
18-500 Design Document Report: 03/04/2019

1

Abstract— Cubr is a system capable of solving a 3x3x3

Rubik’s Cube. Cubr uses computer vision to scan a real

cube and map its configuration into 2D space to create a

cube string. This cube string is passed into our 3x3x3 solver,

which determines the optimal set of moves to solve the

puzzle, known as a solution string. The solution string is

then handed over to the physical robot. The robot contains

six motors, one for each face of the cube, and will execute

the solution string to solve the Rubik’s Cube in under 20

seconds.

Index Terms— Arduino, computer vision, cube

configuration string, cube notation, cube state detection,

motors, motor drivers, Rubik's cube, solution string

I. INTRODUCTION

ubr, a puzzle cube solving robot, is an approach to

introduce technology to a common but sophisticated

household puzzle. The motivation of Cubr is to

mechanically solve a 3x3x3 puzzle cube. We constitute Cubr’s

solution as successful in three ways. The first metric is to

correctly classify the colors of each cube piece on all six sides

of the cube 100% of the time. An error in color classification

will result in an invalid cube configuration string and will lead

to an inaccurate representation of the real cube. Furthermore,

our solving algorithm will not find a solution for an invalid

cube string. The second metric is for our solver module to find

a solution string of rotation moves that is less than 300 moves

using an intuitive approach known as the Beginner’s Method.

We consider a solution string with more than 300 moves to be

an inefficient solution. We also classify a solution string that

does not solve a valid cube configuration as an insufficient

solution. This constrains our solver module from being too

computationally expensive and naive. The last metric is the

execution time for a motor arm to turn a face of the cube. With

the Two-Phase Algorithm, we can obtain a solution string

containing a maximum of 20 moves. With this, the motor arm

must turn its designated cube face in less than 1 second and be

able to perform the Two-Phase solution string in less than 20

seconds. Due to its proximity to human intuition, the

Beginner's Method implementation in Cubr can be used as a

learning tool. Cubr is important in proving that technology can

be introduced to everyday objects that previously have not

been integrated with technology.

II. DESIGN REQUIREMENTS

In mechanically solving the cube, there are three major

components that are critical to the success of our project. The

first is cube state detection, which is responsible for

successfully mapping the cube to 2D space. The second

component is the solving software which will take in a cube

configuration string and will output a solution string. The third

component is responsible for mechanically turning the cube

faces to physically solve the cube.

To verify that the first component, cube state detection, has

met our specification, we will scan 10 differently scrambled

cubes and ensure that all pieces are correctly scanned and

mapped. The testing and validation will not be complete until

this requirement is met. We will be scanning a standard 3x3x3

cube with the traditional sticker color scheme through an

external webcam.

To ensure algorithmic efficiency of the solving software, we

are first evaluating whether or not a solution is found. If a

solution is not found, then the solving software is not correct

and we fail our success benchmark. We also fail our success

benchmark if a solution of less than 300 moves is not found.

The Beginner’s Solving Method should approximately take

200 moves; therefore, we have a leniency margin of 100

moves. A solution string of greater than 300 moves indicates

that our solving software is inefficient and is too naively

solving the cube.
The hardware component is the most challenging for our

group and requires the most attention. We will be testing the

hardware components in steps. First, we want to make sure we

can move a single motor with the control we desire. From that,

we would like to map each possible move for each face to a

keypress. If we can do this successfully, we’ll be able to

transition the code from reading keypress events to parsing a

solution string and ultimately executing the set of moves to

solve the puzzle.

Cubr: 3x3x3 Puzzle Solver

JT Aceron, Lily Chen, Sam Fazel-Sarjui

Electrical and Computer Engineering, Carnegie Mellon University

C

18-500 Design Document Report: 03/04/2019

2

Fig. 1. Cubr Solution Approach Block Diagram Overview

III. ARCHITECTURE AND PRINCIPLE OF OPERATION

Our solution approach consists of three main modules to

create the Cubr system. The first two, cube state detection and

the solver, are software-based using OpenCV and Python. The

third and final module, physical solving, is hardware-based

with an Arduino as the mode of computation and control.

Lastly, we need to ensure smooth integration between all three

components. The Cubr system block diagram is depicted in

Figure 1.

