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Abstract— Cubr is a system capable of solving a 3x3x3 

Rubik’s Cube. Cubr uses computer vision to scan a real 
cube and map its configuration into 2D space to create a 
cube string. This cube string is passed into our 3x3x3 solver, 
which determines the optimal set of moves to solve the 
puzzle, known as a solution string. The solution string is 
then handed over to the physical robot. The robot contains 
six motors, one for each face of the cube, and will execute 
the solution string to solve the Rubik’s Cube in under 20 
seconds. 
 

Index Terms— Arduino, computer vision, cube 
configuration string, cube notation, cube state detection, 
motors, motor drivers, Rubik's cube, solution string 

I. INTRODUCTION 
ubr, a puzzle cube solving robot, is an approach to 
introduce technology to a common but sophisticated 
household puzzle. The motivation of Cubr is to 

mechanically solve a 3x3x3 puzzle cube. We constituted Cubr’s 
solution as successful in three ways. The first metric was to 
correctly classify the colors of each cube piece on all six sides 
of the cube 100% of the time. An error in color classification 
would result in an invalid cube configuration string and would 
lead to an inaccurate representation of the real cube. 
Furthermore, our solving algorithm would not find a solution 
for an invalid cube string. The second metric was for our solver 
module to find a solution string of less than 300 rotation moves 
using an intuitive approach known as the Beginner’s Method. 
We considered a solution string with more than 300 moves to 
be an inefficient solution. We also classified a solution string 
that does not fully solve a valid cube configuration as an 
insufficient solution. This constrained our solver module from 
being too computationally expensive and naive. With the Two-
Phase Algorithm, we were able to obtain a solution string 
containing a maximum of 20 moves. With this, the motor arm 
had to turn its designated cube face in less than 1 second and be 
able to perform the full Two-Phase solution string in less than 
20 seconds. Due to its proximity to human intuition, the 
Beginner's Method implementation in Cubr can be used as a 
learning tool. The last metric was the execution time for a motor 
arm to turn a face of the cube. Cubr is important in proving that 
technology can be introduced to everyday objects that 
previously have not been integrated with technology. 
 

II. DESIGN REQUIREMENTS 
In mechanically solving the cube, there are three major 

components that are critical to the success of our project. The 
first is cube state detection, which is responsible for 
successfully mapping the cube to 2D space. The second 
component is the solving software which will take in a cube 
configuration string and will output a solution string. The third 
component is responsible for mechanically turning the cube 
faces to physically solve the cube. 

To verify that the first component, cube state detection, has 
met our specification, we will scan 10 differently scrambled 
cubes and ensure that all pieces are correctly scanned and 
mapped. The testing and validation will not be complete until 
this requirement is met. We will be scanning a standard 3x3x3 
cube with the traditional sticker color scheme through an 
external webcam. 

To ensure algorithmic efficiency of the solving software, we 
are first evaluating whether or not a solution is found. If a 
solution is not found, then the solving software is not correct, 
and we fail our success benchmark. We also fail our success 
benchmark if a solution of less than 300 moves is not found. 
The Beginner’s Solving Method should approximately take 200 
moves; therefore, we have a leniency margin of 100 moves. A 
solution string of greater than 300 moves indicates that our 
solving software is inefficient and is too naively solving the 
cube. 

The hardware component is the most challenging for our 
group and requires the most attention. We will be testing the 
hardware components in steps. First, we want to make sure we 
can move a single motor with the control we desire. From that, 
we would like to map each possible move for each face to a 
keypress. If we can do this successfully, we’ll be able to 
transition the code from reading keypress events to parsing a 
solution string and ultimately executing the set of moves to 
solve the puzzle. 
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Fig. 1. 2D Mapping of 3x3x3 Cube 

III. ARCHITECTURE AND PRINCIPLE OF OPERATION 
Our solution approach consisted of three main modules to 

create the Cubr system. The first two, cube state detection and 
the solver, were software-based using OpenCV and Python. 
The third and final module, physical solving, was hardware-
based with an Arduino as the mode of computation and control. 
Lastly, we needed to ensure smooth integration between all 
three components. The Cubr system block diagram is depicted 
in Figure 8. 
A. Cube State Detection 

The first software module in Cubr’s pipeline was the cube 
state detection. Cube state detection, an integral part of the 
process, identified the given configuration of the cube and 
interfaced the mapped cube to our solver module. To scan all 
sides of the cube, a webcam was used with OpenCV to capture 
and identify the sides of the cube. 

