
1
18-500 Design Review Report: 03/04/2019

PianoMan Capstone Design Project

Authors: ​Surbhi Inani ​(Class of 2019),​ Lizzy Thrasher ​(Class of 2019),​ Vanessa Hwang ​(Class of 2019)

Electrical and Computer Engineering, Carnegie Mellon University

Abstract​—A self-learning for beginner Piano players where

the user can choose the complexity of learning by scanning the
Sheet Music of a song and learning to play it using a teaching
module on a LED Matrix system in a game-like fashion as well
as getting performance feedback at the end. This cost-efficient
and fun way to learn playing the Piano makes use of more
visual cues and allows learning any song of any complexity
with the help of Optical Music Recognition.

Index Terms​— Adafruit Industries, LED Matrix, MIDI,
MusicXML, Music Sheets, Optical Music Recognition (OMR),
Raspberry Pi

I. INTRODUCTION
Learning Piano can be challenging for many beginner

players. Being able to keep track of reading sheet music
properly, knowing where the keys are, and pressing them at
the correct times and for the right amount of time is
intimidating at best and makes learning a daunting and
perplexing task. However, music should be a positive factor
on someone’s life and learning an instrument should not be
discouraging. Therefore, we aim to simplify this process of
learning to play the piano and make it a fun experience.
Piano players will be able to use a game-like system where
they can take any sheet music that they want to learn and
transform it so that it is easier and more enjoyable. Other
competing technologies only allow you to select from a
specific music library for pieces you want to play and are
not portable, so cannot be used on multiple pianos. Because
they are embedded into the piano keyboard already, they are
also fairly expensive and inaccessible to the average
beginner player. There is also other software that is able to
read sheet music, but it does not include the hardware
component and is not intended for learning piano, but rather
archiving sheet music.

Therefore, our goals for this project include being able to
take an ideal scan (PDF) of most sheet music (some
restrictions on the music itself) and being able to convert it
to a series of falling lights above a keyboard that are
accurately shown for pitch and duration based on the
original sheet music. This should be completed as the user
asks to upload a new piece of music and within the span of
a few minutes. Then the keyboard will be responsive by
accurately calculating a score for how well the player did

and provide feedback to the user. So, we hope that our
device will be able to maintain the industry standards of
musical education and piano playing as a useful tool for all
proficiency players.

II. DESIGN REQUIREMENTS
For the PianoMan project to be a viable method of Piano

learning as well as stay within the budget for the class, we
have implemented the following requirements in the three
major areas of the project.

One of the major components for this project is that we
should be able to take accurate scans of sheet music,
automatically read the different notes to be played at the
correct times for the piece. We will then be able to perform
OMR on appropriate sheet music in less than a minute per
page with 90% accuracy compared to the original sheet
music. In terms of accuracy, we will be looking at each note
and rest and comparing pitch, note-type/duration, as well as
where in the piece it is played. This will be tested visually
by checking that the ending MusicXML looks correct, as
well as by comparing to the original MusicXML for the file.
We believe that 90% accuracy is possible because certain
notes may be difficult to determine (chords with notes close
to each other, connected notes, etc.), however the large
majority should be accurate to be able to play the piece
properly. Also, each page should be completed in less than
a minute because while there is a fairly large amount of
image processing that must occur, the user will not want to
wait too long in order to play a piece of music. Beginner
piano students will also probably not be playing extremely
long pieces on a regular basis, so increasing the time based
on page number should be a fine tradeoff.

During the transition of data from the OMR Software
side to the LED Hardware side, we need to employ a
programming language that can be used to transfer the
MusicXML files to the Microcontroller within 15 seconds
of creation, so as to not let the LED system be idle for too
long in front of the user. It's important that this transition
is relatively quick, again, so as to not bore the user or make
them frustrated waiting for the module to begin. However,
we are taking into account less than optimal internet and
bandwidth situations.

2
18-500 Design Review Report: 03/04/2019

For the LED Matrix Hardware system to be a stable
system with minimum noise and flickering in its display
during the teaching module, we will require the use of a
coding language in the microcontroller that allows for files
to be sent automatically over WIFI, the efficient parsing of
MusicXML files into data components and independent
controlling of each LED in the chosen LED device so that
we are able to display features of the song notes for the user
to notice and follow with extreme clarity and low time
consumption. The Microcontroller should be able to parse a
MusicXML file and start a teaching song module within 30
seconds, so as to not make the user wait unnecessarily and
guarantee a smooth flow of the pipeline. The teaching
module program needs to show the right keys within 98%
accuracy, accounting for LED bugs and hardware device
flickering, and should assign the correct colors to each
feature at all times. This is important since we cannot have
a user learn an incorrect part of a song during every
instance of the song’s execution. Finally, the chosen LED
device must be scalable enough to cover the entire 61 keys
of an electronic keyboard, so as to allow the user to play a
wide variety of songs.

