
18-500: ECE Design Experience

Team D8: Stairway to Hamerschlag - A Guitar Pedal
Effects Simulator

Joseph Kim, Matthew Kasper, Stephen He

Electrical and Computer Engineering
Carnegie Mellon University

May 9, 2019

Index Terms: Audio Processing, Circuits, Cir-
cuit Simulation, Guitar Effects, Guitar Pedals,
Transient Analysis.

Abstract

We implement a guitar pedal effects simulator ca-
pable of applying both analog and digital effects
to live or recorded audio through a user-friendly
graphical interface. Ultimately, this has the po-
tential to speed up development time and lower
costs for professional guitar pedal developers or
hobbyists looking to explore new sounds.

1 Introduction

1.1 Problem Area

Guitar pedals are circuits placed between an elec-
tric guitar and an amplifier that applies a trans-
formation to an audio signal, resulting in a sound
that can be distorted in interesting ways. It is
common for both professional audio engineers and
hobbyists looking to explore new effects to manu-
ally tinker with circuitry in an effort to produce the
highest quality sounds. This can be a painstaking
process–making a change requires swapping out
real, physical components. This costs both time
and money. For example, we purchased a DIY
kit for a simple overdrive pedal. Constructing the

pedal took $30 and nearly two hours of assembly
time. Furthermore, we never had the opportunity
to try the pedal out to see if it truly produced
the desired effect before investing this sort of time
and money. While other tools like LiveSPICE pro-
vide similar capabilities, the big drawback is that
SPICE is extremely complicated. Our tool should
allow users to have a smoother user experience
without having to know the ins and outs of a so-
phisticated circuit simulator like SPICE.

Our project aims to eliminate these problems by
delivering a tool to simulate guitar pedal circuits
and effects entirely in software. Using our project,
users can plug a guitar into the computer, design
their circuit on our GUI (or choose from pre-built
effects), and simulate what the real pedal would
sound like. In addition to allowing users to con-
nect their guitar to our application, we also al-
low users to run simulations against recorded au-
dio files. We hope that this software will enable
users to cut out some of the costs (both in terms
of time and money) associated with tinkering on
their own guitar pedals.

1.2 Project Goals

Early on, we identified several goals we wanted to
achieve in order for our project to be successful.
Above all else, we wanted to deliver an excellent
all around user-experience. This can be further
broken down into three categories:

1



Figure 1: Diode clipping circuit with plots of the input and output waveform. It is clear from the
output waveform that the voltage was clipped at ± 0.7V, as expected.

1. We need to deliver a simple, friendly GUI.

2. We need to be able to produce pleasant-
sounding and accurate audio effects using our
circuit simulator and audio processor’s digital
effect blocks.

3. Our end-to-end latency for live audio needs to
be below 50ms (the threshold at which a delay
will start to be perceptible to the human ear).

If the latency is too high, the system will not feel
natural for musicians trying to use our project.

2 Design Requirements

2.1 User-friendly Interface

Since our application is primarily built with musi-
cians and guitar pedal designers in mind, a strong
user experience is our primary goal. Without an
intuitive user interface, the rest of the project
could work seamlessly and our target users would
still not be able to benefit from our work. For
this reason, we have identified the qualitative re-
quirement that our users must find the interface
friendly and simple to use.

To evaluate this requirement, we conducted a
small user-study of various Carnegie Mellon stu-
dents. Though we recognize that our fellow stu-
dents may not be experienced guitar pedal design-
ers, we felt as though this was the most represen-
tative feedback we could get with the constraints
on our time and resources for this project. Dur-
ing this user-study, we hope to provide users with
simple instructions for designing and simulating a
basic clipping circuit such as a fuzz pedal using
our software. Then, we had our participants rate

our application on (1) ease of use, (2) overall sat-
isfaction, and (3) unobtrusiveness of latency. On
a scale from 1 to 10, with 10 being the best and
1 being the worst, we hoped to achieve an average
score above 7.5 for each of these metrics.