In the cube scanning portion of this module, there was a 
defined region to place a single face of the cube in front of the 
webcam, indicated by nine small rectangles for each cube face's 
cubies in the video frame. In addition, the cube state detection 
module featured a live color tracker in the top left corner of the 
window that showed the colors detected by the color 
classification algorithm for each cube piece of the current face. 
This acted as a validation step to ensure the right colors were 
being tracked. To capture and record the single side of the cube, 
the user had to press the spacebar when the cube face was 
aligned properly with the rectangles and the live color tracker 
was showing the correct colors. The software stored the colors 
of a given face of the cube in a data structure. The mapping of 
a given face was based on the color of the centerpiece as the 
centerpieces cannot be moved. This process was repeated for 
each of the six sides of the cube. 

Originally, for the design review, we standardized the 
scanning process by partially restricting the orientation in 
which we scanned. To scan each face, the yellow centerpiece 
had to be on the top and the white centerpiece on the bottom. 
Then, the user had to turn the cube by 90 degrees in either 
direction while the white and yellow centerpieces were still 
oriented correctly. To scan the yellow and white faces, the user 
had to make another 90-degree turn along a different axis that 

allowed the camera to scan the top yellow face and the bottom 
white face.  

We iterated upon this original design because when we 
physically place the cube into the robot housing, we have to 
take the centerpiece caps off the cube so that our coupling arms 
could attach. This is a tedious process that we would have to 
repeat every time we scan a cube and place it into the housing, 
so our solution was to do the scanning portion without the 
center caps. With the initial iteration of cube state detection, the 
module knew which face it was mapping by the color it detected 
from the centerpieces. Without caps, the color was not detected 
correctly which consequently incorrectly mapped the cube. 
Thus, we defined a preset way to scan and orient the cube so 
that we can hard code the centerpiece color. So, with our latest 
iteration of cube state detection, our order to scan the cube while 
yellow is oriented top and white oriented bottom is to scan the 
red face, green face, orange face, and then the blue face. With  
the red face-oriented front, we then rotate 90 degrees to scan the 
yellow face, then go the opposite direction to scan the white 
face. This scanning aligns with the 2D mapping of the cube as 
shown in Figure 1. 

After all sides of the cube were scanned, the cube state 
detection module was responsible for properly mapping the 
pieces of the cube and providing a cube string with the correct 
notation as defined in our software interface between the cube 
state detection and the solver modules. 
B. Solving  

The second module is the 3x3x3 puzzle cube solver. From 
the cube state detection module, the solver module received the 
cube configuration string for processing. We decided to 
implement the solver module in Python given its readability, 
dynamic typing, automatic memory management, and object-
oriented programming (OOP) features. 

Once the solver module instantiated a Cube object and 
identified the individual cubie pieces and locations, the module 
executed either the Beginner’s Method of solving, which 
reflects the way a human would solve a 3x3x3 puzzle cube, or 
the Two-Phase algorithm, which found a solution of 20 moves 
maximum for any valid cube state. 

The Beginner’s Method works by solving each layer of the 
cube according to its corresponding sublayer algorithm(s) and 
maintaining the pieces of previous layer that were already 
oriented in place. Since the design report, because we aimed for 
a solution consisting of a maximum of 300 moves, we decided 
to implement a hybrid algorithmic solver derived from the naive 
Beginner's Method and from the CFOP (Cross – F2L [First Two 
Layers] – OLL [Orient Last Layer] – PLL [Permute Last 
Layer]) speedcubing method. With this hybrid of the two 
solving methods, the top layer can be solved in a fewer moves 
than the naive Beginner’s Method. 

For our solver, the first two layers of the cube were solved 
with the naive Beginner's Method: in the first/bottom layer, the 
solver oriented and placed the cubies to reach the "White Cross" 
and then the "White Corners" states; from there, the second 
layer edge pieces were solved. The CFOP method typically 
combines the "White Corners" and second layer algorithms into 
a state called F2L. The third layer is solved via the OLL and 
PLL steps of the CFOP method.  
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As the module proceeded to solve the cube state by layers, it 
concatenated each sublayer solving algorithm to a solution 
string of moves. Once the cube object reached its fully solved 
state, the resulting solution string of moves was used to direct 
the hardware module for physical solving of the cube. 
C. Physical Execution 

The third and final module in our approach was the physical 
execution of a solution string to solve the puzzle. The cube 
solving robot took a single solution string as its sole input. With 
a valid solution string, this module read the set of instructions 
and performed each move serially via a configuration of bipolar 
stepper motors and motor drivers. Though the robot could 
operate on any given string, our pipeline and workflow required 
that the motors were only on and turning when a correct 
solution string was found. In any other cases, outside general 
testing and debugging, Cubr should never execute an invalid 
solution string or input. 

