
1
18-500 Final Project Report: 05/06/2019

PianoMan Capstone Design Project

Authors: Surbhi Inani (Class of 2019), Lizzy Thrasher (Class of 2019), Vanessa Hwang (Class of 2019)

Electrical and Computer Engineering, Carnegie Mellon University

Abstract—A self-learning for beginner Piano players where

the user can choose the complexity of learning by scanning the
Sheet Music of a song and learning to play it using a teaching
module on a LED Matrix system in a game-like fashion as well
as getting performance feedback at the end. This cost-efficient
and fun way to learn playing the Piano makes use of more
visual cues and allows learning any song of any complexity
with the help of Optical Music Recognition.

Index Terms— Adafruit Industries, LED Matrix, MIDI,
MusicXML, Music Sheets, Optical Music Recognition (OMR),
Raspberry Pi

I. INTRODUCTION
Learning Piano can be challenging for many beginner

players. Being able to keep track of reading sheet music
properly, knowing where the keys are, and pressing them at
the correct times and for the right amount of time is
intimidating at best and makes learning a daunting and
perplexing task. However, music should be a positive factor
on someone’s life and learning an instrument should not be
discouraging. Therefore, we aim to simplify this process of
learning to play the piano and make it a fun experience.
Piano players will be able to use a game-like system where
they can take any sheet music that they want to learn and
transform it so that it is easier and more enjoyable. Other
competing technologies only allow you to select from a
specific music library for pieces you want to play and are
not portable, so cannot be used on multiple pianos. Because
they are embedded into the piano keyboard already, they are
also fairly expensive and inaccessible to the average
beginner player. There is also other software that is able to
read sheet music, but it does not include the hardware
component and is not intended for learning piano, but rather
archiving sheet music.

Therefore, our goals for this project include being able to
take an ideal scan (PDF) of most sheet music (some
restrictions on the music itself) and being able to convert it
to a series of falling lights above a keyboard that are
accurately shown for pitch and duration based on the
original sheet music. This should be completed as the user
asks to upload a new piece of music and within the span of
a few minutes. Then the keyboard will be responsive by
accurately calculating a score for how well the player did

and provide feedback to the user. So, we hope that our
device will be able to maintain the industry standards of
musical education and piano playing as a useful tool for all
proficiency players.

II. DESIGN REQUIREMENTS
A. Requirements

For the PianoMan project to be a viable method of Piano
learning as well as stay within the budget for the class, we
have implemented the following requirements in the three
major areas of the project.

One of the major components for this project is that we
should be able to take accurate scans of sheet music,
automatically read the different notes to be played at the
correct times for the piece. We will then be able to perform
OMR on appropriate sheet music in 60s/120 recognizable
elements with 90% accuracy compared to the original sheet
music. In terms of accuracy, we will be looking at each
notehead, rest, accent (dots, sharps, flats, naturals), time
signature, clef symbols, key signature, and comparing pitch,
note-type/duration, general correctness (time signature, key
signature, etc.) as well as where in the piece it is played.
This will be tested visually by checking that the ending
MusicXML looks correct, as well as by comparing to the
original MusicXML for the file. We believe that 90%
accuracy is possible because certain notes may be difficult
to determine (chords with notes close to each other,
connected notes, etc.), however the large majority should be
accurate to be able to play the piece properly. Also, the
OMR should be completed in 60s/120 recognizable items
because while there is a fairly large amount of image
processing that must occur, the user will not want to wait
too long in order to play a piece of music. Beginner piano
students will also probably not be playing extremely long
pieces on a regular basis, so increasing the time based on
the number of items should be a fine tradeoff.

During the transition of data from the OMR Software
side to the LED Hardware side, we need to employ a
programming language that can be used to transfer the
MusicXML files to the Microcontroller within 15 seconds
of creation, so as to not let the LED system be idle for too
long in front of the user. It's important that this transition

2
18-500 Final Project Report: 05/06/2019

is relatively quick, again, so as to not bore the user or make
them frustrated waiting for the module to begin. However,
we are taking into account less than optimal internet and
bandwidth situations.