2.2 Accurate Circuit Simulation and
Pleasant Audio Effects

Correct circuit simulation is said to be “consid-
ered an art... much of it is based on idiosyncrasies
of particular simulators or tricks that are based
largely on luck.” [1]. Currently, the best technique
for circuit simulation involves solving a system of
equations using Newton’s Method and sparse ma-
trix techniques. However, convergence in New-
ton’s Methods is not guaranteed, which may lead
to inaccurate simulations in certain cases.

For our application, we wanted to provide an
accurate simulation for simple pedal designs and
circuits, namely diode clipping circuits, low pass
filters, high pass filters, and band pass filters. We
constrained our tests to these circuits to avoid the
added complexity and divergence issues that more
complicated circuits may add to our simulator.

To test our simulation accuracy, we ran sample
signals through the test circuit, plot both the input
and output signals and their Fourier transforma-
tion, and qualitatively judged the output signals
for correctness. For example, to test the diode
clipping circuit, we will confirm whether or not
the output signal looks like the input signal, but
clipped at ± 0.7 Volts. A sample circuit and wave-
form are shown in Figure 1. To test any of the
filters, we will confirm whether or not the out-
put signal looks like the input signal with the cor-
rect region of frequencies filtered out based on the
Fourier transform plot.

2



In addition to our circuit simulation, our appli-
cation allows users to use built-in ‘digital effect
blocks’. In particular, we will be providing the
following effect blocks: Fuzz, Distortion, Reverb,
Delay, and Amplify. As one of our goals, we want
our built-in effect blocks to provide pleasant audio
effects.

During our user study, we will ask for partici-
pants to rate the pleasantness of our audio effect
blocks. On a scale from 1 to 10, with 10 being ex-
tremely pleasant and 1 being extremely unpleas-
ant, we are aiming for an average score of 7.5.

2.3 Low Round-Trip Latency Audio
Processing

In order to enable effect simulation using live au-
dio signals, we recognize the need to have a “fast”
circuit simulator and audio processor, which will
enable signals to flow through our system, pass
through our digital effect blocks, be transformed
by our circuit simulator, and reach the output
speaker quickly. We define round-trip latency as
the time taken between when a single audio sam-
ple hits the audio processor input to when it is
available for output to the speaker.

Based on estimates of the limits of the human
ear to detect phase differences in audio signals, we
decided to aim for an average round-trip latency
of no more than 50ms. We plan to test this by
instrumenting our audio processor with timers to
measure when inputs and outputs are available.
This enabled us to measure the round-trip latency
of various combinations of effect blocks and simple
circuits.

3 Architecture

The user flow is as follows:

1. User opens application, creates or loads a
project, and is presented with the visual cir-
cuit editor.

2. The user designs and edits the circuit with the
graphical interface.

3. To simulate the circuit design on some audio,

the user saves their design and runs the sim-
ulation.

4. The user chooses between an audio file or live
audio as an input. Regardless of choice, the
user can listen to the output either from an
audio file out or in real time.

5. If unsatisfied, the user can return to the vi-
sual circuit editor and make changes to their
circuit.

This process can be repeated as many times as
needed.

Our system architecture can be broken down
into three main components:

• Frontend - Manages all interaction with the
user, including capturing the pedal design,
creating / saving project files, and launching
simulations.

• Circuit Simulator - Processes all analog ef-
fects by simulating user circuit designs against
the input signal.

• Audio Processor - Acts as the gateway for
audio signals to enter and exit our system.
Processes all user-specified digital effects.

3.1 Frontend

In our system, the frontend is responsible for man-
aging all interaction with users, including captur-
ing user schematics, creating / saving project files,
and launching simulations at the user’s request.
When a user saves a new pedal design, the frontend
generates a netlist file specifying how the compo-
nents in the circuit connect to one another in a
way that can be recognized on the backend. This
netlist file will be passed to the backend whenever
a user starts a new simulation. The frontend also
passes the backend the audio file selected by the
user, if applicable.

