Team D4: KUB Final Report

Kristina Banh, Umang Bhatt, Brian Davis
Department of Electrical and Computer Engineering
Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
Email: {kbanh, umang, briandavis} @cmu.edu

I. INTRODUCTION

KUB is a personalized and portable dance trainer that’s
able to view your movements and offer corrections on a set
of moves. Learning to dance is not only difficult, but also
expensive and inconvenient as you typically have to commute
to a dance studio in order to take class. This makes it harder for
an aspiring or beginner dancer to start dancing, and harder for
experienced dancers to continue dancing. KUB solves these
problems by being accessible and being much less expensive
than conventional teaching options.

Currently, there is an application that utilizes a similar
technology and method as a trainer, but it’s for working out
as opposed to dance. There are also dance games that ’teach”
dance moves, but they offer no correction aspect and dont
actually teach the movement very well since its purely for
entertainment. This gives KUB an advantage edge as it is an
application in a new field. KUB approaches dance correction
using joint variance ranking, which automates the correction
with a trainer feedback goal of 30 seconds after a movement
is complete. This feedback should be relevant, correct, and
useful to the user.

II. DESIGN REQUIREMENTS

This project can be split into two main components: The
pose correction pipeline that runs in the backend of the
application, and the user interface that provides the user access
to the corrections. Each of these sections have a few key
requirements that they have to meet.

A. Pose Correction Pipeline

Since we strive to replace the functions of a real dance
teacher, we try to mimic the methodology that they would use
in real life. When a dance teacher instructs, there are a few
steps that they go through. First they look at their student’s
movements and remember what they see. They then analyze
each aspect of the movement, and compare it with what they
think the ideal version should be. Lastly, they convey this result
to the student.

In order to be faithful to this process, our pose correction
pipeline requires a few key components. First is the ability
to capture the user pose or movement and store it. Second is
the ability to convert this stored media into a format that can
be analyzed easily. Third is the ability to assess the user pose
and compare it to a stored dataset of ideal poses. Last is the
ability to convey the corrections back to the user.

1) Movement Capture: We must be able to capture the
entirety of a person’s movement while it is being performed.
Therefore, we need some sort of camera that is attached to the
system that is in a good position while the user is performing
the movement. This camera should ideally not need to have a
high resolution, as most users do not have immediate access
to an HD web camera or the sort. Due to this constraint,
we do require that the input image be at least of a 480p
resolution in order to keep the hardware requirements low
while maintaining enough information for us to analyze the
movement. Since most laptops come with 720p web cameras,
this should not be an issue.

2) Pose Estimation: Once the movement has been captured
as either a video or an image, we must now have a way
to translate the media into a form that can be analyzed.
This process must be portable, ruling out methods like the
Microsoft Kinect, as well as consistent/robust to a variety of
backgrounds. Though we can handle some frames being misla-
beled, we require that most frames be converted correctly. For
our purposes we require a 95 percent success rate for the pose
estimation. When the estimation is incorrect, the algorithm
returns a pose in which some joints are clearly incorrectly
placed outside of normal ranges of motion. Therefore we can
measure this requirement with a script that checks the positions
of the joints in relation to one another, and asses if they are
within normal human motion ranges.

3) Pose Correction: After the pose has been extracted from
the image in a meaningful way, we must then have a method
by which we can compare it to a stored example (the ideal
version). In order to do this, we need some metric to compare
two poses and assess their similarity. We must also have a way
to rank the importance of each aspect of the movement so that
we can prioritize the order in which we give corrections. This
is so that we do not overwhelm the user with more corrections
than they can handle at a time, and can correct more important
features of the move before less important ones. Since dance
is inherently subjective, we evaluate these requirements by
polling trained dancers to evaluate our corrections. We deem
it a success if the dancers evaluate our corrections above a
80 percent average in the metrics of feedback priority and
feedback correctness.

B. User Interface

Since there are no interfaces that dance instructors typically
use to teach, we need to devise a way for the user to interact
with our correction pipeline that feels natural and mimics an
interaction with a real instructor.

From the student’s point of view there are a few things that
happen during a dance lesson. Depending on the nature of
the lesson, the student either chooses what move they will
be performing, or is told to perform a movement. At this
point, the user either already has an idea of how to perform
the movement, or needs to see the instructor perform the
movement to get a clear idea of what they need to do. The
user then performs the movement in front of the instructor,
and waits to be corrected, at which point the cycle repeats.

