-product-selection-guide.pdf

[3] Terasic DE10-Standard Board. https://www.terasic.com.tw/cgi-
bin/page/archive.pl?CategoryNo=205&No=1081&PartNo=2

[4] Digilent Inc, Xilinx PYNQ-Z1 Board.
https://store.digilentinc.com/pynq-z1-python-productivity-for-zynq-
7000-arm-fpga-soc/

[5] Universal Serial Bus Specification, Table 5-10.
http://sdphca.ucsd.edu/lab_equip_manuals/usb_20.pdf

[6] Xilinx DDR3 Controller. https://www.xilinx.com/products/intellectual-
property/ddr3.html

[7] Kernel Memory Layout on ARM Linux.
https://www.arm.linux.org.uk/developer/memory.txt

[8] ZC706 Evaluation Board for the Zynq-7000 XC7Z045 SoC User Guide.
https://www.xilinx.com/support/documentation/boards_and_kits/zc706/
ug954-zc706-eval-board-xc7z045-ap-soc.pdf

[9] Improved Seam Carving for Video Retargeting, Rubinstein, Shamir,
Avidan. http://www.faculty.idc.ac.il/arik/SCWeb/vidret/index.html