The frontend is a Javascript application written
using the ElectronJS framework, an open-source
cross-platform library for developing desktop ap-
plications.

3



Figure 2: Block diagram showing the three submodules of our system: the frontend (yellow), the circuit
simulator (green), and the audio processor (blue). The circuit simulator and audio processor are linked
into a single executable, which makes up the backend of our application.

3.2 Circuit Simulator

The circuit simulator has two main responsibil-
ities. First, it is responsible for converting the
netlist file for a user-specified design into an inter-
nal format that can be used for simulation. Dur-
ing this phase, all digital effects that the user re-
quested are also forwarded to the audio processor.
Second, it is responsible for simulating analog ef-
fects that a user pedal design applies to an input
signal to produce the simulated output. Since this
simulation is on the critical path of our applica-
tion, where latency is tremendously important, the
circuit simulator is written in C++. This allows us
to have fine-grained control over the performance
of our program.

3.3 Audio Processor

The audio processor is responsible for transferring
audio input to the circuit simulator and back to

different audio destinations. It multiplexes audio
inputs and outputs between the filesystem and the
live input/output from hardware.

In addition, the audio processor is also respon-
sible for applying any digital effects before sam-
ples are sent to the circuit simulator. Five digi-
tal effects are implemented in the audio processor:
Fuzz, Reverb, Delay, Distortion and Amplification.
These digital effects, when combined with a cir-
cuit or with one another, allow the user to create
a multitude of sounds.

4 Design Trade Studies

4.1 Audio Hardware

Initially, we had planned to use cheap wire
adapters to convert the 1

4

′′ audio jacks to the
3.5mm jacks supported by our computers. How-
ever, it soon became evident that this approach
caused a major addition of noise into our signal,

4



which was less than ideal. We tested out whether
this was an issue with our software or the hardware
by feeding the input through other audio software,
such as Quicktime and Audacity. Once we deter-
mined that the issue derived from hardware, we
researched other methods musicians use to record
guitar. We quickly learned that our attempted
method is known to have issues with noise, and
purchased an audio interface. Luckily, we had not
spent too much money on other parts, and it fit
easily into our budget.

Once we had the audio interface, we tested our
live audio platform. Our setup had the guitar feed
through the audio interface, which sent data to the
computer via USB. Our system then sent the pro-
cessed sound to the computer’s built-in speaker.
However, the sound produced by the speaker was
stuttered, which we initially thought to be an arti-
fact of data not being available in time. This was
further supported by the fact that this problem
was only fixed by artificially setting the output la-
tency of the speaker hardware to a much higher
value. This was not a viable option as we wanted
to be able to hear the output at the lowest latency
possible.

However, after further inspection, we discovered
that it may actually have to do with the interaction
between the input of the audio interface and the
native output of the speaker. Even using the live
playback option on Audacity produced the exact
same phenomenon. After more experimentation,
we found that simply feeding the output back to
the audio interface fixed the issue without increas-
ing the latency. In fact, this turned out to be the
optimal solution, as it allowed us to connect di-
rectly to a guitar amplifier, letting our software
truly just be like a guitar pedal.

These fixes produced a final result that was
clean and with a low level of noticable latency.
In fact, in the user study of our application, we
achieved an average score of 9 out of 10 in terms
of how good our latency was.

4.2 Smooth User Experience

One of our primary goals was to provide a smooth,
simple to user graphical interface for our users.
Early on, we produced a minimal interface that