In order to mimic this process, we require a few key
components of our Ul First is a page for the user to decide
what movement they would like to perform. This page should
be easy to navigate, and provide a clear categorization based
on the type of move. Second, we need a page for the user to
view the movement that they will be performing in its entirety.
The user should be able to view the move until they think they
are ready to perform. Third, we need a page for the user to
perform the movement. Ideally, the user should be able to
see themselves in order to mimic the fact that dance studios
usually have mirrors. Lastly we need a way for the user to
receive their feedback. The feedback should be clear and easy
to digest, and displayed in a formatted way so that the user
knows what they are receiving corrections for. In order to
test these requirements, we test the users on the categories
of ease of use and clarity of feedback, and deem it a success
for averages above 80 percent.

III. PRINCIPLE OF OPERATION

In this portion of the document, we will review the core
design of the pose estimation pipeline. First, we will describe
how we get the angular ranking ® from a frame V. Then, we
will describe how to pick the angle ¢; to correct.

First let us introduce some notation. Let V be a video feed
from a user. Let Vi,...,V; € V be the t frames of the video
feed. Without loss of generality, let us fix a frame V, which
would be a still image; this allows us to avoid the temporal
nature of pose correction to start.

A. Angle Estimation

For our purposes, we identified that mapping the pose into
the angular domain will give us a much better representation of
the user’s pose characteristics than simply using the 2D points.
It also allows us to bypass the issues of scale and translation
that the Euclidean space suffers from. By identifying the
angles between joints, we no longer have to require the user
to be centered in the same way as our example data, and
we are able to remove the issue of user height entirely. It
also simplifies our problem very nicely without the loss of
important information.

Given V, we identify the user’s pose via AlphaPose
(a real-time accurate pose estimation and tracking system),
f(V) = P € R'*2. AlphaPose has improved accuracy over
OpenPose. AlphaPose gives us one tuple p; = (w;,y;) for
each joint 7. See Figure 1 for details on all twelve joints,
where the top left of the image is considered (0,0) and the
bottom right is considered (w,h). Note that we deal with

Fig. 1. Labeled Joints

pose estimation measures in a 2D plane and that we do not
retraining AlphaPose; rather, we use pretrained weights for
inference.

Fig. 2. Labeled Angles

Source
Target

6
DSP DPT

Pivot

Fig. 3. Diagram of angle components

We identify ten angles for our angular ranking © € R'0,
as shown in Figure 2. In Table I, we show the three joint
tuples p;, p;,pr € P used to find all ten angles, 6; € ©. The
joints are written in the following format: Source (S), Pivot
(P), and Target (T). If we assume a triangle between SPT, we
want to identify the angle at P to be 6, as shown in Figure 6.
Since we have three points in Euclidean space, we want to
find the distance between S and P: Dsp, between P and T:
Dpr, and between S and T Dgy. We can do this with any real
valued distance metric, d. For example, we can let d be the /5
distance (which would be the norm of the displacement vector
between two points in 2D), resulting in the following. We use
this distance metric for our application, as we deemed it to
be most faithful to the way in which polled dancers evaluated
the similarity between given poses.

= /(@ —)2 + (g — 1)
= |15 - Pl

In practice, we only use the first six angles, as the others
were not informative and were noisy over the training data.
We also tried out the following distance metrics to see if the
angles between certain joints are more sensitive when we use
different distance metrics to get the side lengths of triangle
SPT.

We use the same distance metric d to get all side lengths.
Once we have Dgp, Dpr, and Dgr, we solve the following to
get 0, which follows from the Law of Cosines. We first present
a general vectorized formulation, followed by a formulation
specific to the Euclidean space.

Dsp - Dpr
0 = arccos (_,_,)
[Dse||[| Der||
(D
2 2 2
= arccos (DSP + Dir DST)
ANGLE (f) SOURCE (S) P1voT (P) TARGET (T)
01 LH LE LS
7)) LE LS LHI
03 RE RS RHI
04 RH RE RS
05 LHI LK LF
06 RHI RK RF
[LS LHI RHI
0s LHI RHI RS
Oy RS LS LHI
610 RHI RS LS
TABLE 1

COMPREHENSIVE SOURCE, PIVOT, AND TARGET SPECIFICATIONS FOR
EACH TRACKED ANGLE

After consulting with dancers, we learned that it would be
difficult to ask a dancer to correct their left hip (67, the angle
between one’s torso and hip line) separately from their right
hip, or their right shoulder (619, the interior angle between
one’s torso and shoulder) separately from their left. As such,
we need to edit our angle vector to be the combination of
both, ©oLp. We define the following two angles.

