
18-500 Final Report: 05/08/2019

1

Abstract— Cubr is a system capable of solving a 3x3x3

Rubik’s Cube. Cubr uses computer vision to scan a real
cube and map its configuration into 2D space to create a
cube string. This cube string is passed into our 3x3x3 solver,
which determines the optimal set of moves to solve the
puzzle, known as a solution string. The solution string is
then handed over to the physical robot. The robot contains
six motors, one for each face of the cube, and will execute
the solution string to solve the Rubik’s Cube in under 20
seconds.

Index Terms— Arduino, computer vision, cube
configuration string, cube notation, cube state detection,
motors, motor drivers, Rubik's cube, solution string

I. INTRODUCTION
ubr, a puzzle cube solving robot, is an approach to
introduce technology to a common but sophisticated
household puzzle. The motivation of Cubr is to

mechanically solve a 3x3x3 puzzle cube. We constituted Cubr’s
solution as successful in three ways. The first metric was to
correctly classify the colors of each cube piece on all six sides
of the cube 100% of the time. An error in color classification
would result in an invalid cube configuration string and would
lead to an inaccurate representation of the real cube.
Furthermore, our solving algorithm would not find a solution
for an invalid cube string. The second metric was for our solver
module to find a solution string of less than 300 rotation moves
using an intuitive approach known as the Beginner’s Method.
We considered a solution string with more than 300 moves to
be an inefficient solution. We also classified a solution string
that does not fully solve a valid cube configuration as an
insufficient solution. This constrained our solver module from
being too computationally expensive and naive. With the Two-
Phase Algorithm, we were able to obtain a solution string
containing a maximum of 20 moves. With this, the motor arm
had to turn its designated cube face in less than 1 second and be
able to perform the full Two-Phase solution string in less than
20 seconds. Due to its proximity to human intuition, the
Beginner's Method implementation in Cubr can be used as a
learning tool. The last metric was the execution time for a motor
arm to turn a face of the cube. Cubr is important in proving that
technology can be introduced to everyday objects that
previously have not been integrated with technology.

II. DESIGN REQUIREMENTS
In mechanically solving the cube, there are three major

components that are critical to the success of our project. The
first is cube state detection, which is responsible for
successfully mapping the cube to 2D space. The second
component is the solving software which will take in a cube
configuration string and will output a solution string. The third
component is responsible for mechanically turning the cube
faces to physically solve the cube.

To verify that the first component, cube state detection, has
met our specification, we will scan 10 differently scrambled
cubes and ensure that all pieces are correctly scanned and
mapped. The testing and validation will not be complete until
this requirement is met. We will be scanning a standard 3x3x3
cube with the traditional sticker color scheme through an
external webcam.

To ensure algorithmic efficiency of the solving software, we
are first evaluating whether or not a solution is found. If a
solution is not found, then the solving software is not correct,
and we fail our success benchmark. We also fail our success
benchmark if a solution of less than 300 moves is not found.
The Beginner’s Solving Method should approximately take 200
moves; therefore, we have a leniency margin of 100 moves. A
solution string of greater than 300 moves indicates that our
solving software is inefficient and is too naively solving the
cube.

The hardware component is the most challenging for our
group and requires the most attention. We will be testing the
hardware components in steps. First, we want to make sure we
can move a single motor with the control we desire. From that,
we would like to map each possible move for each face to a
keypress. If we can do this successfully, we’ll be able to
transition the code from reading keypress events to parsing a
solution string and ultimately executing the set of moves to
solve the puzzle.

Cubr: 3x3x3 Puzzle Solver

JT Aceron, Lily Chen, Sam Fazel-Sarjui

Electrical and Computer Engineering, Carnegie Mellon University

C

18-500 Final Report: 05/08/2019

2

Fig. 1. 2D Mapping of 3x3x3 Cube

III. ARCHITECTURE AND PRINCIPLE OF OPERATION
Our solution approach consisted of three main modules to

create the Cubr system. The first two, cube state detection and
the solver, were software-based using OpenCV and Python.
The third and final module, physical solving, was hardware-
based with an Arduino as the mode of computation and control.
Lastly, we needed to ensure smooth integration between all
three components. The Cubr system block diagram is depicted
in Figure 8.
A. Cube State Detection

The first software module in Cubr’s pipeline was the cube
state detection. Cube state detection, an integral part of the
process, identified the given configuration of the cube and
interfaced the mapped cube to our solver module. To scan all
sides of the cube, a webcam was used with OpenCV to capture
and identify the sides of the cube.