was nice for us to use internally, but it was never
intended to be a finished product. However, we
were not certain what features would be most es-
sential in a finalized version of our GUI. To answer
this question, we had a few friends look at our ini-
tial prototype. From here, we collected informal
feedback about what features should be added.
This motivated us to add some new features to
our final user interface. First, we made the cir-
cuit editor full-screen. Second, we moved much of
the functionality that was originally achieved us-
ing buttons on our schematic editor into a more
organized format in the native MacOS menu bar.
Third, we added keyboard shortcuts such as Cmd+S
to allow users to perform repetitive actions in the
fastest way possible. We also added some minor
accent features such as a timer and moving indica-
tor in the live-audio menu to show when a simula-
tion is active. We also refactored the way the fron-
tend manipulates project files, so that the user can
easily run simulations or save their designs without
having to navigate through a sea of popup menus,
as was the case in our initial frontend implemen-
tation. An overview of the things we changed can
be seen in Figure 3. Ultimately, these changes
played a part in the final user study scores that
we achieved on our project. Five users rated our
application as a 7.4/10 on average for overall ease
of use and an 8.6/10 for overall satisfaction, which
leads us to believe that our efforts spent optimiz-
ing the user experience were well worth it. Though
we had hoped to score slightly higher in the ease of
use category, we think this could be resolved by in-
cluding better usage instructions. Ultimately, we
just didn’t have time to incorporate this into our
final solution.

5 System Description

5.1 Frontend

The frontend of our system is responsible for the
following behaviors:

• Allowing the user to build circuits on a graph-
ical interface

• Managing user works as files within a project
folder

5



Figure 3: Evolution of our frontend based on feedback. Frontend V0 is pictured on top left. The other
images show new features added in our final demo version.

• Generate netlists from the user circuit de-
scription

• Selecting audio inputs and outputs

• Forwarding user settings to the backend

The system is built with Electron, a framework
for creating native cross platform desktop applica-
tions. It allows for development with traditional
web technologies like Javascript, HTML and CSS.

The fronted allows users to drag and drop circuit
components, as well as digital audio effect blocks,
onto the canvas and connect them with wires. The
user is required to provide a voltage in and voltage
out in their circuits, representing the input guitar
signal and the modified pedal output respectively.

The circuit simulator frontend is written in an
object-oriented programming style. Each type of
component available has a corresponding construc-
tor function. The frontend system then treats each

Figure 4: UI with a sample circuit

6



Figure 5: Simulation engine phases.

type of component the same, just with a different
draw function and a few different characteristics.

The frontend’s netlist generator is responsible
for converting the user’s arrangement of circuit
parts into a netlist to pass on to the circuit sim-
ulator. This netlist generation invovles finding all
components connected to the same node of the cir-
cuit. We use a simple union-find data structure to
maintain the components connected at a particu-
lar node. Additionally, the order of effect blocks
can effect the sound of the output signal, so we use
a DFS algorithm to obtain the ordering of effect
blocks from the perspective of the input voltage.

5.2 Circuit Simulator

The circuit simulator has two primary responsibil-
ities: parsing netlists containing user circuits into
an internal format, and simulating a signal as it
propagates through the analog circuitry specified
by the user.

5.2.1 Netlist Parser

The netlist parser converts frontend generated
netlist files into the circuit representation used by
the circuit simulator. The algorithm to do this is
simple. For each supported component type, there
is a unique identifier that will appear in the netlist.
For example, a line in a netlist file that begins with
the identifier RESISTOR can be used to specify a
new resistor in the circuit. All components are
also assigned a name in the netlist file, which aids

in the development and debugging process by al-
lowing the netlist to be human readable. After the
component identifier and component name comes
a list of parameters that depend on the component
type. These could include the nodes in the circuit
that the element spans, an associated component
value such as a resistance or capacitance, or other
parameters of the device.

Figure 6: Sample circuit using a variety of compo-
nent types.

For example, the circuit shown in Figure 6 would
have a netlist representation that looks like the
following:

RESISTOR r0 2 1 1
CAPACITOR c0 2 0 1p
DIODE d0 2 0
DIODE d1 0 2
INDUCTOR i0 2 0 1n
VOLTAGE_IN vin 1 0
VOLTAGE_OUT Vout 2 0
GROUND 0

An important feature of this netlist is that ev-
ery component is labeled according to the nodes
it spans. For example, resistor r0 spans node 2 to

7



node 1 based on this netlist. The circuit simulator
contains an abstract class called Component, and
each line in a netlist gets converted to a compo-
nent object. For example, there is a Capacitor
class that derives from Component. As the netlist
parser iterates over the lines in the netlist file, it
builds up a vector of Component objects that will
later be used in simulation.