For the LED Matrix Hardware system to be a stable
system with minimum noise and flickering in its display
during the teaching module, we will require the use of a
coding language in the microcontroller that allows for files
to be sent automatically over WIFI, the efficient parsing of
MusicXML files into data components and independent
controlling of each LED in the chosen LED device so that
we are able to display features of the song notes for the user
to notice and follow with extreme clarity and low time
consumption. The Microcontroller should be able to parse a
MusicXML file and start a teaching song module within 3
seconds, so as to not make the user wait unnecessarily and
guarantee a smooth flow of the pipeline. The teaching
module program needs to show the right keys within 98%
accuracy, accounting for LED bugs and hardware device
flickering, and should assign the correct colors to each
feature at all times. This is important since we cannot have
a user learn an incorrect part of a song during every
instance of the song’s execution. Finally, the chosen LED
device must be scalable enough to cover the entire 61 keys
of an electronic keyboard, so as to allow the user to play a
wide variety of songs.

The Performance score evaluator should convert the
MusicXML file, sent previously to the microcontroller, to a
MIDI file while the user is performing and once the user
finishes playing the piece, a MIDI file should be collected
from the keyboard. It should then calculate a performance
score by comparing these two MIDI files according to the
scoring rubric that we have defined and send the output
back to the microcontroller within one minute.

Some major assumptions being made for this project to
be a viable product within the class’s budget. Our product
will be cover all the keys of Electronic keyboards but not
those of a grand piano, so as to constrain our power
consumption and allow people from all backgrounds to be
able to successfully use this decide. We will only be
allowing ideal scans of sheet music in pdf form. They
should have little noise, rotation (staff lines should be
horizontal), and a page of sheet music should cover a page
of the pdf. Furthermore, for the music itself, there should be
no key changes or time signature changes in the middle of a
song

B. Testing and Validation

To guarantee the smooth running of each area of our
project and verify that our designs meet our specifications
for our problem scope, we plan to test the systems
independently and concurrently in the following fashion.

The Optical Music Recognition Software program

written by our team will be tested for accuracy of music
features in the MusicXML file output. We will download
ideal scans of sheet music in PDF format from MuseScore
website and and use the SoundSlice website to convert it
into a MusicXML file. Then, we will check this file against
our own software program’s output MusicXML file and
check for differences.

The team’s LED Matrix hardware system will be tested
on accuracy of notes features like key and duration
displayed over time. We will download standard
MusicXML files from MuseScore and test if the C++
program can light up the correct LEDs in the teaching
module game without any major bugs.

For testing the Performance Score Evaluator, MIDI files
from the MuseScore website will be paired with various
different MusicXML files and will be passed to the
performance score evaluator program in order to see if the
score is accurately by the scoring rubric. Moreover, we’ll
see if it successfully transfers the evaluated score to LED
matrices and check if the score is correctly displayed.

Once all three systems are working accurately according
to the requirements, the pipeline of our project will be
tested for bugs with integration through performing
“run-throughs” of the whole system. Our classmates will be
invited to participate for feedback and will be asked to
provide the proficiency at which they want to test our
product. Based on the Speed Mode chosen and complexity
of selected song, we will get a better idea of what
parameters need to be tweaked in order to make the product
an extremely fun and viable Piano teaching product.

3
18-500 Final Project Report: 05/06/2019

III. ARCHITECTURE
The Block Diagram for this project is attached at the end

as Figure 1a on page 9 with the various components
colored by Hardware, Software and Other systems.

A. Optical Music Recognition

For OMR, the primary software library we will be using
is openCV with a language of Python 3. Python was
chosen because of it’s speed of development. Being that
this is only a semester long project, we decided to develop
in a language we are all comfortable working in, and that
has access to a variety of strong libraries to make use of if
need be. OpenCV was chosen because of it’s powerful
image processing capabilities, strong online documentation,
stability, and variety of built-in functions that may help,
especially as we get close to deadlines. Primarily, the OMR
is set up in a pipeline fashion (see Figure 1b on Page 9).

B. LED Hardware System

A Raspberry Pi 3 Model B+ has been chosen as the
Microcontroller of the LED Matrix system. Its 40 GPIO
Pins connect to the Hub 75 Input Pins of the first LED
Matrix in the chain in the following way:

Figure A, B, C: RPi GPIO, Matrix Hub-75, Connections

Four 32x16 LED Matrices are daisy chained together to

form the 128x16 LED Matrix whose sets of columns have
been mapped to represent the keys of the piano keyboard

using the standard “CDEFGAB” format with all sharps and
flats between them on a 12-keys Octave. The 61 keys
Electronic Keyboard supports Octaves 2 to 6.