In the cube scanning portion of this module, there was a
defined region to place a single face of the cube in front of the
webcam, indicated by nine small rectangles for each cube face's
cubies in the video frame. In addition, the cube state detection
module featured a live color tracker in the top left corner of the
window that showed the colors detected by the color
classification algorithm for each cube piece of the current face.
This acted as a validation step to ensure the right colors were
being tracked. To capture and record the single side of the cube,
the user had to press the spacebar when the cube face was
aligned properly with the rectangles and the live color tracker
was showing the correct colors. The software stored the colors
of a given face of the cube in a data structure. The mapping of
a given face was based on the color of the centerpiece as the
centerpieces cannot be moved. This process was repeated for
each of the six sides of the cube.

Originally, for the design review, we standardized the
scanning process by partially restricting the orientation in
which we scanned. To scan each face, the yellow centerpiece
had to be on the top and the white centerpiece on the bottom.
Then, the user had to turn the cube by 90 degrees in either
direction while the white and yellow centerpieces were still
oriented correctly. To scan the yellow and white faces, the user
had to make another 90-degree turn along a different axis that

allowed the camera to scan the top yellow face and the bottom
white face.

We iterated upon this original design because when we
physically place the cube into the robot housing, we have to
take the centerpiece caps off the cube so that our coupling arms
could attach. This is a tedious process that we would have to
repeat every time we scan a cube and place it into the housing,
so our solution was to do the scanning portion without the
center caps. With the initial iteration of cube state detection, the
module knew which face it was mapping by the color it detected
from the centerpieces. Without caps, the color was not detected
correctly which consequently incorrectly mapped the cube.
Thus, we defined a preset way to scan and orient the cube so
that we can hard code the centerpiece color. So, with our latest
iteration of cube state detection, our order to scan the cube while
yellow is oriented top and white oriented bottom is to scan the
red face, green face, orange face, and then the blue face. With
the red face-oriented front, we then rotate 90 degrees to scan the
yellow face, then go the opposite direction to scan the white
face. This scanning aligns with the 2D mapping of the cube as
shown in Figure 1.

After all sides of the cube were scanned, the cube state
detection module was responsible for properly mapping the
pieces of the cube and providing a cube string with the correct
notation as defined in our software interface between the cube
state detection and the solver modules.
B. Solving

The second module is the 3x3x3 puzzle cube solver. From
the cube state detection module, the solver module received the
cube configuration string for processing. We decided to
implement the solver module in Python given its readability,
dynamic typing, automatic memory management, and object-
oriented programming (OOP) features.

Once the solver module instantiated a Cube object and
identified the individual cubie pieces and locations, the module
executed either the Beginner’s Method of solving, which
reflects the way a human would solve a 3x3x3 puzzle cube, or
the Two-Phase algorithm, which found a solution of 20 moves
maximum for any valid cube state.

The Beginner’s Method works by solving each layer of the
cube according to its corresponding sublayer algorithm(s) and
maintaining the pieces of previous layer that were already
oriented in place. Since the design report, because we aimed for
a solution consisting of a maximum of 300 moves, we decided
to implement a hybrid algorithmic solver derived from the naive
Beginner's Method and from the CFOP (Cross – F2L [First Two
Layers] – OLL [Orient Last Layer] – PLL [Permute Last
Layer]) speedcubing method. With this hybrid of the two
solving methods, the top layer can be solved in a fewer moves
than the naive Beginner’s Method.

For our solver, the first two layers of the cube were solved
with the naive Beginner's Method: in the first/bottom layer, the
solver oriented and placed the cubies to reach the "White Cross"
and then the "White Corners" states; from there, the second
layer edge pieces were solved. The CFOP method typically
combines the "White Corners" and second layer algorithms into
a state called F2L. The third layer is solved via the OLL and
PLL steps of the CFOP method.