As for the main hardware components of the robot, this 
module consisted of a microcontroller, six bipolar stepper 
motors, six stepper motor drivers, and a power source. 
Secondary components included a clear acrylic housing for the 
motors, cube coupling arms, a simple breadboard, and wires to 
make all the necessary connections. 

The computation power of the robot came from an Arduino 
Uno Rev3 microcontroller. This was also how the robot 
communicated with our solving module to receive a solution 
string. Furthermore, the Arduino was responsible for 
controlling each of the six motor drivers in order to execute all 
18 possible moves on the 3x3x3 cube. A Rubik’s Cube has six 
faces where each face has only three possible moves. These 18 
possible moves are defined in a universal cubing standard called 
cube notation used in official World Cube Association 
Speedcubing competitions. 

Cubr used NEMA-17 Stepper Motors to attach to the center 
of each cube face with custom cube coupling arms to turn the 
puzzle. These motors could turn either direction, clockwise or 
counterclockwise, at any number of steps between 0 and 200, 
where 200 steps was a full 180-degree revolution. To drive and 
move these stepper motors, Cubr utilized A4988 Stepper Motor 
Driver Carriers. These drivers allowed the Arduino to interface 
with the stepper motors without the need to write excess and 
pre-existing code or to implement third-party libraries. 

As for the physical infrastructure of the robot, more thought 
and consideration needed to be placed in actual integration of 
all the hardware components since the design review. All 
stepper motors and drivers were connected using a basic 
breadboard. Extra steps needed to be taken to ensure power and 
current draw was not too high while supporting the function of 
all six motors. Being that NEMA 17 stepper motors 
continuously pull current, even in a dead state, Cubr needed to 
properly limit and monitor current through each driver. Our  
breadboard recommended a maximum of 0.5 Amps and had 
heat limitations. Using the potentiometer on the motor drivers, 
we limited the maximum current through any motor. In order to 
avoid melting the breadboard, thicker 18-gauge wire was used 
to branch the power from a protoboard to the breadboard 
containing the rest of the components.  

Lastly, the housing mechanism was properly measured and 
cut with respect to the motors, coupling arms, and the cube in  

Fig. 2. Cube State Detection Interface 

order to perfectly hold the cube within turning distance without 
putting extra load on any of the stepper motors. Since motor 
arms were attached to the cube on every side, it was important 
that our design allowed flex so that the cube could be placed 
and removed easily while still maintaining enough structural 
pressure to properly turn a cube face.  

In summary, one driver was used for each stepper motor, and 
all stepper motors directly communicated with the Arduino to 
receive direction and step instructions through the Arduino’s 
digital input/output pins. The stepper motor and driver setup 
were repeated six times in parallel to the power supply to create 
the core base of the robot. From here, each setup was positioned 
into a housing that allowed each stepper motor to 
perpendicularly connect with each of the six faces on the 
puzzle. To turn the face of the cube, custom 3D-printed 
coupling arms were created to attach to the stepper motor and 
center piece of each cube face.  

D. Integration 
The cube itself was first scanned in front of the webcam for 

our cube state detection module. A key change since the design 
review is that we now scan the cube without its center pieces in. 
Because of this we know have to predefine the scanning order. 
Previously, we allowed the user to scan any side of the cube as 
long as they adhered to the layout of the cube in a two-
dimensional space. This change allows for fast integration when 
moving the cube into the robot. From cube state detection, a 
cube configuration string is outputted to STDOUT. From this, 
the solver module read this cube string as input and created a 
solution string as its output. The Arduino Uno Rev3 received 
the solution string and parsed each move in the solution string 
in order to communicate with the appropriate motor driver in 
controlling the motor arms to physically solve the cube. After it 
was scanned, the cube was placed in the housing with the 
correct orientation. As mentioned in the previous section, we 
predefined this as the yellow side facing upwards, and the red 
side facing forwards. Once the cube was firmly attached to the 
coupling arms, we started the physical solving process on the 
Arduino. 
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Fig. 3. Summary of Solver and Motor Metrics 

IV. DESIGN TRADE STUDIES 

A. Cube State Detection 
In designing a software solution for cube state detection, our 

top priorities were to have the highest accuracy in color 
detection and to design the most lightweight solution so that we 
could spend the majority of our efforts on the cube solving 
robot. The first design tradeoff for cube state detection was to 
use OpenCV for color detection as opposed to using color 
sensors. We chose this option as there is less physical moving 
parts needed in OpenCV, a computer vision library. It was also 
easier to customize our cube scanner to account for different 
cubes and their color profiles. 