07 = 07 — 0g
Os) = 8y — 010

As such, we define an angle vector ® € RS, where we the
first six elements of ® and © are the same and then we set
¢7 to 07, and set ¢g to Og,.

B. Angle Correction

Once we identify ® for the current frame V, we need to
rank all eight angles by how much they vary from the expert
ground truth, E. Let U, 1,...,U,+ € U, be video frames
from expert a. Let U, ; be the same frame as frame V; from
the user. Using Equation 1, we can find the expert angle vector
o, € R8.

Since any angle vector ® is invariant to scale or translation
along the 2D plane of the frame, we take an expectation of
angle over all experts performing a given pose, irrespective
of whether the angle vector estimates come from the same or
multiple instructors. Let U be the set of k£ expert video feeds.
We can get an aggregate expert angle vector, E = ®,,, € RS,
by taking the empirical mean of all angle vectors from the k
experts.

E=®, =

k
>
i=1

T =

ANGLE (¢)

JOINT OF INTEREST

SUPPORTING JOINT

b1 RIGHT HAND RIGHT ARM
P2 RIGHT ARM TORSO
b3 LEFT ARM TORSO
Pa LEFT HAND LEFT ARM
b5 RIGHT LEG RIGHT FooT
ol LEFT LEG RIGHT Foot
b7 Hips N/A
Ps SHOULDERS N/A
TABLE II

ANGLE-JOINT NAME MAPPING

Our goal is to find how much ® differs from E and in what
elements they differ: we correct the dimension along which
they differ most. To better identify which dimension of & to
correct, we need to make stronger assumptions.

First, since we have k expert angle vectors, we actually have
a distribution in the space of angle vectors. If we assume a
normal distribution over the angle vectors, then we can assume
the following:

Dy, ~ N (Mv E)

Thus, the mean vector y € R® contains the mean value
for all eight angles of interest in the expert distribution and
the covariance matrix ¥ € R8*® contains the variance for
the eight angles of interest along the diagonal. Therefore, let
p = diag(X) € R8.

We can then rewrite each element of our user angle vector,
®, in terms of the expert mean and expert standard deviation,
effectively finding z-scores in the statistical sense.

¢i = pi + i (\/pi)
o — Mg

o = ———
VPi
We are left with eight scalar o values each representing
how many standard deviations away from the expert a user
lies. We then identify which user angle differs most from the
expert distribution; this is the angle we want to correct.

bix = ¢i € argmax |qy|
(2

In order to prompt the user to correct her behavior, we need
to tell her which joint to correct and how to correct it. To
start, we fill in the statement below, replacing [DIRECTION]
with either “Increase” or “Decrease” and replacing [JOINT]
with the joint name from Table II. To get the direction of the
correction, we leverage the sign of the « value in question:
positive alpha corresponds to “Decrease” and negative alpha
corresponds to “Increase”. This output is then sent to a Text-
To-Speech engine to then play back to the user.

“[DIRECTION] the angle between your [JOINT]
and your [SUPPORTING JOINT]”

If ¢7 or ¢g need to be corrected, we use the following
verbiage.

“Level your [JOINT]”

In essence, we take advantage of the variance in the expert
angle distribution to chose which joint to correct. We then
leverage that variance ranking to correct the user’s pose. Every
time the user provides a frame V' we correct at most one joint.
To facilitate termination, we impose a lower bound on |«;]|.

If |o;| < € holds, then we do not consider correcting the i-th
angle. We intend to set epsilon to 1: this implies that we only
correct movements to be within one standard deviation of the
expert mean. Once all eight angles satisfy the aforementioned
condition, we show the following message.

“Great job, you’ve mastered this pose!”

C. Temporal Pose Estimation

Once we have corrections for individual images, we look
to extend the methodology to allow for corrections of more
dynamic movements captured in video. To do a real time
correction of dynamic movements is both unfeasible due to
the processing time required by the pose estimation algorithm,
as well as unnecessary, since the user will not be able to
process feedback in a meaningful way while performing a
movement. Therefore, we decided on providing feedback after
the movement is performed, in a way that is clear and easily
digestible for the user.