18-500 Final Report: 05/08/2019

3

As the module proceeded to solve the cube state by layers, it
concatenated each sublayer solving algorithm to a solution
string of moves. Once the cube object reached its fully solved
state, the resulting solution string of moves was used to direct
the hardware module for physical solving of the cube.
C. Physical Execution

The third and final module in our approach was the physical
execution of a solution string to solve the puzzle. The cube
solving robot took a single solution string as its sole input. With
a valid solution string, this module read the set of instructions
and performed each move serially via a configuration of bipolar
stepper motors and motor drivers. Though the robot could
operate on any given string, our pipeline and workflow required
that the motors were only on and turning when a correct
solution string was found. In any other cases, outside general
testing and debugging, Cubr should never execute an invalid
solution string or input.

As for the main hardware components of the robot, this
module consisted of a microcontroller, six bipolar stepper
motors, six stepper motor drivers, and a power source.
Secondary components included a clear acrylic housing for the
motors, cube coupling arms, a simple breadboard, and wires to
make all the necessary connections.

The computation power of the robot came from an Arduino
Uno Rev3 microcontroller. This was also how the robot
communicated with our solving module to receive a solution
string. Furthermore, the Arduino was responsible for
controlling each of the six motor drivers in order to execute all
18 possible moves on the 3x3x3 cube. A Rubik’s Cube has six
faces where each face has only three possible moves. These 18
possible moves are defined in a universal cubing standard called
cube notation used in official World Cube Association
Speedcubing competitions.

Cubr used NEMA-17 Stepper Motors to attach to the center
of each cube face with custom cube coupling arms to turn the
puzzle. These motors could turn either direction, clockwise or
counterclockwise, at any number of steps between 0 and 200,
where 200 steps was a full 180-degree revolution. To drive and
move these stepper motors, Cubr utilized A4988 Stepper Motor
Driver Carriers. These drivers allowed the Arduino to interface
with the stepper motors without the need to write excess and
pre-existing code or to implement third-party libraries.

As for the physical infrastructure of the robot, more thought
and consideration needed to be placed in actual integration of
all the hardware components since the design review. All
stepper motors and drivers were connected using a basic
breadboard. Extra steps needed to be taken to ensure power and
current draw was not too high while supporting the function of
all six motors. Being that NEMA 17 stepper motors
continuously pull current, even in a dead state, Cubr needed to
properly limit and monitor current through each driver. Our
breadboard recommended a maximum of 0.5 Amps and had
heat limitations. Using the potentiometer on the motor drivers,
we limited the maximum current through any motor. In order to
avoid melting the breadboard, thicker 18-gauge wire was used
to branch the power from a protoboard to the breadboard
containing the rest of the components.

Lastly, the housing mechanism was properly measured and
cut with respect to the motors, coupling arms, and the cube in

Fig. 2. Cube State Detection Interface

order to perfectly hold the cube within turning distance without
putting extra load on any of the stepper motors. Since motor
arms were attached to the cube on every side, it was important
that our design allowed flex so that the cube could be placed
and removed easily while still maintaining enough structural
pressure to properly turn a cube face.

In summary, one driver was used for each stepper motor, and
all stepper motors directly communicated with the Arduino to
receive direction and step instructions through the Arduino’s
digital input/output pins. The stepper motor and driver setup
were repeated six times in parallel to the power supply to create
the core base of the robot. From here, each setup was positioned
into a housing that allowed each stepper motor to
perpendicularly connect with each of the six faces on the
puzzle. To turn the face of the cube, custom 3D-printed
coupling arms were created to attach to the stepper motor and
center piece of each cube face.

D. Integration
The cube itself was first scanned in front of the webcam for

our cube state detection module. A key change since the design
review is that we now scan the cube without its center pieces in.
Because of this we know have to predefine the scanning order.
Previously, we allowed the user to scan any side of the cube as
long as they adhered to the layout of the cube in a two-
dimensional space. This change allows for fast integration when
moving the cube into the robot. From cube state detection, a
cube configuration string is outputted to STDOUT. From this,
the solver module read this cube string as input and created a
solution string as its output. The Arduino Uno Rev3 received
the solution string and parsed each move in the solution string
in order to communicate with the appropriate motor driver in
controlling the motor arms to physically solve the cube. After it
was scanned, the cube was placed in the housing with the
correct orientation. As mentioned in the previous section, we
predefined this as the yellow side facing upwards, and the red
side facing forwards. Once the cube was firmly attached to the
coupling arms, we started the physical solving process on the
Arduino.