For validation and testing, we scanned all sides of 10 
differently scrambled cubes and recorded the number of 
centerpieces, edge pieces, and corner pieces scanned correctly. 
Since we used a sticker less cube for the entire system, the cube 
state detection module was able to accurately classify the colors 
of the center pieces. We noted which colors were incorrectly 
scanned against which colors were correctly scanned to get a 
percentage of the colors that were misread. 

B. Solving 
The main priorities of the solver software were to correctly 

reach a fully solved state with a solution string of less than 300 
moves. Due to this, we decided to implement a hybrid 
algorithmic solver derived from the naive Beginner's Method 
and from the CFOP (Cross–F2L–OLL–PLL) speedcubing 
method. The naive Beginner's Method requires greater number 
of moves to solve the top layer than typical speedcubing 
methods such as the CFOP method, since it permutes the top 
layer with the same set of moves until it eventually reaches the 
solve state. The hybrid of the two solving methods, naive 
Beginner's and CFOP, resulted in the top layer being able to be 
solved in a fewer moves than projected. 

Invented by Professor Jessica Fridrich, the Fridrich Method 
or (commonly known as) the CFOP Method is one of the most 
popular solving methods for the speedcubing sport. The steps 
for solving the top layer are the OLL and the PLL. There are 57 
different orientation cases for OLL to orient both the edges and 
the corners of the top layer at once. There is a simpler sub-
method known as the “2-Look OLL” of which there are 10 
different orientation cases and orients edges separately from the 
corners; however, like the Beginner's Method, the 2-Look OLL 

works by permuting the cubies with the same algorithm several 
times until the desired state is achieved, which would have 
resulted in a longer solution string. The last step is PLL, which 
does a single permutation of the pieces with a unique algorithm 
for each of the 21 orientation cases. 

Solving a cube by hand, in 3D space, typically allows for 
slice turns, or middle layer rotations, two-layer turns, and whole 
cube rotations. The translation of these types of turns into 
simple face rotations for our virtual and physical solver proved 
to be a hefty challenge. The reason we could not utilize these 
types of moves was due to the structure of our housing: since 
the motors were mounted in place to a static housing, the motors 
were unable to execute middle layer, two-layer, and whole cube 
rotations. Consequently, we were limited to only implementing 
face rotations. For example, say the algorithm called for a 90-
degree clockwise turn of the bottom two layers and then a 90-
degree counterclockwise turn on the resulting Right face. This 
would translate to a 90-degree clockwise turn of the top layer 
(the Up face) and a 90-degree counterclockwise turn on the 
Front face. Translations of the special moves extended each into 
1-3 face rotation moves, which kept our solution string small. 
Unfortunately, due to the requisite spatial awareness skills 
needed for flawless translation and the sheer number of 
orientation cases for both OLL and PLL, we encountered many 
difficulties and bugs with those translations. We often had to 
sacrifice limiting the number of moves for ease of translation of 
longer but less spatially difficult move sets. 

In addition, we implemented a random scramble function so 
that we could run our solver on randomized cube states and to 
aid in debugging sublayer algorithms. To gather metrics, we ran 
the random scrambler and solver approximately 300 times. For 
the first layer, our implementation averaged around 22.6 moves 
to solve both the "White Cross" and "White Corners" states. The 
second layer consisted of an average of 36.4 moves. The third 
layer, based on CFOP's OLL and PLL, averaged 25.4 moves. 
Furthermore, we compared the average solution string length 
from our solver to the number of moves usually taken for fully 
solve a cube with both the naive Beginner's Method and the 2-
Look version of the CFOP method (2-Look OLL and 2-Look 
PLL, as depicted in Figure 3. As shown in the chart, our 
implementation resulted in a smaller solution string than that of 
the naive Beginner's Method and approximately the same of the 
2-Look version of CFOP. It is important to note that variations 
in the number of moves recorded for the naive Beginner's and 
the 2-Look CFOP methods could be attributed to human 
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intuition, spatial awareness, and error of sorts. In the end, we 
successfully reached our goal of maintaining solutions strings 
of both less than 200 and 300 moves. 
C. Physical Execution 