C. Performance Score Evaluator

Because the performance score evaluator should compare
two very different file formats (MIDI file for user
performance and MusicXML for the original sheet music),
a Python library called Music21 was used to convert them
to Music21’s internal data structures. Music21 easily
converts MIDI and MusicXML files to Streams, which is
simply a list of Notes that contain data such as offset, pitch,
and duration. These three are the main points that are
evaluated while calculating a performance score, so
Music21 was chosen for its simplicity in converting
different files into a single identical format.

D. Integration of Pipeline

In order for these discrete subsystems to work together, a
variety of signals will be sent between them in the form of
whether files exist or not.

First the OMR, after it is finished processing, will create
and send a MusicXML file (“outputXML.xml”) to the
Raspberry Pi. The the Pi sees this file exists, it knows it has
the right file to run.

When the user wants to start the LEDs for the song, they
will press a button on the GUI that sends a text file to the Pi
(“start.txt”). When the Pi sees it has both the xml and the txt
file, it knows to start playing the song on the LEDs.

The Performance score evaluator is dependent on a MIDI
file (“performance.mid”) so it waits until the user creates
this file to begin evaluating the performance. Once it is
finished however, it creates a txt file to send to the Pi
(“end.txt”). Once the Pi sees this file, it knows the
performance is done, has been evaluated, and to display the
score on the LEDs.

4
18-500 Final Project Report: 05/06/2019

IV. DESIGN TRADE STUDIES
To meet the requirements of being a cheap and viable

teaching tool for Piano Players, our project required major
design decisions when it came to portability vs durability,
easy accessibility and range of acceptable music for the
programs. We had the following major tradeoff decisions in
the three areas of the project.

A. Optical Music Recognition
For OMR, the first trade off was what language to code

in. We knew we would probably need to use openCV due to
the heavy computer vision part of the project, so any of the
languages that were supported by that were included. While
python would be slower to run, we were not expected to
detect anything very computationally difficult, and since the
team member in charge of OMR knew python well, it
would be quick to program what we were looking to do.

Another trade off was using a built in connected
components method, or making our own. At first we
attempted making our own as we could more closely
specify what component we wanted to find and what would
be considered a component, however it took much longer to
perform (several seconds) than the builtin one (almost
instantaneous).

Similarly to above, we also used a built-in Hough circle
transform so that it could be done quickly and accurately
since it was such a vital part of the project.

B. LED Hardware System
The major decision for the design of the hardware system

was the choice of LED product. A minimal viable version
of this project would just require a simple LED strip on top
of the keyboard that lit up for the right key at the right time.
But this design would not have contributed to the game
aspect of Piano learning. When looking at potential LED
Matrices that could do the job, cost and complexity had to
be kept in mind since we did not want to allocate our entire
budget to a product we had never used before. The flexible
and long rectangular matrices of Adafruit were much more
appealing from a design standpoint but were extremely
expensive per piece and would be a significant risk if we
could not control it properly. We decided to do for a
simpler and most cost-efficient LED Matrix that came with
daisy chaining capabilities in bulk and included a open
source Control Library to make our job easier.

Another design decision made in the C++ program for
the LEDs was considering the Note’s duration and division
for calculating width of segment vs considering the Note’s
type and speed mode chosen by user. We decided to go for
the second option so as to provide the user with speed mode
capabilities as well as generalize similar song features for
consistency.

C. Performance Score Evaluator
The initial plan to evaluate a performance score was

converting the keyboard MIDI file to musicXML then
comparing it with the original musicXML file. However,
we’ve discovered that when a MIDI file is converted, the
output is a lot more complicated than it should be. For
example, Figure A is the original musicXML, and when it
was converted to MIDI then back to musicXML, Figure B
was the result.

Figure D: original MusicXML

Figure E: converted MusicXML

Figure B clearly contains a lot of noises such as

unnecessary rests and slurs, which makes the comparison
much difficult. Thus, we’ve chosen to compare MIDI files
instead, using a Python library Music21 that contains
various methods and internal data structures for music.