18-500 Final Report: 05/08/2019

4

Fig. 3. Summary of Solver and Motor Metrics

IV. DESIGN TRADE STUDIES

A. Cube State Detection
In designing a software solution for cube state detection, our

top priorities were to have the highest accuracy in color
detection and to design the most lightweight solution so that we
could spend the majority of our efforts on the cube solving
robot. The first design tradeoff for cube state detection was to
use OpenCV for color detection as opposed to using color
sensors. We chose this option as there is less physical moving
parts needed in OpenCV, a computer vision library. It was also
easier to customize our cube scanner to account for different
cubes and their color profiles.

For validation and testing, we scanned all sides of 10
differently scrambled cubes and recorded the number of
centerpieces, edge pieces, and corner pieces scanned correctly.
Since we used a sticker less cube for the entire system, the cube
state detection module was able to accurately classify the colors
of the center pieces. We noted which colors were incorrectly
scanned against which colors were correctly scanned to get a
percentage of the colors that were misread.

B. Solving
The main priorities of the solver software were to correctly

reach a fully solved state with a solution string of less than 300
moves. Due to this, we decided to implement a hybrid
algorithmic solver derived from the naive Beginner's Method
and from the CFOP (Cross–F2L–OLL–PLL) speedcubing
method. The naive Beginner's Method requires greater number
of moves to solve the top layer than typical speedcubing
methods such as the CFOP method, since it permutes the top
layer with the same set of moves until it eventually reaches the
solve state. The hybrid of the two solving methods, naive
Beginner's and CFOP, resulted in the top layer being able to be
solved in a fewer moves than projected.

Invented by Professor Jessica Fridrich, the Fridrich Method
or (commonly known as) the CFOP Method is one of the most
popular solving methods for the speedcubing sport. The steps
for solving the top layer are the OLL and the PLL. There are 57
different orientation cases for OLL to orient both the edges and
the corners of the top layer at once. There is a simpler sub-
method known as the “2-Look OLL” of which there are 10
different orientation cases and orients edges separately from the
corners; however, like the Beginner's Method, the 2-Look OLL

works by permuting the cubies with the same algorithm several
times until the desired state is achieved, which would have
resulted in a longer solution string. The last step is PLL, which
does a single permutation of the pieces with a unique algorithm
for each of the 21 orientation cases.

Solving a cube by hand, in 3D space, typically allows for
slice turns, or middle layer rotations, two-layer turns, and whole
cube rotations. The translation of these types of turns into
simple face rotations for our virtual and physical solver proved
to be a hefty challenge. The reason we could not utilize these
types of moves was due to the structure of our housing: since
the motors were mounted in place to a static housing, the motors
were unable to execute middle layer, two-layer, and whole cube
rotations. Consequently, we were limited to only implementing
face rotations. For example, say the algorithm called for a 90-
degree clockwise turn of the bottom two layers and then a 90-
degree counterclockwise turn on the resulting Right face. This
would translate to a 90-degree clockwise turn of the top layer
(the Up face) and a 90-degree counterclockwise turn on the
Front face. Translations of the special moves extended each into
1-3 face rotation moves, which kept our solution string small.
Unfortunately, due to the requisite spatial awareness skills
needed for flawless translation and the sheer number of
orientation cases for both OLL and PLL, we encountered many
difficulties and bugs with those translations. We often had to
sacrifice limiting the number of moves for ease of translation of
longer but less spatially difficult move sets.

In addition, we implemented a random scramble function so
that we could run our solver on randomized cube states and to
aid in debugging sublayer algorithms. To gather metrics, we ran
the random scrambler and solver approximately 300 times. For
the first layer, our implementation averaged around 22.6 moves
to solve both the "White Cross" and "White Corners" states. The
second layer consisted of an average of 36.4 moves. The third
layer, based on CFOP's OLL and PLL, averaged 25.4 moves.
Furthermore, we compared the average solution string length
from our solver to the number of moves usually taken for fully
solve a cube with both the naive Beginner's Method and the 2-
Look version of the CFOP method (2-Look OLL and 2-Look
PLL, as depicted in Figure 3. As shown in the chart, our
implementation resulted in a smaller solution string than that of
the naive Beginner's Method and approximately the same of the
2-Look version of CFOP. It is important to note that variations
in the number of moves recorded for the naive Beginner's and
the 2-Look CFOP methods could be attributed to human

18-500 Final Report: 05/08/2019

5

intuition, spatial awareness, and error of sorts. In the end, we
successfully reached our goal of maintaining solutions strings
of both less than 200 and 300 moves.
C. Physical Execution