As shown in the design requirements, we needed a fast and 
reliable method of physically solving a 3x3x3 Rubik’s Cube. 
We chose to configure the robot with six bipolar stepper motors, 
one for each face. Having a stepper motor for each side of the 
cube allowed for the fastest solve time as no moves were wasted 
to reposition the cube. Other methods such as the claw and 
gripper method for physically solving the robot required less 
motors but necessitated more fine-tuning and precision of the 
gripping movements. On top of this. the solve time would have 
been significantly slower due to no direct connection with each 
cube face. However, our method required the most moving 
parts and ultimately had more power requirements. To address 
these new constraints, a 24V 5A Power Supply was used to 
power all stepper motor and driver setups in parallel. This 
power supply was specifically chosen to operate at the higher 
voltage range for each of the six A4988 drivers while still 
providing enough current for each of the motors. Since each of 
the stepper motors operate at 350 mA, the power supply needed 
a total of at least 2.1 A to supply adequate current to all 6 motors 
simultaneously since the motors pulled current while stationary. 
A significantly larger power supply on a breadboard required 
extra steps to ensure safety of operation. The breadboard in use 
for Cubr is a basic one and recommends a current limit of no 
more than 0.5 A at any given time. The A4988 drivers came 
with a built-in potentiometer that allowed us to control the 
amount of current going through each of the motors. We used 
the following equation to calculate the current through each of 
the stepper motors: 

 
𝐼 = 	𝑉𝑟𝑒𝑓 ∗ 2 ∗ 0.7        (1) 
 

In our robot, we set the Voltage Reference value on the 
A4988s to be 0.5 V. Theoretically, current through each stepper 
motor should be 0.7 A. However due to different manufacturing 
standards, we found the actual current value to be 0.5 A as 
desired. 

The NEMA-17 Stepper Motors are rated for 12 V and operate 
with a maximum speed of 600 rpm. To operate at its higher end 
speeds, we introduced the use of A4988 drivers. These drivers 
allowed us to push each stepper motor’s voltage rating to 
achieve higher step rates through adjustable current control. 
These drivers also aided in directly communicating to the 
motors through the use of two digital input/output pins from the 
Arduino for each driver-motor configuration. With this setup 
during the design review, we were able to achieve an operating 
speed of 1 cube turn per second at the very minimum. We tested 
our robot’s turn speed with a baseline solution string of 20 
moves. Since the Two-Phase Algorithm could output solutions 
around 20 moves or less, we wanted to see how fast we could 
execute 20 sequential moves. Since the design review, 
significant progress had been made in regard to the speed of the 
robot. Stepper motors operate in steps, and the speed of these 
steps was dictated by how fast or slow the delay was between 
each step. The delay was so small the delayMicroseconds() 
function was used instead of the traditional delay function. Our 

final project was able to achieve a 90-degree turn speed of 0.065 
seconds and 180-degree turn speed of 0.13 seconds, as shown 
in Figure 3. Slower delays, and thus faster turn speeds, were 
only possible with larger power supplies. An important factor 
of properly turning the cube fast was that not all speeds were 
compatible with all cubes. All cube brands have different 
tensions and rigidities. Turning too fast can result in 
overshooting and ultimately disrupting the flow of the robot. 
The speed of a standard 90-degree turn was calculated as: 

 
𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑐𝑜𝑛𝑑	𝑑𝑒𝑙𝑎𝑦 ∗ 100 = 90	𝑑𝑒𝑔𝑟𝑒𝑒	𝑡𝑢𝑟𝑛	𝑠𝑝𝑒𝑒𝑑  (2) 

 

D. Physical Infrastructure 
We choose to use a basic breadboard to combine all of our 

physical components for multiple reasons. While soldering to a 
protoboard would have been more beneficial for the 
consistency and longevity of connections, our team lacked the 
time and experience to execute this. Protoboards also have a 
higher heat capacity and permits much larger currents. While 
this would have been beneficial for the robot, these features 
were neither absolutely necessary nor worth the time tradeoff. 
With many other moving parts and components, the last thing 
we wanted to worry about was ensuring proper soldering peaks 
and the correct amount of lead. A breadboard was best for quick 
connections and consistent experimentation. All three team 
members are software-focused and thus needed the buffer and 
affordability that a basic breadboard provided. 