Hence, we can see that the trade-offs made early on in the

project’s planning

5
18-500 Final Project Report: 05/06/2019

V. SYSTEM DESCRIPTION
The three major areas of the project have been designed

in detail in accordance with our requirements and
specifications.

A. Optical Music Recognition Program

An input pdf will be converted into a few pages of
images. Each image will be preprocessed to binarize it and
remove some noise. The staff lines will then be found in the
image, locations recorded, and then removed for the image
so as to ease symbol finding. From there, connected
components will be used to separate out each symbol from
the music to process separately, while their original x and y
coordinates are recorded. For each component, it will be
checked against a variety of templates for common features
(clef symbols, sharps, flats, etc.) as well as checked for any
circles (note-heads). If it matches a template, it be assumed
to be that symbol, otherwise, each found note-head will be
processed for pitch and duration. Then each component will
be put back together with a grammar, and processed into a
MusicXML file. This MusicXML file will be sent to the
Raspberry Pi for interpretation of the LEDs and it will also
be saved into a “library” folder of known, already processed
songs.

The original input pdf as well as the song title will be
taken from user input. However, if a pdf has the same path
in the OS and the same song name as a song that is in the
library, it will not be reprocessed again and will simply use
the already known MusicXML to send to the Raspberry Pi.
This will save significant time for the user, especially if
they are practicing a song and want to continue to play it
over and over again.

B. LED Matrix Hardware System

Figure F: LED Matrix Chain on Piano Keyboard

The LED Matrix System sits on top of the keyboard such

that the bottom of the Matrix is synchronised with the top
the keys.The user will follow visual cues in a game-like
fashion of note segments falling down towards the keys and
hit the notes at the right time, for the right duration, thus
learning the song in a fun way.

On being executed, the C++ program on the RPi waits for
the MusicXML file to sent over from the Graphical User
Interface of the PianoMan project. Then it displays the

name of the song and waits for the start button to be pressed
in the form of a start text file that contains the speed and
complexity options chosen. Then it parses the MusicXML
file and converts the data to a format that can supply the
LED Matrix system with details about the notes of the song
being played like:

1. Name of the Song (Credit)
2. Attributes of a Measure segment (with features

like Division)
3. Features of each note in a list of Notes (Step, Alter,

Octave, Duration, Type, Staff)
C++ programming language was chosen for its speed of

data transfer between different devices as compared to other
languages like Python. Our C++ teaching module program
employs the use of Henner Zeller’s LED Matrix Control
Library which is an open-source library in C++. The LED
Matrix system displays the song keys like a visualizer game
using a “display and refresh” algorithm to be followed by
an active user for a game-like learning experience. The
Matrix system then receives the performance score of the
player by the evaluator and displays it at the end. In the
format of an end text file, it reads the various features like
number of hits, misses, wrongs, duration errors, early and
late keys along with the overall score and displays them on
the Rpi.

The MusicXML, start text and end text files are deleted
at the end of their run and the program runs the algorithm
again, waiting for next set of files for the next song to be
played.

Figure G: LED Matrix Chain Changes on File Transfers

C. MusicXML Converter and Performance Score
Evaluator

MusicXML Converter program constructs MusicXML
files only with the required information for the project, and
the following is the list of all elements needed:

Attributes

- Division: divisions per quarter note

- Key

 - Fifths: number of flats(negative) &

sharps(positive)

 - Mode: major or minor

- Time Signature

6
18-500 Final Project Report: 05/06/2019

- Staves: number of staves

- Clef

Note

- Pitch

 - Step: actual key - A, B, C, D, E, F, G

 - Alter: sharp(+1) or flat(-1)

 - Octave: octave index (default: bass = 3,

treble = 4)

- Duration: duration value relative to division

in attributes

- Voice: index of voice (if polyphonic, notes

are divided into separate voices)

- Type: whole, half, quarter, eighth, ...

- Dot: whether it is a dotted note or not

- Stem: stem direction of the note - down, up,

double

- Staff: location of the note

MusicXML converter receives this information from
OMR in dictionary or list form then recursively converts it
to an XML structure.