A. Cube State Detection

The first software module in Cubr’s pipeline is the cube

state detection. Cube state detection is an integral part of the

process which identifies the given configuration of the cube

and interfaces the mapped cube to our solver module. To scan

all sides of the cube, a webcam is used with OpenCV to

capture and identify the sides of the cube.
In the cube scanning portion of this module, there is a

region to place a single face of the cube in front of the

webcam which is indicated by nine small rectangles in the

web frame. Additionally, there is a live color tracker in the top

left corner of the window that shows the colors that the color

detection algorithm is seeing for each cube piece of the current

face. This acts as a validation step to ensure the right colors

are being tracked. Then the user presses the spacebar to

capture and record the side of the cube when the cube is

aligned properly with the rectangles and the live color tracker

is showing the correct colors. The software stores the colors of

a given face of the cube in a data structure. The mapping of a

given face is based on the color of the centerpiece as the

centerpieces cannot be moved. This process is repeated for all

six sides of the cube.

We standardize the scanning process by restricting the

orientation in which we scan: the yellow centerpiece must be

on top and the white centerpiece on the bottom. The user will

make 90 degree turns while the white and yellow centerpieces

are oriented correctly. Then, the user will make a 90 degree

turn along another axis that allows the camera to scan the top

yellow face and the bottom white face. This aligns with the 2D

mapping of the cube as shown in Figure 2.

After all sides of the cube are scanned, the cube state

detection module is responsible for properly mapping the cube

and providing a cube string with the correct notation as

defined in our software interface between the cube state

detection and the solver modules.

B. Solving

The second module is the 3x3x3 puzzle cube solver. From

the cube state detection module, the solver module will

receive the cube configuration string for processing. We
decided to implement the solver module in Python given its

18-500 Design Document Report: 03/04/2019

3

readability, dynamic typing, automatic memory management,

and object-oriented programming (OOP) features.
Once the solver module instantiates a Cube object and

identifies the individual cubie pieces and locations, the module

will execute the Beginner’s Method of solving, which reflects

the way a human would solve a 3x3x3 puzzle cube. The

Beginner’s Method solves each layer of the cube by applying

a given algorithm to each sublayer and maintaining the pieces

of previous layer that are already in place.
As the module proceeds to solve the cube state by layers, it

concatenates each sublayer solving algorithm to a string of

moves. Once the cube object reaches its fully solved state, the

resulting string of moves will be used to direct the hardware

module for physical solving of the cube.

C. Physical Execution

The third and final module in our approach is the physical

execution of a solution string to solve the puzzle. The cube

solving robot takes a single solution string as its sole input.

Regardless if the string is a valid solution or not, this module

will read the set of instructions and perform each move

serially via a configuration of bipolar stepper motors and

motor drivers.
As for the main hardware components of the robot, this

module consists of a microcontroller, six bipolar stepper

motors, six stepper motor drivers, and a power source.
Secondary components include a casing or housing for the

motors, cube coupling arms, a simple breadboard, and wires to

make all the necessary connections.
The computation power of the robot will be from an

Arduino Uno Rev3 microcontroller. This is also how the robot

will communicate with our solving module to receive a

solution string. The Arduino is also responsible for controlling

each of the six motor drivers in order to execute all 18

possible moves on a 3x3x3 cube. A Rubik’s Cube has six

faces and each face only has three possible moves. These 18

possible moves are defined in a universal cubing standard

called cube notation used in official World Cube Association

Speedcubing competitions.
Cubr uses NEMA-17 Stepper Motors to attach to the center

of each cube face with custom cube coupling arms to turn the

puzzle. These motors can turn either direction, clockwise or

counterclockwise, at any number of steps between 0 and 200,

where 200 steps is a full revolution. To drive and move these

stepper motors, Cubr utilizes A4988 Stepper Motor Driver

Carriers. These drivers allow the Arduino to interface with the

stepper motors without the need to write excess and pre-

existing code or to implement third-party libraries.
One driver is used for each stepper motor, and all stepper

motors directly communicate with the Arduino to receive

direction and step instructions through the Arduino’s digital

input/output pins. A stepper motor and driver setup is repeated

six times in parallel to the power supply to create the core base

of the robot. From here, each setup is positioned into a

housing or framework that allows each stepper motor to

perpendicularly connect with each of the six faces on the

puzzle. To turn the face of the cube, custom 3D-printed

coupling arms are created to attach to the stepper motor and

center piece of each cube face.

Fig. 2. 2D Mapping of 3x3x3 Cube

D. Integration

The cube itself is first scanned in front of the webcam for

our cube state detection module. From cube state detection, a

cube configuration string is outputted to STDOUT. From this,

the solver module reads this cube string as input and creates a

solution string as its output. The Arduino Uno Rev3 reads

each move in the solution string and communicates with the

appropriate motor driver to control the motor arms to

physically solve the cube.
After it is scanned, the cube is then placed in the housing

with the correct orientation. We predefine this as the yellow

side facing upwards, and the red side facing forwards. Once

the cube is firmly attached into the coupling arms, we start the

solving process on the Arduino.

IV. DESIGN TRADE STUDIES

A. Cube State Detection

In designing a software solution for cube state detection,

our top priorities were to have the highest accuracy in color

detection and to design the most lightweight solution so that

we can spend the majority of our efforts on the cube solving

robot. The first design tradeoff for cube state detection was to

use OpenCV for color detection as opposed to using color

sensors. We chose this option as there is less physical moving

parts needed in OpenCV, which is a computer vision library. It

is also easier to customize our cube scanner to account for

different cubes and their color profiles.
For validation and testing, we are scanning all sides of 10

differently scrambled cubes and are recording the number of

centerpieces, edge pieces, and corner pieces scanned correctly.

We will record which colors were incorrectly scanned against

which colors were correctly scanned to get a percentage of the

colors that were misread. We will also note how successful the

color detection is with the logo sticker that is typically on the

white centerpiece.

B. Physical Execution

As shown in the design requirements, we need a fast and

reliable method of physically solving a 3x3x3 Rubik’s Cube.

We chose to configure the robot with six bipolar stepper

motors, one for each face. Having a stepper motor for each

18-500 Design Document Report: 03/04/2019

4

Fig. 3. Cube State Detection Workflow

side of the cube allows for the fastest solve time as no moves

are wasted to reposition the cube. Other methods such as the

claw and gripper method for physically solving the robot

require less motors, but necessitate more fine-tuning and

precision of the gripping movements. On top of this. the solve

time is significantly slower due to no direct connection with

each cube face. However, our method requires the most

moving parts and ultimately has more power requirements. To

address these new constraints, a 24V 5A Power Supply will be

used to power all stepper motor and driver setups in parallel.

This power supply was specifically chosen to operate at the

higher voltage range for each of the six A4988 drivers while

still providing enough current for each of the motors. Since

each of the stepper motors operate at 350 mA, the power

supply needs a total of at least 2.1 A to supply adequate

current to all 6 motors at once since the motors pull current

while stationary.
The NEMA-17 Stepper Motors are rated for 12 V and

operate with a maximum speed of 600 rpm. To operate at its

higher end speeds, we introduce the use of A4988 drivers.

These drivers allow us to push the stepper motor’s voltage

rating to achieve higher step rates through adjustable current

control. These drivers also allow us to directly communicate

to the motors through the use of two digital input/output pins

from the Arduino for each configuration. With this setup, we

believe that we can achieve an operating speed of 1 cube turn

per second at the very minimum. We will test our robot’s turn

speed with a baseline solution string of 20 moves. Since the

Two-Phase Algorithm can output solutions around 20 moves

or less, we want to see how fast we can execute 20 sequential

moves. Once the robot is operating with a cube inside of it, we

will time how long it takes to correctly execute the 20 moves.

Fig. 4. Cube State Detection User Interface

V. SYSTEM DESCRIPTION

We are currently developing Cubr on Unix-based systems.

However, the execution of our software is platform agnostic.

This allows for future work in migrating our software to

different operating systems or for others to download our

repository and create or modify the robot for their personal

uses.

A. Cube State Detection

For the cube state detection subsystem, the modules

required are OpenCV 4.0.0 and Python 3.6+. The cube state

detection software reads each frame in the live video stream

from a Logitech C270 webcam using OpenCV. Since

OpenCV’s default color space is BGR (blue, green, red), we

convert each frame into the HSV (Hue, Saturation, Value)

colorspace due to its robust lighting invariance for color

detection. This basic workflow is shown on Figure 3.
Regions are indicated in the web frame with small green

rectangles. Within these regions, the HSV values are averaged

frame by frame for the live color tracker which shows what

colors are being detected for each cube piece. The spacebar

key event captures a frame and maps the side of the cube in an

internal data structure. In the color detection pipeline, after the

HSV values are averaged, the L2-Norm distance function is

then used to find the closest color detected in those regions.

We calculate the HSV value of a color by taking the midpoint

of the non-overlapping HSV lower and upper bounds set for

each color.
With cube state detection, we found it difficult to classify

each color correctly with any type of variance in lighting,

which includes glare from the cube itself. To work around

this, Cubr is using a lighting softbox to standardize the

lighting in the cube scanning portion of the cube state

detection module.
As another precautionary measure, the green rectangles in

the web frame, as shown in Figure 4, were adjusted to be

smaller. This adjustment made it easier for the user to align

the cube in front of the webcam. The smaller the sampling

area, the less variance of color, which improved the accuracy

of the cube state detection. Showing a live color tracker also

18-500 Design Document Report: 03/04/2019

5

Fig. 5. Minimal Wiring Diagram for the Driver-Motor Setup

shifts the error towards the user. This will help assure high

accuracy readings.

B. Solver

For the sake of continuity, the solver module is built on

Python 3.6. All Python libraries used in the solver are part of

the Python Standard Library and thus require no additional

installation. The general structure of the code follows the

object-oriented programming paradigm. After the solver

module receives the cube configuration string from the cube

state detection module, the solver module instantiates a Cube

object for the given cube state and identifies the individual

cubie pieces and locations prior to executing the solving

algorithms.
With an object-oriented structure, we can create class

instantiations for each input configuration string. Taking an

OOP approach allows us to view and identify the cube based

on the individual cubies, or pieces, instead of by colors; doing

so will allow us to take a "colorblind" approach in mapping

colors to the faces in the cube state detection module.

Furthermore, OOP makes it easier to maintain and modify our

existing code such that we can run both our implementation of

the Beginner’s Method and pre-existing solving algorithms,

such as the Two-Phase Algorithm, on the same cube states.

These different method calls work with the basic but concrete
structure, types, and properties for our modular OO classes.

The Beginner’s Method solves each layer of the cube by

applying a given algorithm to each sublayer and maintaining

the pieces already in place. Each sublayer-solving algorithm

consists of 18 types of rotation moves, with three for each

face: turns of 90 degrees clockwise, 90 degrees

counterclockwise, and 180 degrees.
The Two-Phase Algorithm outputs a solution string of a

maximum of 20 moves. In its initial run, the algorithm

produces tables for memoization and lookup that amount to
140 million lookup references at 13 different depths. In

addition, during subsequent runs of the Two-Phase Algorithm,

the algorithm does not stop when a first solution is found,

continuing its search for shorter solutions from suboptimal

parts of the prior solution. Moreover, the Two-Phase

Algorithm also uses symmetrical properties of the 3x3x3 to

find and perform symmetry reductions.

As the module proceeds to solve the cube state by layers, it

concatenates together each sublayer-solving algorithm's list of

moves into what we call the solution string. Once the Cube

object reaches its fully solved state, the resulting solution

string will be used to direct the hardware module for physical

solving of the cube.

C. Physical Execution

The NEMA-17 Stepper Motor is a four wire bipolar stepper

that rotates 1.8 degrees per step. The motor operates at a

maximum current of 350 mA and operates with a power rating

ranging of 8-35 V. 200 steps are required to make one full

rotation. Notable step inputs include 100 steps and 50 steps to

execute 180-degree and 90-degree turns respectively. These

motors provide ample torque to smoothly turn a single cube

face.
The A4988 Stepper Motor Driver Carrier is the driver of

choice to interface between the NEMA-17 motors and the

Arduino. The driver allows for a simple step and direction

control interface while having five different step resolutions,

though the Cubr robot will operate at the full-step resolution.

These drivers also have adjustable current control, which

allows for the use of higher voltages above the NEMA-17’s

rated voltage to achieve higher step rates. The A4988 has two

pins called “STEP” and “DIR”: these are the pins that will

each directly connect with one of the 14 digital input/output
pins on the Arduino. Because there are six setups, Cubr

requires at least 12 digital I/O pins.
These parts in conjugation as depicted in Figure 5 allows

for control over a single NEMA-17 stepper motor. This setup

will be repeated 6 times to create the core of the cube solving

robot.

VI. PROJECT MANAGEMENT

A. Schedule

Cubr has three major parts that are modular. This allows the

team to work simultaneously without too many blocks in the

production pipeline. Each of the three major components have

a well-defined input and output. Working within these

constraints, the team can continue to make progress on their

respective tasks without waiting on a task outside of their

module to be completed. However, modularity is lost once all

three tasks are completed, at least on a rudimentary level. As

the team converges, the bottlenecks arise from tasks such as

construction and print time.
As of now, one team member is assigned to each of the

three core modules. After these are completed, the team will

come back together to integrate, test, and assemble. The team

schedule is located on page 7, Figure 7.

B. Team Member Responsibilities

As depicted in Figure 7, JT is in charge of items in red, Sam

has tasks in blue, while Lily performs jobs in green, and

multiple team members work on the yellow assignments.

While we are all in charge of defined components, all three

members have a responsibility to understand every aspect of

the project.

JT is primarily focusing on firmware programming and

hardware design for the physical robot. After this, he will

18-500 Design Document Report: 03/04/2019

6

Fig. 6. Cubr Bill of Materials

work on housing assembly and hardware integration. In

conjunction, JT will assist Sam with refining the cube state

detection.
 Lily will be focusing on overall software design and the

Beginner’s Method solver. She will also lead the hardware

design of the housing CAD models. During housing design,

she will help hardware integration and testing.

Sam’s primary role is the oversight and development of the

cube state detection. Upon completion, Sam will join the rest

of the team in addressing problems in the hardware integration

phase. Simultaneously, Sam will help with improving the

software design.

C. Budget

From Figure 6, blue purchases are priority and essential

purchases; orange were alternative purchases that were made

to better fit the project as its needs were further realized. Light

blue items are secondary purchases that are not essential in the

ongoing production of the project but have purpose in our

final product. So far, we have upgraded to a new power supply

that had a higher voltage and current rating to better

accommodate the six stepper driver-motor setups in parallel.

D. Risk Management

To manage risk as much as possible, the team front loaded

most of the design and solution approach for a better part of

the first three weeks. Having a team comprised of software-

focused engineers, we knew we had to plan out as much as

possible in order to address our weakness in hardware design

and execution. Everyone on the team is more than capable of

accomplishing the software goals with high fidelity. However,

none of us have worked with robotics or much hardware

beyond the required courses for our undergraduate studies. JT

was in charge of research and designing as much as he could

before the team started to assemble physical pieces. We also

defined clear modules that we assigned with well-defined

inputs and outputs. This will allow us to ensure smooth

integration between all three modules and adherence to the

rules we defined at the beginning of the semester. These clear

definitions also allow other members to lend their efforts

towards the robot or other lacking modules after certain

software milestones were completed.
From a schedule and communication standpoint, it was

imperative that we were upfront and communicative. Slack

and other team collaboration tools are constantly in use to

provide timely status updates and to serve as a place for

questions and clarifications about aspects of each module

between the team members. As shown in our schedule, Figure

7, we broke down tasks into their simplest forms possible.

This allows us to quickly see what was to be done and what

needed work each week. Thanks to our solid planning, we

were able to purchase all necessary tools and equipment in the

first two weeks of the project. We have spent $415 out of the

budgeted $600 and plan on allocating the rest for backup parts

as needed.

The primary risk of the project was the physical

construction of the robot module. With no real experience on

the team, there were a lot of obstacles and problems that

required attention from all three team members. We opted for

a six bipolar stepper motor configuration because we felt it

best suited the requirements of the capstone while being

within the reach of a group of hardware novices. The use of

off the shelf parts, such as the motors and drivers, would

offload a lot of the tuning and precision of robotics onto the

hardware.

18-500 Design Document Report: 03/04/2019

7

Fig. 7. Cubr Detailed Gantt Chart

	I. Introduction
	II. Design Requirements
	III. Architecture and Principle of Operation
	A. Cube State Detection
	B. Solving
	C. Physical Execution
	D. Integration

	IV. Design Trade Studies
	A. Cube State Detection
	B. Physical Execution

	V. System Description
	A. Cube State Detection
	B. Solver
	C. Physical Execution

	VI. Project Management
	A. Schedule
	B. Team Member Responsibilities
	C. Budget
	D. Risk Management