5.2.2 Simulation Engine

The simulation engine contains the core logic of
the circuit simulator that allows us to do live
transient analysis on audio signals. To begin,
we choose an initial operating point for all of
the unknowns in our system, which may con-
sist of node voltages and currents through cer-
tain devices. When the simulation engine is first
launched, all unknowns are set to zero.

At each timestep, a KCL is performed at each
node in the system to produce a matrix represent-
ing the system of equations to solve. This matrix
is solved using Gauss-Jordan Elimination, provid-
ing an estimate for each unknown. However, some
components do not have linear I-V curves, mean-
ing that we cannot obtain an exact solution to this
system using standard linear algebra techniques
such as Gauss-Jordan Elimination alone. To com-
bat this issue, we use Newton’s Method to pro-
duce an approximate solution to within a speci-
fied error threshold. After running each round of
Gauss-Jordan elimination, we check how much our
current solution differed from the solution on the
previous Newton iteration. Once this delta be-
comes significantly small, we treat this as the so-
lution for the current time unit and advance to the
next sample in the input signal. However, if the
error is still large, we perform further iterations
of Newton’s Method. In order to avoid a scenario
where we do not converge on a solution, we put a
cap on the maximum number of Newton iterations.
Our cap is currently set to 30 iterations. This is
helpful, since it gives us more predictable latency.
However, it also means that for more complicated
circuits, our results may not be as accurate. Fig-
ure 5 shows an overview of the simulation engine’s
core logic.

5.3 Audio Processor

The audio processor manages the inputs and out-
puts of the system. It abstracts away the input
and output sources to the circuit simulator with a
single API.

Figure 7: Audio Processor System Overview

The audio processor takes advantage of a couple
libraries. To read from and write to the file system
in traditional audio file formats, such as .wav or
.ogg, Libsndfile is used to encode the data. The
audio processor also supports a custom file format
with the .cso extension, which stores the sampler-
ate, the length and the samples in an easy to read
format. This simple format was useful in generat-
ing plots of the input and output.

To read inputs from and write outputs to the
hardware in real time, Portaudio was used. Por-
taudio allows input and output streams to be cre-
ated, with their own associated callback functions.
Since there is inherent, variable latency in pro-
cessing the samples, the input samples are read
and stored into an input queue. When the cir-
cuit simulator requests a sample, data is read from
this queue. When the circuit simulator reports an
output sample, it is stored onto a separate queue,
which is flushed into the hardware on the next call-
back when enough samples have been collected.

If no input samples are available when requested
by the circuit simulator, which may happen if the
circuit simulator is able to process the samples
faster than the hardware retrieves them, the call
is blocked, waiting on a condition variable. Once
samples are received from the hardware, a signal is
sent indicating that the call to retrieve the sample
may proceed. This allows the circuit simulator to
operate without having to worry about the avail-
ability of samples or latencies.

8



The two libraries were sufficient in retrieving in-
put from the computer’s microphone and output
them through the computer’s speaker. However,
our ultimate goal was to be able to play and hear
the effects in real time. Thus, we needed a way
to direct the audio from an electric guitar into the
laptop – using the microphone to get guitar input
would cause too much noise.

We settled on using an audio interface, specifi-
cally the Focusrite 2i2, which connects to the gui-
tar and sends audio data to the computer via USB.
It also allows the output to be routed back to the
audio interface, which could then be connected to
a guitar amplifier.

5.4 Integration

One of the key design issues we faced was how
to integrate all three pieces of our application to
provide a smooth user experience. We did this in
several ways, depending on the specific case. For
example, the frontend allows the users to specify
a circuit design and start a new circuit simulation.
This involves several steps:

1. Save the user circuit in a netlist format that
can be interpreted by the backend.

2. Launch a new backend instance, passing in
the netlist file as a command line argument.
The backend runs as a separate process from
the frontend.