Once the user finishes playing the piece with the
keyboard, the corresponding MIDI file is transferred to
performance score evaluator. MusicXML of the original
sheet music (output of OMR) will be converted to MIDI file
using MuseScore application, using the bpm that the user
has chosen.

Music21, a Python library that extracts data from MIDI
files, will be used to compare the two files. Using
midi.translate.midiFileToStream method, two files will be
converted into Stream objects, which are the fundamental
container for Music21 objects. Various methods such as
Stream.notes, Stream.notesAndRests, and Stream.duration
will be used to compare these two in detail. The highest
performance score is 100, and points will be deducted if the
two MIDI files are different every time segment. Thus,
there are several circumstances that may deduct
performance score (ranked in order of effectiveness):

1. When the user misses a note – never plays
anything for that beat

2. When the user plays a wrong note (wrong note or
no rest)

3. When the user plays a wrong note with the correct
note (correct + extra key)

4. When the user plays the correct note in different
timing (when there are unnecessary rests between
notes)

5. When the user plays the correct note in
shorter/longer duration (wrong type of note)

The exact points of deduction will be a relative value to
the total number of notes in the piece, so as the number of
notes increases, a single mistake becomes insignificant.

D. Graphical User Interface (GUI)
The User Interface for the project will be created using

Python 3’s tkinter framework do to the speed of creation
and that other parts of our project are already written in
Python. It will be designed with usability in mind so that it
is simple to understand without much instruction (see
Figure H).

From this screen the user will be able to select the
original pdf to play, the name of the song (not recognized
by the OMR), the speed they want to play it at, and which
clefs they want to play.

After the pdf is processed with the OMR, the user sees
some instruction screens on how to set up the Ableton
software for recording, and later evaluating, their
performance. There is also a screen explaining what each of
the colors mean on the piano LEDs so that the user is not
confused when the song starts playing.

This transitions into a screen where the user can press
start playing. The screen was created so that if the user
becomes distracted while the OMR is occuring, the song
doesn’t automatically start without them.

After this, the user sees more instructions on Ableton and
explains the performance score numbers to the user. And
allows the user to start over with a new song.

Figure H: Main GUI screen

E. Integrations
In order to integrate the multiple systems running in this

project, we will be sending a variety of files back and forth.
After the OMR is done processing the pdf, it will send an
“outputXML.xml” file to the Raspberry Pi that contains all
the MusicXML information. Later, when the user clicks the
“Start Playing” button on the GUI, a “start.txt” file will also
be sent to the Raspberry Pi to tell it to start the song’s
LEDs. This file contains the speed and hand/clef
information as well, telling the pi how to run the song. This
information is not included in the MusicXML because it is
not part of the standard MusicXML file type and we wanted
to stay as close to the true standard as possible.

Before, the user presses “Start Playing”, they must set up
the Ableton MIDI recording software, as per the
instructions in the GUI, so that their performance can be
recorded and evaluated. After the song finishes, they follow
the instructions again to stop the recording process and

7
18-500 Final Project Report: 05/06/2019

export the MIDI file. The software then is able to find this
file, compare it using the performance evaluator, and create
an “end.txt” file that is sent to the Raspberry Pi to be used
in displaying the scores on the LEDs.

VI. PROJECT MANAGEMENT

A. Schedule
The Milestones and Schedule chart for this project is

attached at the end as Figure 2 on page 10.
We devoted the first few weeks of the semester in the

Research and Planning phase of the possible projects as
well as ironing out major details in our most desirable
project. After deciding on our project’s requirements and
specifications, we’ve planned to work independently on the
three major areas until Integration of the pipeline during
Week 10.

During the last four weeks, after confirming the fluidity
of the pipeline after integration, we worked on fixing
individual bugs and refining the project’s aesthetic value
such as making the parts process cohesively.

The OMR had multiple major and minor bug fixes
throughout the last four weeks, but also included some
feature implementations. In the last few weeks, connected
notes (like eighth notes and sixteenth notes) were able to be
recognized and their duration determined. A GUI was also
implemented, allowing the program to take user input into
the software in a more client-friendly fashion.

For the Hardware component, timing bugs needed to be
fixed in order to correctly play the ten songs chosen to be
processed for demo day to make sure the performance score
evaluator works correctly on them. The mapping of
columns on keyboard keys also needed to be tweaked to
make the correspondence clearly visible to the user standing
towards the middle of the piano.