As shown in the design requirements, we needed a fast and
reliable method of physically solving a 3x3x3 Rubik’s Cube.
We chose to configure the robot with six bipolar stepper motors,
one for each face. Having a stepper motor for each side of the
cube allowed for the fastest solve time as no moves were wasted
to reposition the cube. Other methods such as the claw and
gripper method for physically solving the robot required less
motors but necessitated more fine-tuning and precision of the
gripping movements. On top of this. the solve time would have
been significantly slower due to no direct connection with each
cube face. However, our method required the most moving
parts and ultimately had more power requirements. To address
these new constraints, a 24V 5A Power Supply was used to
power all stepper motor and driver setups in parallel. This
power supply was specifically chosen to operate at the higher
voltage range for each of the six A4988 drivers while still
providing enough current for each of the motors. Since each of
the stepper motors operate at 350 mA, the power supply needed
a total of at least 2.1 A to supply adequate current to all 6 motors
simultaneously since the motors pulled current while stationary.
A significantly larger power supply on a breadboard required
extra steps to ensure safety of operation. The breadboard in use
for Cubr is a basic one and recommends a current limit of no
more than 0.5 A at any given time. The A4988 drivers came
with a built-in potentiometer that allowed us to control the
amount of current going through each of the motors. We used
the following equation to calculate the current through each of
the stepper motors:

𝐼 = 	𝑉𝑟𝑒𝑓 ∗ 2 ∗ 0.7 (1)

In our robot, we set the Voltage Reference value on the
A4988s to be 0.5 V. Theoretically, current through each stepper
motor should be 0.7 A. However due to different manufacturing
standards, we found the actual current value to be 0.5 A as
desired.

The NEMA-17 Stepper Motors are rated for 12 V and operate
with a maximum speed of 600 rpm. To operate at its higher end
speeds, we introduced the use of A4988 drivers. These drivers
allowed us to push each stepper motor’s voltage rating to
achieve higher step rates through adjustable current control.
These drivers also aided in directly communicating to the
motors through the use of two digital input/output pins from the
Arduino for each driver-motor configuration. With this setup
during the design review, we were able to achieve an operating
speed of 1 cube turn per second at the very minimum. We tested
our robot’s turn speed with a baseline solution string of 20
moves. Since the Two-Phase Algorithm could output solutions
around 20 moves or less, we wanted to see how fast we could
execute 20 sequential moves. Since the design review,
significant progress had been made in regard to the speed of the
robot. Stepper motors operate in steps, and the speed of these
steps was dictated by how fast or slow the delay was between
each step. The delay was so small the delayMicroseconds()
function was used instead of the traditional delay function. Our

final project was able to achieve a 90-degree turn speed of 0.065
seconds and 180-degree turn speed of 0.13 seconds, as shown
in Figure 3. Slower delays, and thus faster turn speeds, were
only possible with larger power supplies. An important factor
of properly turning the cube fast was that not all speeds were
compatible with all cubes. All cube brands have different
tensions and rigidities. Turning too fast can result in
overshooting and ultimately disrupting the flow of the robot.
The speed of a standard 90-degree turn was calculated as:

𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑐𝑜𝑛𝑑	𝑑𝑒𝑙𝑎𝑦 ∗ 100 = 90	𝑑𝑒𝑔𝑟𝑒𝑒	𝑡𝑢𝑟𝑛	𝑠𝑝𝑒𝑒𝑑 (2)

D. Physical Infrastructure
We choose to use a basic breadboard to combine all of our

physical components for multiple reasons. While soldering to a
protoboard would have been more beneficial for the
consistency and longevity of connections, our team lacked the
time and experience to execute this. Protoboards also have a
higher heat capacity and permits much larger currents. While
this would have been beneficial for the robot, these features
were neither absolutely necessary nor worth the time tradeoff.
With many other moving parts and components, the last thing
we wanted to worry about was ensuring proper soldering peaks
and the correct amount of lead. A breadboard was best for quick
connections and consistent experimentation. All three team
members are software-focused and thus needed the buffer and
affordability that a basic breadboard provided.