3. If the user elects to stop the simulation, the
frontend sends a SIGUSR1 signal to the back-
end. The backend has a SIGUSR1 handler in-
stalled that gracefully exits the application
upon receiving the signal.

Another complicated integration task was to fit
the two modules that make up the backend to-
gether. Unlike the frontend and backend, which
run as two disjoint processes communicating via
signals and the filesystem, the circuit simulator
and audio processor are linked together into a sin-
gle executable. Since both the audio processor and
circuit simulator are written in C++, integrating
these components boiled down to deciding on the
API that each module would expose to the other.

We ultimately settled on an interface
that we called the AudioManager. This
was implemented as a class in our code-
base that provides an API function called
AudioManager::getNextVoltage(), which can
be called by the circuit simulator to get the next
sample from the input stream. Internally, the
AudioManager decides whether this sample should
come from a file or from an external audio source
such as an instrument based on command line
flags passed in by the frontend. This interface
allows the circuit simulator to be entirely agnostic
to the input audio source.

The AudioManager also provides another func-
tion called AudioManager::setNextOutput(),
which is called after the circuit simulator finishes
propagating an input voltage through the user
circuit. The AudioManager is completely respon-
sible for doing the proper thing with this output
sample depending on the user-specified settings
that were passed as command line arguments to
the backend. For example, output samples may
be logged to a file, or they may be played live
through an attached audio device. Once again,
this allows the circuit simulator to be agnostic to
the settings chosen by the user. Figure 2 details
the flow of data through our application.

6 Project Management

6.1 Schedule

Our schedule changed quite a bit over the course
of the semester.

In particular, there were many cases where what
was supposed to be individual work eneded up
being a team effort. In the final stretch of our
project, integration and systematic bug fixes took
the bulk of our time. In order to progress effi-
ciently, we worked on a lot of problems together.
This was beneficial because each of us had a dif-
ferent expertise and understanding of our project.

After the in class demo, we decided to add dig-
ital effect blocks into our audio processor. This
was not in scope before, so it had to be added into
our schedule. Other tasks shifted around or fell
out, as adding effect blocks became one of our top
priorities late in the semester.

9



Refer to Appendix B for our updated Gantt
chart.

6.2 Division of Labor

The three modules nicely paved way for a three-
way split amongst the team members. Stephen He
was responsible for the development of the fron-
tend, Matthew Kasper spearheaded the research
and implementation of the circuit simulator, and
Joseph Kim lead the design choices and creation
of the Audio Processor. For all other tasks, work
was split evenly.

6.3 Budget

The items we purchased can be found in Appendix
A. The main cost we incurred was the audio inter-
face, which ended up being crucial in making live
simulation work properly. We also saved a lot of
money by using equipment that was available in
Professor Sullivan’s audio lab, such as the guitar,
the amplifier and cables.

We initially bought many cables and adapters,
but it became evident that they were not sufficient.
We did so in hopes of connecting the guitar with
a cable adapter to the computer’s audio jack, but
it turned out to be fairly noisy. Thus, we had to
forego many of the cheap parts and purchased the
more expensive audio interface.

6.4 Risk management

One of the major risks involved with this project
was the complexity involved in circuit simulation.
Thus, we approached this problem carefully and
methodically. We limited the scope of our project
to include only a few key components. We also de-
cided to focus on implementing more critical cir-
cuit elements first. Doing so not only made test-
ing more complicated parts feasible, but also made
sure we had a minimum set of working components
at the end that could be used to create a mean-
ingful circuit. Thus, we began by implementing
resistors, then capacitors, and then diodes, which
were imperative in a clipping circuit to make a
distorted effect.