Right before the in-lab demo, we’ve discovered that there
is a bug in the performance score evaluator which deducts
too many points while evaluating the performance. This
was due to five different BPM values that were set for each
speed mode; because they were not perfectly in time with
the notes that were displayed on the LED matrix, as the
performance gets longer, the offset difference became
larger. The performance score evaluator recognized this
offset difference as the case where user plays the correct
note in a different timing, so it continuously deducted
points in the later part of the song. Thus, in the last four
weeks, I mainly worked on fixing bugs like this that were
found as we conducted more user testing.

B. Team Member Responsibilities
The three team members have each been given one major

area of the project as their responsibility.

Lizzy is working on the OMR software side of the
project. Through the PDF-to-JPG and OpenCV Python
libraries, she has built the software suite that parses Sheet
Music into transferable data that is given to the MusicXML
file generator through image processing and pattern
recognition. She also built the GUI interface for the project
and adapted it as feedback came in from users and design
reviews.

Surbhi is working on the hardware implementation side
of the project that includes setting up the LED Matrix
system and writing the song-teaching module algorithm in
the Raspberry Pi C++ program. By using Henner Zeller’s
LED Matrix Controlling library for basic commands, she
has set up the output system of the project that parses the
MusicXML file from the OMR side and lights up the LEDs
on the daisy-chained matrix according to the requirements
of the project using a game-like effect displays the
performance scores at the end.

Vanessa is working on musicXML, MIDI files, and
transfer of data between software and hardware. She created
data structures that OMR output can use and wrote Python
code for MusicXML converter that constructs a musicXML
file from the given data. She is also creating a specific
scoring rubric and a performance score evaluator which
compares user performance with the original sheet music.
Through a MIDI cable from the piano keyboard to a laptop,
midi files will be sent to the score evaluator program. She
will complete our transition pipeline by writing python
scripts for automatic sending of data from laptops to the
microcontroller.

C. Budget
The Budget and Parts list for this project is attached at

the end as Figure 3 on page 11.
All of the budget has gone towards the hardware

system’s implementation for the teaching module and the
performance evaluator. The software side uses free
open-source libraries and has written project-specific code
from scratch.

We have used all the parts listed in the table and plan to
buy an extra Raspberry Pi and a few extra LED Matrices
later in the semester as spares in case of damage.

D. Risk Management
The project’s major moving parts were divided into three

main areas so as to allot equal amount of work to each
teammate as well as keep the work independent until
integration. The internal pipelines’ input and output files
were decided early on so that no person had to wait for the
product of another person to begin their work, thus using all
our allotted time efficiently. So this helped in independent
building, testing and debugging and also facilitates a
smooth transition into the integration phase without any red

8
18-500 Final Project Report: 05/06/2019

flags.

While choosing the LED Matrix for the hardware
implementation, we picked a reliable but cheap matrix from
a well known source (Adafruit Industries) that mitigated the
chances of device defects and allowed us to experiment
with their functionality before buying the rest in bulk. We
will also be purchasing extra matrices later in the semester
to keep a few spare in case of burn outs and damage.

VII. RELATED WORK
The PianoMan project was inspired by the work of a

YouTuber Rousseau who shares his virtual reactive piano
visualizer videos on his YouTube channel. We wanted to
create cheaper, physical implementation of his idea through
a fun game-like module that could teach any song to a user.
This influenced us to implement our own OMR (Optical
Music Recognition) Software to work on any songs sheet
music to feed a MusicXML file to the Raspberry Pi
microcontroller.

The structure of the OMR program was based on papers
like “Optical music recognition: state-of-the-art and open
issues” [4]. Here, an overview of the most recent research
into OMR is discussed in detail including ways to split up
the problem of recognition and common algorithms used
for these parts. Some limitations and advantages are
discussed for many algorithms, and there are some open
questions they describe as still being worked on.

VIII. SUMMARY
Towards the end of the semester, the team focused on

refining the project’s features to make the final demo as
noteworthy as possible. We pre-processed 10 songs songs
to be played during the demo with ease.