The way that we accomplish this is by correcting the key
frames of a dynamic movement. For our purposes, we define
key frames as the most important still frames within a move-
ment. They are the poses contained in dynamic movements
that dancers transition in and out of during the course of a
full move. For example, during the plie -a beginner dance
move- the dancer will transition in and out of 4 key frames:
one at the start with the hands positioned downwards, one in
which their arms are lifted in front with the knees bent out,
one in which their legs straighten out again and their arms
are lifted straight to their sides, and one in which they return
to the original pose with the hands positioned downwards.
Analogous frames for a push-up would be the position at the
top with the arms extended, and the position at the bottom with
the arms bent. By correcting each of these frames individually,
we hope to correct the overall form of the movement, which is
just these movements strung together. It is worthy to note that
this is how dance teachers traditionally correct movements as
well. By mimicking this routine, we hope to provide as close
a replacement for a real dance teacher as possible.

In order to perform this key frame correction, we must first
be able to do two things. The first is to identify which key
frames are necessary to correct within a given move. This
we do by having trained experts look at a given video of
an instructor performing a move, and manually identify the
frames which they think are key. We take these frames to be
the underlying data set for the move.

Once we have the instructor key frames identified, we then
need a way to find the frames within the user video that we
would like to correct. In order to do this, we create a frame
matching algorithm that utilizes the distances between frames
to find the closest match to a given key frame. One way to take
these distances would be to compare the raw coordinates of

First Key Frame Second Key Frame

Fourth Key Frame

Third Key Frame

Fig. 4. Example Key Frames for Port de Bras Movement

the joints created by the pose estimation algorithm. However,
this would be heavily influenced by the size, position, and
orientation of the user. Furthermore, this would not align with
the way in which we find the corrections, in which we consider
only the pose angles.

Therefore, we first convert the poses to their angle domain,
and find the distances between frames there. Like before,
this allows us to bypass any translations, rotations, or scaling
within the data. After experimenting with multiple distance
metrics, we found the /5 distance to be most faithful to how
polled dancers interpreted distances between poses.

With a distance metric specified, we then are able to
compare instructor key frames to those of the user within their
video. We identify the user key frame by sweeping through
segments of the video and finding the minimum distance
between the instructor frame and the user’s. We then search
the next segment of the video for the next key frame, repeating
until all key frames have been matched with a corresponding
user frame. Once the user frames frames have been identified,
we then run the original image correction algorithm on them
and output the corrections sequentially.

IV. DESIGN TRADE STUDIES

We found three subsystems to have considerable trade-
off. First: would it be faster to run our pose estimation on
AWS or on our local computers? Second: would OpenPose or
AlphaPose be faster? Third: would Node or Flask be a better
backend for our system? We now describe and expand on these
trade offs.

A. Local Computer vs. AWS

Our local computers were not optimized for efficient pose
estimation. Unfortunately, pose estimation using CPUs is
horridly slow. We explored ways to get our estimation under
our desired metric of doing the pose estimation on a video in
under 30 seconds. As such, we decided to explore running our
pose estimation on a GPU where we would get the speedup
we need to meet the metric.

We worked on getting an initial pose estimation implemen-
tation of AlphaPose up on AWS. Similar to when AlphaPose
runs locally, we run AlphaPose over a set of frames and give
the visualize the resulting jsons as a graph. This AlphaPose
computation is accelerated by the GPUs on the AWS instance;
even though we only used one GPU at a time (multithreading
would not be useful for our pose estimation use case given
the short length of the video - small number of frames - and
given that aggregating the results of each core would add to the
irreducible time for these instances, see below), we performed
estimation on a 40 second video about 20 times as fast.

By running our code on AWS, we move an image from
20 seconds for estimation to about 8 seconds for estimation.
This speedup considerably helped decrease the latency of the
pipeline as a whole. To that end, it was natural for us to design
our system with AWS for pose estimation instead of unrealistic
local computation that not only hindered efficiency but also
harmed the experience of a person using KUB.