Another way we mitigated challenges in imple-
menting models for components was by creating

digital effect blocks. Not only was it a useful addi-
tion to the user’s arsenal of tools, but it also made
up for analog components that were out of the
scope or not possible to implement this project.
For example, op-amps are commonly used to am-
plify the input signal in many pedals, but were not
included in our original plan. Thus, to account for
the lack of op-amps in our circuit simulator, we
created a digital effect block to amplify signals.

Another form of risk was in the latency we would
be able to achieve with our system when using live
input and output sources. There were many possi-
ble sources of significant latency, including the au-
dio hardware and the circuit simulation. Though
this didn’t actually turn out to be too big of an
issue, we also mitigated this risk by giving users
the option to upload audio files, where any latency
in our system would not be as detrimental to the
user experience.

7 Related Work

There are some other competing software products
out there. For example, SPICE is a popular cir-
cuit simulator that includes most of the features
that our simulator supports. LiveSPICE expands
on the groundwork laid by SPICE to get into the
live audio signal processing domain. It is capa-
ble of doing many of the things our project can
do, but there are some features it does not sup-
port. In particular, LiveSPICE does not support
digital effect blocks, which is a nice feature for a
less experienced user. Second, the barrier to en-
try is much lower for our application. SPICE is
an extremely sophisticated tool, but as a result it
can be complicated to use. Rolling our own cir-
cuit simulation software allowed us to simplify the
user experience. It also allowed us to achieve fine
grained control over aspects of the circuit simula-
tor that could impact our bottom-line latency.

8 Summary

Overall, we were able to achieve most of our goals.
We ended with a fully functional circuit simula-
tor supporting resistors, capacitors, inductors and
diodes. We’re able to process signals at a fairly

10



low latency of 23.2 ms on certain circuits, and all
with a clean user interface. From our user study,
we achieved an average score of 8.6 for user satis-
faction and an average score of 7.4 for ease of use.
These both meet (or come extremely close to) the
requirements we laid out in the beginning. Dur-
ing our final demo, a lot of viewers shared same
sentiment about our project. We also earned an
honorable mention from the Apple team who came
to judge the project demos.

11



References

[1] Achieving Accurate Results with a Circuit Sim-
ulator; Kenneth Kundert and Ian Clifford; San
Jose, California

[2] Electronic Circuit and System Simulation
Methods; Lawrence Pillage.

[3] Spice A Guide to Circuit Simulation and Anal-
ysis Using PSpice; Paul W. Tulnenga

[4] Fundamentals of Computer-Aided Circuit Sim-
ulation; William J. McCalla

12



Appendix A: Budget
Part Cost Quantity Source

Focusrite Scarlett 2i2 (2nd
Generation) USB Audio

Interface
$159.99 1 Guitar Center

HOSA CMP-159 Stereo
Breakout 3.5mm TRS to
Dual 1/4" TS - 10’Cable

$9.99 2 Sweetwater
Sound

HOSA CSS-105 1
4 ” TRS to 1

4 ”
TRS Balanced Interconnect

Cable
$6.95 2 Amazon

The Thunderdrive overdrive
pedal $40.69 1 Amplified Parts

AmazonBasics 9 Volt
Everyday Alkaline Batteries

(8-Pack)
$9.49 1 Amazon

Hosa YPP-106Y Cable 1
4 ”

TSF to Dual 1
4 ” TS 6 inch

splitter
$5.45 1 Sweetwater

Sound

Total: $232.56

13



Appendix B: Schedule

14


	Introduction
	Problem Area
	Project Goals

	Design Requirements
	User-friendly Interface
	Accurate Circuit Simulation and Pleasant Audio Effects
	Low Round-Trip Latency Audio Processing

	Architecture
	Frontend
	Circuit Simulator
	Audio Processor

	Design Trade Studies
	Audio Hardware
	Smooth User Experience

	System Description
	Frontend
	Circuit Simulator
	Netlist Parser
	Simulation Engine

	Audio Processor
	Integration

	Project Management
	Schedule
	Division of Labor
	Budget
	Risk management

	Related Work
	Summary