On the OMR side, all of these 10 songs met both the time
and accuracy specifications (60s/120 recognizable
elements; 90% accuracy) based on the output XML files.
However, after testing the OMR on a variety of songs, it
was found that songs with many ties and slurs caused
problems, primarily because the connected components
were not always separate at that point (a tie/slur can go
through a measure bar for example, causing problems
recognizing the measure bar). It also, has trouble
recognizing lots of chords correctly, due to the limitations
of the Hough Circle-transform. One approach to potentially
use to fix this problem is to use contours to find noteheads
instead of the transform.

The OMR also only supports notes and rests up to
sixteenth. This allowed us to simplify the OMR, and since
the project is aimed at beginner piano players, this was a
fine tradeoff.

The file transfers from the GUI to the RPi work almost
instantaneously which covers our 3 seconds requirement.
The RPi can parse those files also almost instantaneously.

A. Future Work

From the feedback of our faculty and peers, we believe
that our project has so many avenues to improve the music
teaching industry by adding Real-Time feedback
technology to our system as well as detailing the
performance score by giving more visual information about
the exact mistakes in the played piece. Real-time feedback
was beyond the scope of our project but we hope that given
more time and budget, a system could be designed around
our current architecture to incorporate that.

B. Lessons Learned
Order your parts as early as possible to conduct

functionality tests. Order extra in case the parts go out of
stock later. Make a detailed schedule by reducing each task
into list of agreeable goals. Think of a design project that
will have enough independent work for three people but
will come together at the end and not end up like three
separate projects.

Our project’s website:
http://course.ece.cmu.edu/~ece500/projects/s19-teamd7/

Our project’s YouTube Video:
https://www.youtube.com/watch?time_continue=1&v=k1

iDhHrUKVM

REFERENCES
[1] LED Matrix Control Library.,

https://github.com/hzeller/rpi-rgb-led-matrix/
[2] Raspberry Pi and LED Matrices Connection,

https://learn.adafruit.com/16x32-rgb-display-with-raspberry-pi-part-2
[3] YouTuber Rousseau,

https://www.youtube.com/channel/UCPZUQqtVDmcjm4NY5FkzqL
A

[4] A. Rebelo, I. Fujinaga, F. Paszkiewicz, A. Marcal, C. Guedes, and J.
Cardoso, “Optical music recognition: state-of-the-art and open
issues,” International Journal of Multimedia Information Retrieval,
pp. 1–18, 2012.

http://course.ece.cmu.edu/~ece500/projects/s19-teamd7/
https://www.youtube.com/watch?time_continue=1&v=k1iDhHrUKVM
https://www.youtube.com/watch?time_continue=1&v=k1iDhHrUKVM
https://github.com/hzeller/rpi-rgb-led-matrix/
https://learn.adafruit.com/16x32-rgb-display-with-raspberry-pi-part-2
https://www.youtube.com/channel/UCPZUQqtVDmcjm4NY5FkzqLA
https://www.youtube.com/channel/UCPZUQqtVDmcjm4NY5FkzqLA

9
18-500 Final Project Report: 05/06/2019

Figure 1a: System Block Diagram - Hardware, Software, Other objects

Figure 1b: OMR Block Diagram

10
18-500 Final Project Report: 05/06/2019

Figure 2: Milestones and Schedule Chart

11
18-500 Final Project Report: 05/06/2019

No. Item / Part Quantity Total Cost

1 Raspberry Pi 3 B+ Kit (Amazon) 1 $48.99

2 16x32 RGB LED Matrix (Adafruit) 4 $99.80

3 5V 10A Switching Power Supply (Adafruit) 1 $25.00

4 Female DC Power Adapter (Adafruit) 1 $2.00

5 Female-Female Jumper Cables (Adafruit) 1 (Pack of 40) $3.95

6 Male-Male Jumper Cables (Adafruit) 1 (Pack of 40) $3.95

7 GPIO Reference Card (Adafruit) 1 $2.50

8 FORE USB In-out MIDI Interface Converter (Amazon) 1 $21.99

9 Nonda USB Type C to USB 3.0 Converter (Amazon) 1 $7.99

10 Shipping Expenses + Taxes from Adafruit 2 Orders $30.00

11 Laptop Stand (Amazon) 1 $30.80

12 Hair Ties (Amazon) 1 (Pack of 200) $3.00

TOTAL 13 $279.97

Figure 3: Budget and Parts List