B. OpenPose vs. AlphaPose

We decided to run a comparison between AlphaPose and
OpenPose for running pose estimation on the AWS instance.
We needed to know which pipeline would be more effective
for our use case. We note that our pipeline has a 8 second
up and down time that is irreducible but any other time is
added due to the slow pose estimation. As such, we wanted
to explore if OpenPose is faster for our use case on a GPU.

OpenPose runs smoothly but has much overhead if we
want to retrofit it to optimize for our task. Running vanilla
OpenPose led to a respectable estimation time for a 400 frame
video (on one GPU), but was still over our desired metric
of doing the computation in under 30 seconds. Though the
times were comparable at first, when we added flags to our
AlphaPose command to reduce the detection batch size of the
pose estimation network, set the number of people to look for
in the resulting frames, and reduce the overall joint estimate
confidence interval, we were able to get blazing fast estimation
from AlphaPose (20 seconds + 8 seconds for the up down),
which considerably beats OpenPose and rivals state of the art

pose estimation in industry. This means we also hit our metric
of doing end to video pose correction in under 30 seconds.

Rather than taking 29 seconds for a video and 15 seconds for
an image, we then wanted to break sub-20 second inference
for a video and sub-10 second inference for an image. The
best place to shave off time was in the pose estimation by
increasing the speed of AlphaPose and decreasing the frame
rate of the original video. It turned out that the UI saved the
video as a *.webm file and AlphaPose did not take in this
type. As such, we had to use a conversion function (ffmpeg
was the one we picked) to convert it from *.webm to *.mp4.
Unfortunately, this conversion actually expanded instead of
compressed the video which led to even slower pose estimation
by AlphaPose.

By setting a reduced frame rate flag, we were able to
subsample in the video and then run the shorter video through
the pose estimation network (with the relaxed confidence,
lower number of people, and an increased detection batch).
This sub-sampling would effectively reduce the pose redun-
dancy and decrease the latency of the overall pipeline. With
these changes, we got the video estimation down to 1 second
for a 4 second long *.webm file (with added time for the
ffmpeg call with the sub-sampling). This finding not only
advocates for AlphaPose over OpenPose but also AWS over
local computation.

C. Node vs. Flask

The tricky part of the UI was in determining how to build a
tool that allows us to respect the interface of the server whilst
being agile to deploy on the web. We initially used no web-
backend. As researchers and full stack developers, our web
development experience was mediocre at best. We found that
HTML and CSS alone for a website would be insufficient for
end users even if our backend and video pipeline was blazing
fast. To that end, we began to learn and leverage web backends
that adhere to a particular server client relationship. We started
by using Node.js alone in the HTML/CSS framework itself.
Unfortunately this suffered from multiple issues. Firstly, we
struggled to gain root access to the web camera and then
failed in capturing/saving the given video. Moreover, we also
struggled when developing with respect to the server-client
relationship.

With the issues of Node.js adding up, we decided to switch
over to the Flask framework: a classic web development
framework that would give us the agility we need to develop a
server-client API that makes it easy to download/save videos
and to initiate a bash script that sends the requisite files to
AWS for computation. With Flask, we not only had an easier
time implementing our KUB front end but also had a smoother
experience in integrating it with our AWS instance, where
AlphaPose was running for pose estimation. We used another
bash script to run the corrections which then return to the Flask
framework where the corrections are displayed with relative
ease. In essence, switching to Flask instead of Node made
integration with our robust back end feasible.

V. SYSTEM DESCRIPTION

On a high level, our system has to accomplish a few things:

1) Capture a video feed of the user

2) Extract pose estimates from the user feed

3) Compare the user poses with stored instructor poses

4) Decide what movements need the most immediate cor-
rection

5) Communicate the feedback to the user

A. Video Feed

The video feed for our project is captured by whatever
camera is on the user’s device. For our purposes, we are using
the stock Macbook Pro web camera since we would like to
ensure that this works even with low quality web-cameras.
However, the program works with any web-camera.

B. Pose Extraction

We initially thought that we would be using OpenPose
as our estimation algorithm. We then briefly changed to
PoseNet due to its ease of use, but ultimately settled on
using AlphaPose since it provided robust pose estimations that
were computed quicker than the above methods with higher
confidence.

During the project design phase we also had envisioned the
program running solely on the CPU. However, we quickly
realized that that would be much too slow for a user to wait
for. Therefore we moved the pose calculations to a AWS
instance that we communicate with through our application.
The system sends the user video to the instance after it has
finished recording, waiting for the estimation to finish and for
the JSON file containing the pose estimates to be sent back.