Multiple housing options existed to contain the cube, but our 
first choice was to laser cut clear acrylic. Both ⅛ and ¼ inch 
acrylic were rigid enough to hold each of the six motors and the 
cube. 3D printing an entire housing system required substantial 
3D modeling and time to actually print the parts. As an 
alternative, laser cutting allowed the team to work efficiently 
and quickly while also be able to work with completely 
transparent materials, something 3D printing cannot do. It was 
an option to create a basic housing structure with wood. Wood 
framework would have created a studier and more robust house, 
but lack of tools and precision would have created an 
unpolished final product. Laser cutting was easy to design for 
and was cost effective. 

V. SYSTEM DESCRIPTION 
We developed Cubr for Unix-based systems. However, the 

execution of our software is platform agnostic. This allows for 
future work in migrating our software to different operating 
systems or for others to download our repository and create or 
modify the robot for their personal uses. 
A. Cube State Detection 

For the cube state detection subsystem, the modules required 
were OpenCV 4.0.0 and Python 3.6+. The cube state detection 
software read each frame in the live video stream from a 
Logitech C270 webcam using OpenCV. Since OpenCV’s 
default color space is BGR (blue, green, red), we converted 
each frame into the HSV (Hue, Saturation, Value) color space 
due to its robust lighting invariance for color detection. 

Sampling regions were indicated in the web frame with small 
green rectangles. Within these regions, the HSV values were 
averaged frame by frame for the live color tracker, which 
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showed what colors were detected for each cube piece. The 
spacebar key event captured a live video frame and mapped the 
side of the cube in an internal data structure. In the color 
detection pipeline, after the HSV values were averaged, the L2-
Norm distance function was employed to find and classify the 
closest color detected in those regions. We calculated the HSV 
value of a color by taking the midpoint of the non-overlapping 
HSV lower and upper bounds set for each color. 

With cube state detection, we found it difficult to classify 
each color correctly with any type of variance in lighting, which 
included glare from the cube itself. We remedied this issue by 
executing the cube detection in a lighting soft box to 
standardize the lighting for scanning the cube. 

As another precautionary measure, the green rectangles in the 
web frame, as shown in Figure 2, were adjusted to be smaller. 
This adjustment made it easier for the user to align the cube in 
front of the webcam. The smaller the sampling area, the less 
variance of color, which improved the accuracy of the cube 
state detection. Showing a live color tracker also shifted the 
error towards the user. This helped assure high accuracy 
readings. 
B. Solvers 

For the sake of continuity, the solver module was built on 
Python 3.6. All Python libraries used in the solver are part of 
the Python Standard Library and thus require no additional 
installation. The general structure of the code followed the 
object-oriented programming paradigm. After the solver 
module received the cube configuration string from the cube 
state detection module, the solver module instantiated a Cube 
object for the given cube state and identified the individual 
cubie pieces and locations prior to executing the solving 
algorithms. 

With an object-oriented structure, we were able to create 
class instantiations for each input configuration string. Taking 
an OOP approach allowed us to view and identify the cube 
based on the individual cubies, or pieces, instead of by colors; 
doing so made it much easier to find cubie locations during each 
sublayer algorithm for orientation and placement. Furthermore, 
OOP made it easier to maintain and modify our existing code 
such that we could run both our hybrid implementation of the 
Beginner’s Method and the pre-existing Two-Phase Algorithm 
on the same cube states. These different method calls worked 
with the basic but concrete structure, types, and properties for 
our modular OO classes. 

The hybrid Beginner’s Method (White Cross, White Corners, 
Second Layer, OLL, and PLL) solved each layer of the cube by 
applying a given algorithm to each sublayer and maintaining 
the pieces already in place. Each sublayer-solving algorithm 
consisted of a multiset of the 18 types of face rotation moves: 
for each face, there were turns of 90 degrees clockwise, 90 
degrees counterclockwise, and 180 degrees. Since our hardware 
could not execute middle layer, two-layer, and whole cube 
rotations, these types of moves were translated to face rotation 
moves. As the module solved the cube state by each (sub)layer, 
it concatenated each sublayer-solving algorithm's list of moves 
into what we referred to as the solution string. 

The Two-Phase Algorithm outputted a solution string of a 
maximum of 20 moves. In its initial run, the algorithm had to 
produce tables for memoization that amounted to  

Fig. 4. Minimal Wiring Diagram for the Driver-Motor Setup 

approximately 140 million lookup references at 13 different 
depths. In addition, during subsequent runs of the Two-Phase 
Algorithm, the algorithm did return at the first solution found; 
instead, Two-Phase would continue its search for shorter 
solutions from suboptimal parts of the prior solution. Moreover, 
the Two-Phase Algorithm used mathematical properties of the 
3x3x3 to find and perform symmetry reductions. 