The Performance score evaluator should convert the
MusicXML file, sent previously to the microcontroller, to a
MIDI file while the user is performing and once the user
finishes playing the piece, a MIDI file should be collected
from the keyboard. It should then calculate a performance
score by comparing these two MIDI files according to the
scoring rubric that we have defined and send the output
back to the microcontroller within one minute.

Some major assumptions being made for this project to
be a viable product within the class’s budget. Our product
will be cover all the keys of Electronic keyboards but not
those of a grand piano, so as to constrain our power
consumption and allow people from all backgrounds to be
able to successfully use this decide. We will only be
allowing ideal scans of sheet music in pdf form. They
should have little noise, rotation (staff lines should be
horizontal), and a page of sheet music should cover a page
of the pdf. Furthermore, for the music itself, there should be
no key changes or time signature changes in the middle of a
song

III. TESTING AND VALIDATION
To guarantee the smooth running of each area of our

project and verify that our designs meet our specifications
for our problem scope, we plan to test the systems
independently and concurrently in the following fashion.

The Optical Music Recognition Software program
written by our team will be tested for accuracy of music
features in the MusicXML file output. We will download
ideal scans of sheet music in PDF format from MuseScore
website and and use the SoundSlice website to convert it

into a MusicXML file. Then, we will check this file against
our own software program’s output MusicXML file and
check for differences.

The team’s LED Matrix hardware system will be tested
on accuracy of notes features like key and duration
displayed over time. We will download standard
MusicXML files from MuseScore and test if the C++
program can light up the correct LEDs in the teaching
module game without any major bugs.

For testing the Performance Score Evaluator, MIDI files
from the MuseScore website will be paired with various
different MusicXML files and will be passed to the
performance score evaluator program in order to see if the
score is accurately by the scoring rubric. Moreover, we’ll
see if it successfully transfers the evaluated score to LED
matrices and check if the score is correctly displayed.

Once all three systems are working accurately according
to the requirements, the pipeline of our project will be
tested for bugs after integration through User Testing and
Collection of Feedback. Our classmates will be invited to
participate and will be asked to provide the proficiency at
which they want to test our product. Based on the Speed
Mode chosen and complexity of selected song, we will get a
better idea of what parameters need to be tweaked in order
to make the product an extremely fun and viable Piano
teaching product.

3
18-500 Design Review Report: 03/04/2019

IV. ARCHITECTURE
The Block Diagram for this project is attached at the end

as ​Figure 1a on ​page 8 with the various components
colored by Hardware, Software and Other systems.

The three major areas of the project have been designed
in detail in accordance with our requirements and
specifications.

Optical Music Recognition Program
For OMR, the primary software library we will be using

is openCV with a language of python. Python was chosen
because of it’s speed of development. Being that this is only
a semester long project, we decided to develop in a
language we are all comfortable working in, and that has
access to a variety of strong libraries to make use of if need
be. OpenCV was chosen because of it’s powerful image
processing capabilities, strong online documentation,
stability, and variety of built-in functions that may help,
especially as we get close to deadlines. Primarily, the OMR
is set up in a pipeline fashion (see ​Figure 1b ​on​ Page 8​).

An input pdf will be converted into a few pages of
images. Each image will be preprocessed to binarize it and
remove some noise. The staff lines will then be found in the
image, locations recorded, and then removed for the image
so as to ease symbol finding. From there, connected
components will be used to separate out each symbol from
the music to process separately, while their original x and y
coordinates are recorded. For each component, it will be
checked against a variety of templates for common features
(clef symbols, sharps, flats, etc.) as well as checked for any
circles (note-heads). If it matches a template, it be assumed
to be that symbol, otherwise, each found note-head will be
processed for pitch and duration. Then each component will
be put back together with a grammar, and processed into a
MusicXML file.

LED Hardware System
A Raspberry Pi 3 Model B+ has been chosen as the

Microcontroller of the LED Matrix system. Its 40 GPIO
Pins connect to the Hub 75 Input Pins of the first LED
Matrix in the chain in the following way:

Figure A, B, C: RPi GPIO, Matrix Hub-75, Connections

Four 32x16 LED Matrices are daisy chained together to

form the 128x16 LED Matrix whose sets of columns have
been mapped to represent the keys of the piano keyboard
using the standard “CDEFGAB” format with all sharps and
flats between them on a 12-keys Octave. The 61 keys
Electronic Keyboard supports Octaves 2 to 6.

