Seam Carving Through Time

 $\bullet \bullet \bullet$

Team BD Maxwell Johnson - John Zhang - Riki Khorana

3D Seam Carving

- Calculate energy map
- Find 2D low energy seams
- Cut out seam to shorten video

Resulting in...

Our Project

Apply Seam Carving shorten video by 1.5x

Application Survey

what video works well?

Develop Heuristics

further improve output quality

Acceleration delegate computation to FPGA

High-level Requirements: Spec

Requirement	Metric
Process a video with time length T in 3T time	Time the system from the beginning of the pre-processing to the end of the post-processing
Process a 360p and 24fps video	Input video with 360p 24fps specs, and verify that the system produces a valid output
Increase playback speed of a video by 1.5 times	Input a video of time T, and verify that the resulting video has time 2T/3
Support at least three popular video file formats as input	Input at least three videos of select file formats, and verify that the system produces a valid output

High-level Requirements: Content

Requirement	Metric
Result has smooth frame transitions	Run resulting video through energy function, and compare against standard
Result has no obvious content distortion	Conduct a user survey to have them rate $1 \sim 10$. Pass if average score is > 8.5
Result has original order of events preserved	Input a synthetic video, and count how many events were misplaced in the output video

Solution Architecture Design

Low-Level Requirements & Metrics

• Pre- and Post Processing Application (Software)

Requirement	Metric
Convert videos to an FPGA readable format	Run the processing application and FPGA board interface to verify
Transfer videos to the FPGA through Ethernet	Run the processing application and FPGA board interface to verify

Low-Level Requirements & Metrics

• System on a Chip (SoC)

Requirement	Metric
Runs Linux Kernel as	Kernel set up correctly;
embedded operating system	RAM access mapped correctly;
Extracts a seam made of pixels	Unit testing
with the lowest energy from a	(The algorithm for searching for a low energy seam may be
given energy map	approximated to compensate for process speed)
Reads the video data from the RAM and performs seam carving	Unit testing for "Reading", "Modifying" and "Writing back"

Low-Level Requirements & Metrics

• Accelerator (Programmable Fabric)

Requirement	Metric
FPGA block RAM has capacity of at least 9.4Mb	Check if target met on the Vivado synthesis report
Process the energy function at 2400 fps	Use a simulation tool (VCS) to test the frame rate
Write the result of energy function to RAM at 2400 fps	Use a simulation tool (VCS) to test the frame rate

Board Capacity Utilization

	Board capacity	One test processing unit	640 test processing units (1 row of pixels)	Utilization of 640 test units
Logic cells	350000	-	-	-
Block RAMs (36Kb (kilo-bits))	545	-	-	-
Block RAM capacity (Kb (kilo-bits))	19620.0	15	9600	48.9%
LUTs (Look-up-tables)	218000	65	41600	19.1%
FFs (1-bit flip flops)	437000	80	51200	11.7%
DSP slices (used for multipliers)	900	1	640	71.1%

Division of labor

- Maxwell
 - Programmable fabric
- John
 - SoC processing application
- Riki
 - Pre- and Post Processing application
 - Implementation of seam carving algorithm
 - Development of high-level test suites

Timeline