Multiple housing options existed to contain the cube, but our
first choice was to laser cut clear acrylic. Both ⅛ and ¼ inch
acrylic were rigid enough to hold each of the six motors and the
cube. 3D printing an entire housing system required substantial
3D modeling and time to actually print the parts. As an
alternative, laser cutting allowed the team to work efficiently
and quickly while also be able to work with completely
transparent materials, something 3D printing cannot do. It was
an option to create a basic housing structure with wood. Wood
framework would have created a studier and more robust house,
but lack of tools and precision would have created an
unpolished final product. Laser cutting was easy to design for
and was cost effective.

V. SYSTEM DESCRIPTION
We developed Cubr for Unix-based systems. However, the

execution of our software is platform agnostic. This allows for
future work in migrating our software to different operating
systems or for others to download our repository and create or
modify the robot for their personal uses.
A. Cube State Detection

For the cube state detection subsystem, the modules required
were OpenCV 4.0.0 and Python 3.6+. The cube state detection
software read each frame in the live video stream from a
Logitech C270 webcam using OpenCV. Since OpenCV’s
default color space is BGR (blue, green, red), we converted
each frame into the HSV (Hue, Saturation, Value) color space
due to its robust lighting invariance for color detection.

Sampling regions were indicated in the web frame with small
green rectangles. Within these regions, the HSV values were
averaged frame by frame for the live color tracker, which

18-500 Final Report: 05/08/2019

6

showed what colors were detected for each cube piece. The
spacebar key event captured a live video frame and mapped the
side of the cube in an internal data structure. In the color
detection pipeline, after the HSV values were averaged, the L2-
Norm distance function was employed to find and classify the
closest color detected in those regions. We calculated the HSV
value of a color by taking the midpoint of the non-overlapping
HSV lower and upper bounds set for each color.

With cube state detection, we found it difficult to classify
each color correctly with any type of variance in lighting, which
included glare from the cube itself. We remedied this issue by
executing the cube detection in a lighting soft box to
standardize the lighting for scanning the cube.

As another precautionary measure, the green rectangles in the
web frame, as shown in Figure 2, were adjusted to be smaller.
This adjustment made it easier for the user to align the cube in
front of the webcam. The smaller the sampling area, the less
variance of color, which improved the accuracy of the cube
state detection. Showing a live color tracker also shifted the
error towards the user. This helped assure high accuracy
readings.
B. Solvers

For the sake of continuity, the solver module was built on
Python 3.6. All Python libraries used in the solver are part of
the Python Standard Library and thus require no additional
installation. The general structure of the code followed the
object-oriented programming paradigm. After the solver
module received the cube configuration string from the cube
state detection module, the solver module instantiated a Cube
object for the given cube state and identified the individual
cubie pieces and locations prior to executing the solving
algorithms.

With an object-oriented structure, we were able to create
class instantiations for each input configuration string. Taking
an OOP approach allowed us to view and identify the cube
based on the individual cubies, or pieces, instead of by colors;
doing so made it much easier to find cubie locations during each
sublayer algorithm for orientation and placement. Furthermore,
OOP made it easier to maintain and modify our existing code
such that we could run both our hybrid implementation of the
Beginner’s Method and the pre-existing Two-Phase Algorithm
on the same cube states. These different method calls worked
with the basic but concrete structure, types, and properties for
our modular OO classes.

The hybrid Beginner’s Method (White Cross, White Corners,
Second Layer, OLL, and PLL) solved each layer of the cube by
applying a given algorithm to each sublayer and maintaining
the pieces already in place. Each sublayer-solving algorithm
consisted of a multiset of the 18 types of face rotation moves:
for each face, there were turns of 90 degrees clockwise, 90
degrees counterclockwise, and 180 degrees. Since our hardware
could not execute middle layer, two-layer, and whole cube
rotations, these types of moves were translated to face rotation
moves. As the module solved the cube state by each (sub)layer,
it concatenated each sublayer-solving algorithm's list of moves
into what we referred to as the solution string.

The Two-Phase Algorithm outputted a solution string of a
maximum of 20 moves. In its initial run, the algorithm had to
produce tables for memoization that amounted to

Fig. 4. Minimal Wiring Diagram for the Driver-Motor Setup

approximately 140 million lookup references at 13 different
depths. In addition, during subsequent runs of the Two-Phase
Algorithm, the algorithm did return at the first solution found;
instead, Two-Phase would continue its search for shorter
solutions from suboptimal parts of the prior solution. Moreover,
the Two-Phase Algorithm used mathematical properties of the
3x3x3 to find and perform symmetry reductions.

Once the Cube object reached its fully solved state, the
resulting solution string was used to direct the hardware module
for physical solving of the cube.
C. Physical Execution

The NEMA-17 Stepper Motor is a four-wire bipolar stepper
that rotates 1.8 degrees per step. The motor operates at a
maximum current of 350 mA and operates with a power rating
ranging of 8-35 V. 200 steps are required to make one full
rotation. Notable step inputs include 100 steps and 50 steps to
execute 180-degree and 90-degree turns respectively. These
motors provided ample torque to smoothly turn a single cube
face.

The A4988 Stepper Motor Driver Carrier is the driver of
choice to interface between the NEMA-17 motors and the
Arduino. The driver allows for a simple step and direction
control interface while having five different step resolutions,
though the Cubr robot will operate at the full-step resolution.
These drivers also have adjustable current control, which allows
for the use of higher voltages above the NEMA-17’s rated
voltage to achieve higher step rates. The A4988 has two pins
called “STEP” and “DIR”: these were the pins that were each
directly connected with one of the 14 digital input/output pins
on the Arduino. Because there were six setups, Cubr used 12
Arduino digital I/O pins.

These parts in conjugation as depicted in Figure 4 allowed
for control over a single NEMA-17 stepper motor. This setup
was repeated six times to create the core of the cube solving
robot.

Wrapping up this project, we found that all physical
components worked very well achieved significant
performance increases since the design review. However, there
were a few unforeseen and important problems that needed to
be addressed. The NEMA-17 stepper motors worked as
expected in conjunction with the A4988 stepper motor drivers.
Full step resolution always turned the motors and cube with

18-500 Final Report: 05/08/2019

7

Fig. 5. Cubr Bill of Materials

proper torque, assuming the power supply was large enough.
This is where the bulk of our last hurdles were. Powering six
motors at once on a basic breadboard with a 24V 5A power
supply can lead to significant heat problems. Though the circuit
was properly connected and matched our schematics, the power
draw was too hot for the plastic on the breadboard. As a result,
the power supply would generate enough heat to melt the thin
22-gauge wires and eventually parts of the breadboard it was
connected to.

With our impending deadline, our short-term solution was to
separate the power supply from the breadboard entirely. We
purchased much thicker 18-gauge wires and connected them to
a breakout protoboard that had the sole purpose of containing
the heat from the power supply. By soldering screw terminals
to a breakout board, we could use thicker to also help mitigate
the melting. 18-gauge wire was used to connect both the power
supply to the protoboard and protoboard to the breadboard that
contained the rest of the circuit. This configuration handled our
heat problems and allowed the robot to continue to operate at
higher voltages and faster speeds.

VI. PROJECT MANAGEMENT

A. Schedule
Cubr has three major parts that are modular. The modularity

permitted the team to work simultaneously without blocking
one another in the production pipeline. Each of the three major
components had a well-defined input and output. Working
within these constraints, the team was able to make progress on
their respective tasks without waiting on a task outside of their
module to be completed. However, modularity was lost once all
three tasks are completed, at least on a rudimentary level. As
the team converged, the bottlenecks rose from assembly-related
tasks such as construction and laser cut time. The team schedule
is located on page 10, Figure 8.
B. Team Member Responsibilities

As depicted in Figure 8, JT was in charge of items in red,
Sam had the tasks in blue, Lily performed jobs in green, and
multiple team members collaborated on the yellow
assignments. While we were all in charge of specific
components, all three members had a responsibility to
understand every aspect of the project.

18-500 Final Report: 05/08/2019

8

JT was primarily focused on everything related to firmware
programming and hardware design for the physical robot. At
the same time, he worked on housing assembly and hardware
integration and testing. In conjunction, JT assisted Sam with
refining the cube state detection. JT also provided insight on
speedcubing specifics and tricks for the solver module.

Lily was focused on writing and debugging the Beginner’s
Method solver. She led the design of the 3D-printed coupling
arms and the laser-cut housing models. After designing the
housing, she also assisted with housing assembly and hardware
integration and testing. In addition, Lily was in charge of the
soldering and 3D-printing for this project.

Sam’s primary role was the oversight and development of the
cube state detection and software integration between the
modules. Upon its completion, Sam joined the rest of the team
in addressing problems in the hardware integration phase and
was in charge of the laser cutting. In addition, Sam helped with
improving and organizing the overall software design.