Figure D: LED Matrix Chain on Piano Keyboard

The LED Matrix System sits on top of the keyboard such

that the bottom of the Matrix is synchronised with the top
the keys.The user will follow visual cues in a game-like
fashion of note segments falling down towards the keys and
hit the notes at the right time, for the right duration, thus
learning the song in a fun way.

On being executed and given the local parameters, the
C++ program on the RPi parses the MusicXML file and
converts the data to a format that can supply the LED
Matrix system with details about the notes of the song being
played like:

1. Name of the Song (Credit)
2. Attributes of a Measure segment (with features

like Division)
3. Features of each note in a list of Notes (Step, Alter,

Octave, Duration, Type, Staff)
C++ programming language was chosen for its speed of

data transfer between different devices as compared to other
languages like Python. Our C++ teaching module program
employs the use of Henner Zeller’s LED Matrix Control
Library which is an open-source library in C++. The LED
Matrix system displays the song keys like a visualizer game

4
18-500 Design Review Report: 03/04/2019

using a “display and refresh” algorithm to be followed by
an active user for a game-like learning experience. The
Matrix system then receives the performance score of the
player by the evaluator and displays it at the end.

MusicXML Converter and Performance Score
Evaluator

MusicXML Converter program constructs MusicXML
files only with the required information for the project, and
the following is the list of all elements needed:

Attributes

- Division: divisions per quarter note

- Key

 - Fifths: number of flats(negative) &

sharps(positive)

 - Mode: major or minor

- Time Signature

- Staves: number of staves

- Clef

Note

- Pitch

 - Step: actual key - A, B, C, D, E, F, G

 - Alter: sharp(+1) or flat(-1)

 - Octave: octave index (default: bass = 3,

treble = 4)

- Duration: duration value relative to division

in attributes

- Voice: index of voice (if polyphonic, notes

are divided into separate voices)

- Type: whole, half, quarter, eighth, ...

- Dot: whether it is a dotted note or not

- Stem: stem direction of the note - down, up,

double

- Staff: location of the note

MusicXML converter receives this information from
OMR in dictionary or list form then recursively converts it
to an XML structure.

Once the user finishes playing the piece with the
keyboard, the corresponding MIDI file is transferred to
performance score evaluator. MusicXML of the original
sheet music (output of OMR) will be converted to MIDI file
using MuseScore application, using the bpm that the user
has chosen.

Music21, a Python library that extracts data from MIDI
files, will be used to compare the two files. Using
midi.translate.midiFileToStream method, two files will be
converted into Stream objects, which are the fundamental
container for Music21 objects. Various methods such as
Stream.notes, Stream.notesAndRests, and Stream.duration
will be used to compare these two in detail. The highest
performance score is 100, and points will be deducted if the
two MIDI files are different every time segment. Thus,
there are several circumstances that may deduct
performance score (ranked in order of effectiveness):

1. When the user misses a note – never plays

anything for that beat
2. When the user plays a wrong note (wrong note or

no rest)
3. When the user plays a wrong note with the correct

note (correct + extra key)
4. When the user plays the correct note in different

timing (when there are unnecessary rests between
notes)

5. When the user plays the correct note in
shorter/longer duration (wrong type of note)

The exact points of deduction will be a relative value to
the total number of notes in the piece, so as the number of
notes increases, a single mistake becomes insignificant.

5
18-500 Design Review Report: 03/04/2019

V. DESIGN TRADE STUDIES
To meet the requirements of being a cheap and viable

teaching tool for Piano Players, our project required major
design decisions when it came to portability vs durability,
easy accessibility and range of acceptable music for the
programs. We had the following major tradeoff decisions in
the three areas of the project.

Optical Music Recognition
For OMR, the first trade off was what language to code

in. We knew we would probably need to use openCV due to
the heavy computer vision part of the project, so any of the
languages that were supported by that were included. While
python would be slower to run, we were not expected to
detect anything very computationally difficult, and since the
team member in charge of OMR knew python well, it
would be quick to program what we were looking to do.

Another trade off was using a built in connected
components method, or making our own. At first we
attempted making our own as we could more closely
specify what component we wanted to find and what would
be considered a component, however it took much longer to
perform (several seconds) than the builtin one (almost
instantaneous).

LED Hardware System
The major decision for the design of the hardware system

was the choice of LED product. A minimal viable version
of this project would just require a simple LED strip on top
of the keyboard that lit up for the right key at the right time.
But this design would not have contributed to the game
aspect of Piano learning. When looking at potential LED
Matrices that could do the job, cost and complexity had to
be kept in mind since we did not want to allocate our entire
budget to a product we had never used before. The flexible
and long rectangular matrices of Adafruit were much more
appealing from a design standpoint but were extremely
expensive per piece and would be a significant risk if we
could not control it properly. We decided to do for a
simpler and most cost-efficient LED Matrix that came with
daisy chaining capabilities in bulk and included a open
source Control Library to make our job easier.

Another design decision made in the C++ program for
the LEDs was considering the Note’s duration and division
for calculating width of segment vs considering the Note’s
type and speed mode chosen by user. We decided to go for
the second option so as to provide the user with speed mode
capabilities as well as generalize similar song features for
consistency.

Performance Score Evaluator
The initial plan to evaluate a performance score was

converting the keyboard MIDI file to musicXML then

comparing it with the original musicXML file. However,
we’ve discovered that when a MIDI file is converted, the
output is a lot more complicated than it should be. For
example, Figure A is the original musicXML, and when it
was converted to MIDI then back to musicXML, Figure B
was the result.

Figure A: original MusicXML

Figure B: converted MusicXML

Figure B clearly contains a lot of noises such as

unnecessary rests and slurs, which makes the comparison
much difficult. Thus, we’ve chosen to compare MIDI files
instead, using a Python library Music21 that contains
various methods and internal data structures for music.

Hence, we can see that the trade-offs made early on in the

project’s planning

6
18-500 Design Review Report: 03/04/2019

VI. PROJECT MANAGEMENT

A. Schedule
The Milestones and Schedule chart for this project is

attached at the end as ​Figure 2​ on ​page 9​.
We devoted the first few weeks of the semester in the

Research and Planning phase of the possible projects as
well as ironing out major details in our most desirable
project. After deciding on our project’s requirements and
specifications, we’ve planned to work independently on the
three major areas until Integration of the pipeline in Week
10.

B. Team Member Responsibilities
The three team members have each been given one major

area of the project as their responsibility.
Lizzy is working on the OMR software side of the

project. Through the PDF-to-JPG and OpenCV Python
libraries, she has built the software suite that parses Sheet
Music into transferable data that is given to the MusicXML
file generator through image processing and pattern
recognition.

Surbhi is working on the hardware implementation side
of the project that includes setting up the LED Matrix
system and writing the song-teaching module algorithm in
the Raspberry Pi C++ program. By using Henner Zeller’s
LED Matrix Controlling library for basic commands, she
has set up the output system of the project that parses the
MusicXML file from the OMR side and lights up the LEDs
on the daisy-chained matrix according to the requirements
of the project using a game-like effect displays the
performance scores at the end.

Vanessa is working on musicXML, MIDI files, and
transfer of data between software and hardware. She created
data structures that OMR output can use and wrote Python
code for MusicXML converter that constructs a musicXML
file from the given data. She is also creating a specific
scoring rubric and a performance score evaluator which
compares user performance with the original sheet music.
Through a MIDI cable from the piano keyboard to a laptop,
midi files will be sent to the score evaluator program. She
will complete our transition pipeline by writing python
scripts for automatic sending of data from laptops to the
microcontroller.

C. Budget
The Budget and Parts list for this project is attached at

the end as ​Figure 3​ on ​page 10​.
All of the budget has gone towards the hardware

system’s implementation for the teaching module and the

performance evaluator. The software side uses free
open-source libraries and has written project-specific code
from scratch.

We have used all the parts listed in the table and plan to
buy an extra Raspberry Pi and a few extra LED Matrices
later in the semester as spares in case of damage.

D. Risk Management
The project’s major moving parts were divided into three

main areas so as to allot equal amount of work to each
teammate as well as keep the work independent until
integration. The internal pipelines’ input and output files
were decided early on so that no person had to wait for the
product of another person to begin their work, thus using all
our allotted time efficiently. So this helped in independent
building, testing and debugging and also facilitates a
smooth transition into the integration phase without any red
flags.

While choosing the LED Matrix for the hardware
implementation, we picked a reliable but cheap matrix from
a well known source (Adafruit Industries) that mitigated the
chances of device defects and allowed us to experiment
with their functionality before buying the rest in bulk. We
will also be purchasing extra matrices later in the semester
to keep a few spare in case of burn outs and damage.