Once the Cube object reached its fully solved state, the 
resulting solution string was used to direct the hardware module 
for physical solving of the cube. 
C. Physical Execution 

The NEMA-17 Stepper Motor is a four-wire bipolar stepper 
that rotates 1.8 degrees per step. The motor operates at a 
maximum current of 350 mA and operates with a power rating 
ranging of 8-35 V. 200 steps are required to make one full 
rotation. Notable step inputs include 100 steps and 50 steps to 
execute 180-degree and 90-degree turns respectively. These 
motors provided ample torque to smoothly turn a single cube 
face. 

The A4988 Stepper Motor Driver Carrier is the driver of 
choice to interface between the NEMA-17 motors and the 
Arduino. The driver allows for a simple step and direction 
control interface while having five different step resolutions, 
though the Cubr robot will operate at the full-step resolution. 
These drivers also have adjustable current control, which allows 
for the use of higher voltages above the NEMA-17’s rated 
voltage to achieve higher step rates. The A4988 has two pins 
called “STEP” and “DIR”: these were the pins that were each 
directly connected with one of the 14 digital input/output pins 
on the Arduino. Because there were six setups, Cubr used 12 
Arduino digital I/O pins. 

These parts in conjugation as depicted in Figure 4 allowed 
for control over a single NEMA-17 stepper motor. This setup 
was repeated six times to create the core of the cube solving 
robot. 

Wrapping up this project, we found that all physical 
components worked very well achieved significant 
performance increases since the design review. However, there 
were a few unforeseen and important problems that needed to 
be addressed. The NEMA-17 stepper motors worked as 
expected in conjunction with the A4988 stepper motor drivers. 
Full step resolution always turned the motors and cube with  
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Fig. 5. Cubr Bill of Materials 

proper torque, assuming the power supply was large enough. 
This is where the bulk of our last hurdles were. Powering six 
motors at once on a basic breadboard with a 24V 5A power 
supply can lead to significant heat problems. Though the circuit 
was properly connected and matched our schematics, the power 
draw was too hot for the plastic on the breadboard. As a result, 
the power supply would generate enough heat to melt the thin 
22-gauge wires and eventually parts of the breadboard it was 
connected to.  

With our impending deadline, our short-term solution was to 
separate the power supply from the breadboard entirely. We 
purchased much thicker 18-gauge wires and connected them to 
a breakout protoboard that had the sole purpose of containing 
the heat from the power supply. By soldering screw terminals 
to a breakout board, we could use thicker to also help mitigate 
the melting. 18-gauge wire was used to connect both the power 
supply to the protoboard and protoboard to the breadboard that 
contained the rest of the circuit. This configuration handled our 
heat problems and allowed the robot to continue to operate at 
higher voltages and faster speeds. 

VI. PROJECT MANAGEMENT 

A. Schedule 
Cubr has three major parts that are modular. The modularity 

permitted the team to work simultaneously without blocking 
one another in the production pipeline. Each of the three major 
components had a well-defined input and output. Working 
within these constraints, the team was able to make progress on 
their respective tasks without waiting on a task outside of their 
module to be completed. However, modularity was lost once all 
three tasks are completed, at least on a rudimentary level. As 
the team converged, the bottlenecks rose from assembly-related 
tasks such as construction and laser cut time. The team schedule 
is located on page 10, Figure 8. 
B. Team Member Responsibilities 

As depicted in Figure 8, JT was in charge of items in red, 
Sam had the tasks in blue, Lily performed jobs in green, and 
multiple team members collaborated on the yellow 
assignments. While we were all in charge of specific 
components, all three members had a responsibility to 
understand every aspect of the project. 
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JT was primarily focused on everything related to firmware 
programming and hardware design for the physical robot. At 
the same time, he worked on housing assembly and hardware 
integration and testing. In conjunction, JT assisted Sam with 
refining the cube state detection. JT also provided insight on 
speedcubing specifics and tricks for the solver module. 

Lily was focused on writing and debugging the Beginner’s 
Method solver. She led the design of the 3D-printed coupling 
arms and the laser-cut housing models. After designing the 
housing, she also assisted with housing assembly and hardware 
integration and testing. In addition, Lily was in charge of the 
soldering and 3D-printing for this project.  

Sam’s primary role was the oversight and development of the 
cube state detection and software integration between the 
modules. Upon its completion, Sam joined the rest of the team 
in addressing problems in the hardware integration phase and 
was in charge of the laser cutting. In addition, Sam helped with 
improving and organizing the overall software design. 

C. Budget 
From Figure 5, blue purchases were considered to be priority 

and essential purchases; orange were alternative purchases that 
were made to better fit the project as its needs were further 
realized. Light blue items were secondary purchases that were 
not essential in the ongoing production of the project but had 
purpose in our final product. For instance, we upgraded to a new 
power supply that had a higher voltage and current rating to 
better accommodate the power requirements of the parallel six 
stepper driver-motor setups. In the latter half of the project, we 
found we were not touching our budget as much since we 
already had all the necessary core components. The majority of 
purchases made in the second half were quality of life changes 
in order to address our heating issues and cable management.  
D. Risk Management 

To manage risk as much as possible, the team front loaded 
most of the design and solution approach for a better part of the 
first three weeks. Having a team comprised of software-focused 
engineers, we knew we had to plan out as much as possible in 
order to address our weakness in hardware design and 
execution. Everyone on the team was more than capable of 
accomplishing the software goals with high fidelity. However, 
none of us worked extensively with robotics or component-
level hardware beyond the required courses for our 
undergraduate studies. JT was in charge of research and 
designing as much as he could before the team started to 
assemble physical pieces. We also defined clear modules that 
we assigned with well-defined inputs and outputs. This 
permitted us to ensure smooth integration between all three 
modules and adherence to the rules we defined at the beginning 
of the semester. These clear definitions also allowed other 
members to lend their efforts towards the robot or other lacking 
modules after certain software milestones were completed. 

From a schedule and communication standpoint, it was 
imperative that we were upfront and communicative. Slack and 
other team collaboration tools were constantly in use to provide 
timely status updates and to serve as a place for questions and 
clarifications about aspects of each module between the team 
members. As shown in our schedule, Figure 7, we broke down 
tasks into their simplest forms possible. This let us too quickly  

Fig. 6. Finished Cubr Robot 

see what was to be done and what needed work each week. 
Thanks to our solid planning, we were able to purchase most of 
the necessary tools and equipment in the first two weeks of the 
project. At the time of the design review, we spent $415 out of 
the budgeted $600. Since then, our total amount spent came out 
to $515.59. 

The primary risk of the project was the physical construction 
of the robot module. With no real experience on the team, there 
were a lot of obstacles and problems that required attention 
from all three team members. We opted for a six bipolar stepper 
motor configuration because we felt it best suited the 
requirements of the capstone while being within the reach of a 
group of hardware novices. The use of off-the-shelf parts, such 
as the motors and drivers, offloaded a lot of the tuning and 
precision of robotics onto the hardware. The main unknown 
secondary risk came with the construction and assembly of 
hardware as mentioned in section four, subsection C in regard 
to heat and power management. 

VII. RELATED WORK 
A research team at Massachusetts Institute of Technology 

developed a similar robot to our project. Using more advanced 
motors, they broke the world record 0.637 seconds set in 2016 
with an incredible solve time of 0.38 seconds[1]. Our fastest 
solve time was approximately 5 seconds, but this was due of the 
physical limitations of our motors and housing structure. 

VIII. SUMMARY AND FUTURE WORK 
In short, our system was able to reach and exceed our design 

specifications in both software and hardware modules. The 
future of Cubr is not set in stone, while we do not plan on 
working on extra features in the near future, it is definitely 
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something we wish to consider in our free time. JT and Sam 
will be taking the physical robot home to reassemble and Lily 
plans to improve her solver. However, if we had more time, we 
would certainly like to make some major changes. First, the 
largest bottleneck in the entire Cubr pipeline comes from the 
cube state detection. It simply takes too long to scan all the sides 
then carefully place the cube in the housing. We would like to 
configure cameras or color sensors around the actual robot so 
that it can be scanned inside the housing all in one go. Cubr’s 
user interface and experience is also severely lacking. Had we 
more time, we would have liked to implement a more 
interactive and informative user interface while also improving 
the educational components of the project. Lastly, we had lack 
to transfer all of the physical components to a protoboard for 
permanent connections and greater heat management. 
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Fig. 7. Cubr Detaled Gantt Chart 
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Fig. 8. Cubr Solution Approach Block Diagram Overview 

 

 


