
Stairway to Hamershlag
Electrical and Computer Engineering Department

Carnegie Mellon University
Matt Kasper, Stephen He, Joseph Kim

{mkasper, she2, youngchk}@andrew.cmu.edu

System Architecture

Overview

This project introduces a software tool aimed at simulating 
guitar effects against both live and recorded audio sources. We 
implement digital effect blocks to emulate common pedal types 
such as fuzz, reverb, delay, and distortion pedals. We also 
implement a circuit simulator capable of performing real-time 
transient analysis on audio signals as they pass through 
circuits composed of resistors, capacitors, inductors, and 
diodes. 

Ultimately, this suite of tools is packaged into a user-
friendly application that allows anyone from musicians to 
experienced audio engineers to seamlessly experiment with 
new sounds and effects.

Guitar pedals are circuits that one can insert in between a 
guitar and a speaker to alter the sound in some unique way. To 
produce these pedals, designers build their circuit designs with 
physical components and test them by playing audio through 
the circuit. To adjust the sound of the pedal, they have to 
recreate and change the circuit physically, leading to a slow and 
costly process. 

Our Stairway to Hamershlag application allows a pedal 
designer to design and iterate guitar pedals more efficiently by 
letting the designer simulate their circuit designs on live or 
recorded audio in software. 

Motivation

Approach

Evaluation

The system architecture is composed of three main modules:
• Frontend (NodeJS / Electron)
• Circuit Simulator (C++)
• Audio Processor (C++)

The frontend allows the user to capture user circuit 
designs and select input and output sources. It manages 
projects and generates the files required by the backend.

The circuit simulator uses the circuit received from the 
frontend to perform transient analysis on the circuit. It uses 
Newton’s method to approximate solutions to the KCL 
equations it derives.

The audio processor is the gateway for all sounds going 
in and out of the system. Audio is routed to the circuit simulator 
and the results are received back, after which it is saved and/or 
played. The audio processor also applies any digital effects, 
which are applied before sending it to the circuit simulator.

Survey Question Average Score [1,10]
Overall Satisfaction 8.6
Ease of Use 7.4
Unobtrusiveness of Latency 9.0

Frontend: The frontend application is built in Node.js using 
Electron as it’s framework. It parses the user circuit description 
into a netlist for the backend to process.

Circuit Simulator: The circuit simulator obtains a stream of 
voltages from the audio processor. For each voltage, KCL is 
performed at each node to produce a system of equations, 
which solved using Gauss-Jordan Elimination.

Audio Processor: The audio processor uses Portaudio to 
interact with the audio hardware and libsndfile to parse various 
audio files. For live audio, samples received and to be sent are 
buffered to account for processing time. Any requested digital 
effects are instantiated and applied to the samples in the order 
specified before sending it to the simulation.

Though it varies from run to run, a fairly low average latency of 
23.2ms was achieved with certain circuits.
The following results were obtained from a user study:


