Cubr: Cube Puzzle Solver

18500 S19 Team D6
Project Proposal
JT Aceron, Lily Chen, Sam Fazel-Sarjui

Background

- 3x3x3 Rubik's Cube
- 43,252,003,274,489,856,000 unique cube states
- World record time set by Feliks Zemdegs: 4.22 s
- 3 pieces
- Center, Edge, Corner

Use Case

- Uses CV to map the faces of the cube (signals \& systems)
- Uses software to find the sequence of moves to solve the cube (software)
- Uses an Arduino to interface our solution with stepper motors (hardware)

Hardware and Software Overview

- Webcam
- OpenCV
- Arduino
- 6 stepper motors
- 6 stepper motor drivers
- Power Supply
- 3D printed coupling arms
- Basic breadboard
- 3D printed housing
- $3 \times 3 \times 3$ Speedcube

Processing and Execution

- Mac:
- Cube state detection
- Logitech - C920 Pro Webcam
- Webcam compatible with OpenCV
- Written in C++ or Python
- Cube solving algorithm
- Written in Python

- Arduino Uno Rev3:
- Arduino receives solution string
- Master-slaves setup to communicate to the 6 stepper drivers
- Written in C

Stepper Motors

- NEMA-17 Stepper motor
- 200 steps/rev
- 12V 350mA
- \$14
- A4988 Stepper Driver
- Operates from 8V-35V
- \$5
- 12 Volt DC wall adapter

Physical Infrastructure \& Misc.

- 3D printed housing
- 3D printed cube coupling arms
- Breadboard
- Wires

Solution: Cube State Detection

- Use webcam to scan all sides and make 2D map
- Process this 2D cube state to create a final solution string
- Stretch goal: incorporate RGB color sensors
- Color sensors can ensure our CV color detection is correct

Solution: Solving Algorithms

- Intuitive (Beginner's method)

O Cube is broken down into states and solved with a set of basic algorithms

- Stretch goal: Non-intuitive (highly efficient)
- The most optimal solution path
- Two-phase Algorithm
- God's Number: 20 Algorithm
- Written in Python

Solution: Physical Execution

- Arduino receives solution string using cube notation (R R' U U' etc)
- Arduino will communicate to each stepper driver individually to drive it's motor
- 18 possible moves
- Clockwise or counterclockwise
- 90 degree or 180 degree turn
- Motors must be timed and tuned: only one move/turn at a time

u

\mathbf{U}^{\prime}

R

F

F^{\prime}

D

D'

L

L'

в

B'

Testing, Verification \& Metrics

- Cube state detection
- Verify how accurately we scan the cube using OpenCV
- Algorithm efficiency
- Number of cube movements to solve the cube
- Was a solution found?
- Stepper motor precision \& timing
- Verify correct movements are made for any given input
- Use metrics to record how fast a movement takes
- Is the cube solved?

Timeline

Week	Feb 3-9	Feb 10-16 (2/16: First status report due)	Feb 17-23	Feb 24 - March 2	March 3-9 (3/4: Design document due; $3 / 6$: Ethics	March 10-16 (Spring Break)	March 17-23	March 24-30	March 31 - Apr 6 (4/1-3: in-lab demos)	$\begin{aligned} & \text { App 7-13 (4/11-14: } \\ & \text { Carnival) } \end{aligned}$	Apr 14-20	Apr 21-27 (4/24: in-lab demos)	
Purchase parts													JT Aceron
Cube state detection													Lily Chen
Cube state matching													Sam Fazel-Sarjui
Beginner's method implementation													Multiple/All
Learn how to control motors individually													
Design master/slave configuration													
Stepper motor interface with Arduino													
Design power supply hookup													
Construct basic housing and test all motors in sync													
Design robot housing													
$\begin{aligned} & \text { Design coupling } \\ & \text { arms } \end{aligned}$													
3D print housing and arms													
Testing software accuracy													
Tuning stepper motors													
Final testing and tuning													
STRETCH: two-phase algorithm implementation													
STRETCH: install more webcams for cube state detection													
STRETCH: RGB color sensing for redundancy													