C. Budget
From Figure 5, blue purchases were considered to be priority

and essential purchases; orange were alternative purchases that
were made to better fit the project as its needs were further
realized. Light blue items were secondary purchases that were
not essential in the ongoing production of the project but had
purpose in our final product. For instance, we upgraded to a new
power supply that had a higher voltage and current rating to
better accommodate the power requirements of the parallel six
stepper driver-motor setups. In the latter half of the project, we
found we were not touching our budget as much since we
already had all the necessary core components. The majority of
purchases made in the second half were quality of life changes
in order to address our heating issues and cable management.
D. Risk Management

To manage risk as much as possible, the team front loaded
most of the design and solution approach for a better part of the
first three weeks. Having a team comprised of software-focused
engineers, we knew we had to plan out as much as possible in
order to address our weakness in hardware design and
execution. Everyone on the team was more than capable of
accomplishing the software goals with high fidelity. However,
none of us worked extensively with robotics or component-
level hardware beyond the required courses for our
undergraduate studies. JT was in charge of research and
designing as much as he could before the team started to
assemble physical pieces. We also defined clear modules that
we assigned with well-defined inputs and outputs. This
permitted us to ensure smooth integration between all three
modules and adherence to the rules we defined at the beginning
of the semester. These clear definitions also allowed other
members to lend their efforts towards the robot or other lacking
modules after certain software milestones were completed.

From a schedule and communication standpoint, it was
imperative that we were upfront and communicative. Slack and
other team collaboration tools were constantly in use to provide
timely status updates and to serve as a place for questions and
clarifications about aspects of each module between the team
members. As shown in our schedule, Figure 7, we broke down
tasks into their simplest forms possible. This let us too quickly

Fig. 6. Finished Cubr Robot

see what was to be done and what needed work each week.
Thanks to our solid planning, we were able to purchase most of
the necessary tools and equipment in the first two weeks of the
project. At the time of the design review, we spent $415 out of
the budgeted $600. Since then, our total amount spent came out
to $515.59.

The primary risk of the project was the physical construction
of the robot module. With no real experience on the team, there
were a lot of obstacles and problems that required attention
from all three team members. We opted for a six bipolar stepper
motor configuration because we felt it best suited the
requirements of the capstone while being within the reach of a
group of hardware novices. The use of off-the-shelf parts, such
as the motors and drivers, offloaded a lot of the tuning and
precision of robotics onto the hardware. The main unknown
secondary risk came with the construction and assembly of
hardware as mentioned in section four, subsection C in regard
to heat and power management.

VII. RELATED WORK
A research team at Massachusetts Institute of Technology

developed a similar robot to our project. Using more advanced
motors, they broke the world record 0.637 seconds set in 2016
with an incredible solve time of 0.38 seconds[1]. Our fastest
solve time was approximately 5 seconds, but this was due of the
physical limitations of our motors and housing structure.

VIII. SUMMARY AND FUTURE WORK
In short, our system was able to reach and exceed our design

specifications in both software and hardware modules. The
future of Cubr is not set in stone, while we do not plan on
working on extra features in the near future, it is definitely

18-500 Final Report: 05/08/2019

9

something we wish to consider in our free time. JT and Sam
will be taking the physical robot home to reassemble and Lily
plans to improve her solver. However, if we had more time, we
would certainly like to make some major changes. First, the
largest bottleneck in the entire Cubr pipeline comes from the
cube state detection. It simply takes too long to scan all the sides
then carefully place the cube in the housing. We would like to
configure cameras or color sensors around the actual robot so
that it can be scanned inside the housing all in one go. Cubr’s
user interface and experience is also severely lacking. Had we
more time, we would have liked to implement a more
interactive and informative user interface while also improving
the educational components of the project. Lastly, we had lack
to transfer all of the physical components to a protoboard for
permanent connections and greater heat management.

REFERENCES

[1] MIT Office, "Featured video: Solving a Rubik's Cube in
record time", MIT News, 2019. [Online]. Available:
http://news.mit.edu/2018/featured-video-solving-rubiks-cube-
record-time-0316.

18-500 Final Report: 05/08/2019

10

Fig. 7. Cubr Detaled Gantt Chart

18-500 Final Report: 05/08/2019

11

Fig. 8. Cubr Solution Approach Block Diagram Overview