VII. RELATED WORK
The PianoMan project was inspired by the work of a

YouTuber Rousseau who shares his virtual reactive piano
visualizer videos on his YouTube channel. We wanted to
create cheaper, physical implementation of his idea through
a fun game-like module that could teach any song to a user.
This influenced us to implement our own OMR (Optical
Music Recognition) Software to work on any songs sheet
music to feed a MusicXML file to the Raspberry Pi
microcontroller.

The structure of the OMR program was based on papers
like “Optical music recognition: state-of-the-art and open
issues” [4]. Here, an overview of the most recent research
into OMR is discussed in detail including ways to split up
the problem of recognition and common algorithms used
for these parts. Some limitations and advantages are
discussed for many algorithms, and there are some open
questions they describe as still being worked on.

VIII. SUMMARY
It is almost the midpoint of the semester, and the three

areas of the project have been on schedule with their tasks.
According to the weekly status reports, the project is
moving towards the right direction, and there is no major
red flags that cannot be resolved independently. We will
continue working individually on our parts until week 9 and
start integration from week 10. Before integration, Surbhi

7
18-500 Design Review Report: 03/04/2019

will create an algorithm for displaying the notes on the LED
matrix after parsing the transferred musicXML file, and
Vanessa will finish developing performance score
evaluator. Lizzy will continue extending her OMR so that it
can determine pitch and duration of notes, along with
different types of rests.

From week 10, we will check if our parts satisfy the
requirements that we’ve defined by conducting tests listed
in Metrics and Validation. Once we’ve confirmed that three
areas are working correctly, we will connect both OMR and
performance score evaluator to Raspberry Pi which will be
done through Wi-Fi. Moreover, we will finalize the OMR
output data structure so that it can be perfectly integrated
with MusicXML converter.

We hope to present a fully viable product with smooth
transitions in the pipeline for the April demo so that we can
work on stretch goals until the end of the semester.

Our project’s website:
http://course.ece.cmu.edu/~ece500/projects/s19-teamd7/

REFERENCES
[1] LED Matrix Control Library.,

https://github.com/hzeller/rpi-rgb-led-matrix/
[2] Raspberry Pi and LED Matrices Connection,

https://learn.adafruit.com/16x32-rgb-display-with-raspberry-pi-part-2
[3] YouTuber Rousseau,

https://www.youtube.com/channel/UCPZUQqtVDmcjm4NY5FkzqL
A

[4] A. Rebelo, I. Fujinaga, F. Paszkiewicz, A. Marcal, C. Guedes, and J.
Cardoso, “Optical music recognition: state-of-the-art and open
issues,” International Journal of Multimedia Information Retrieval,
pp. 1–18, 2012.

http://course.ece.cmu.edu/~ece500/projects/s19-teamd7/
https://github.com/hzeller/rpi-rgb-led-matrix/
https://learn.adafruit.com/16x32-rgb-display-with-raspberry-pi-part-2
https://www.youtube.com/channel/UCPZUQqtVDmcjm4NY5FkzqLA
https://www.youtube.com/channel/UCPZUQqtVDmcjm4NY5FkzqLA

8
18-500 Design Review Report: 03/04/2019

Figure 1a: System Block Diagram - ​Hardware​, ​Software​, ​Other objects

Figure 1b: OMR Block Diagram

9
18-500 Design Review Report: 03/04/2019

Figure 2: Milestones and Schedule Chart

10
18-500 Design Review Report: 03/04/2019

No. Item / Part Quantity Total Cost

1 Raspberry Pi 3 B+ Kit (Amazon) 1 $48.99

2 16x32 RGB LED Matrix (Adafruit) 4 $99.80

3 5V 10A Switching Power Supply (Adafruit) 1 $25.00

4 Female DC Power Adapter (Adafruit) 1 $2.00

5 Female-Female Jumper Cables (Adafruit) 1 (Pack of 40) $3.95

6 Male-Male Jumper Cables (Adafruit) 1 (Pack of 40) $3.95

7 GPIO Reference Card (Adafruit) 1 $2.50

8 FORE USB In-out MIDI Interface Converter (Amazon) 1 $21.99

9 Nonda USB Type C to USB 3.0 Converter (Amazon) 1 $7.99

10 Shipping Expenses + Taxes from Adafruit 2 Orders $30.00

TOTAL 12 $246.17

Figure 3: Budget and Parts List