C. Comparison and Feedback

Once the JSON is received by the application, it runs the
algorithms outlined above to calculate the corrections for the
user. For still poses, the application only does a single pose
comparison between between the user image and the instructor
pose. However, for dynamic movements, the application runs
the frame matching algorithm to find the frames within the
user feed that are most similar to the key frames, and then run
the image corrections between each of these pairs.

The corrections are saved locally as images, and are piped
into the UI via the Flask framework.

D. Data Creation and Storage

In order to conduct the comparisons, we needed a large
amount of instructor data. This is in order to get a better
sampling for the variance and mean of each joint within a key
frame or pose. We gathered this data by asking several dancers
to come to a controlled environment where we could guarantee
that there would be no interference from other people entering
the frame or from poorly lit/colored areas affecting the pose
estimation. We then asked each dancer to perform moves from
a given list multiple times apiece. We recorded each move, and
asked that the dancers repeat any moves they thought were off.

CPU

webcam

FFMPEG conversion of .webm to .mp4

AWS Instance
w/ GPU

.npy mean/std

Repository of of key frames

collected trainer

poses of key frames

Frame matching

.

Extract
poses with
Alphapose

list of
matched frames

correction
imagss/text
Pose correction

Fig. 5. Block diagram of system components

We ran both the still as well as the videos through the pose
estimator to convert them to raw poses. We then converted
them further into the angular domain. For the images we took
the variance and mean of the data for each of the poses and
stored them in our database based on their move type. For the
videos we had Kristina label the number as well as the location
of the key frames. We then took the mean and variance of the
angles for the key frames and saved them in our database.

E. Flask Framework

We previously thought that we would be creating our appli-
cation without a framework. However, we ran into issues with
accessing local files, as well as running certain backend python
scripts. In order to fix these issues we ported our application
to the Flask Framework that runs on python. This enabled us
to execute our backend scripts in a much more simplistic way,
and allowed us to access our downloads in which we were
storing the user images and videos. Flask further allowed us
to test and deploy our design faster, allowing us to iterate more
quickly.

F. AWS Instance

We realized running AlphaPose locally was quite expensive
and time consuming. We then updated our pipeline to run on
an AWS instance. In the end, this updated video pipeline ran
in 11 seconds total (including up-down to the instance and
ffmpeg) and ran in 8 seconds for an image. Unfortunately, the
AWS instance we used for this was a P3 instance (which had

an unsustainable cost of $12/hr). So we settled for the normal
P2 instance (which had a cheap cost of $0.90/hr). This pipeline
on the P2 ran a video through in 15 seconds and an image
through in 9 seconds. Both of these times far surpassed our
original metrics.

VI. USER INTERFACE DESIGN

Let’s imagine user Bob as he interacts with KUB Trainer.
When he first opens the web application, he is welcomed and
is asked to select which dance pose or movement he wants
to learn. He decides to choose the first arabesque tendu pose
and is then taken to a screen with a demonstration of the
pose by KUB. Bob changes his mind, and decides to choose
a different pose. He goes back to the initial selection screen,
but decides to choose the same pose again. After watching
KUB perform the pose he wants to learn, he’s ready to do the
pose. He starts the pose capture and is given 10 seconds to
back up from his web camera and to get into clear framing AS
the countdown ends, he tries to copy KUB’s demonstration,
which is still up on the screen next to his own camera feed that
acts as both a mirror and a way to record his joint data. After
up to 30 seconds, KUB gives him a correction. Bob wants
to see KUB demonstrate once again to better understand his
correction, so he goes back to the earlier screen where KUB
performs his pose. He gets a better visualization of what his
first arabesque tendu should look like, so he tries the pose
again. This time, he gets a different correction and chooses
to try another time, applying this new correction. After being

Choose another pose

P Choose another pose

v
K I e Hatorateaainge teaivar X) 7| Sk e o

Welcome leasechaose a dance position or mavement o eam.

Choose another pose
Choose another pose

g

[

Run
correction

r*
bl 2088

K K e atorateeDline it X)

o et

Do pose

—y

Rewatch

Redo movement
Record movement
Rewatch

X I e oo ok X)

Fig. 6.

satisfied with his performance on the current pose, he decides
to try something new and goes back to the initial selection
screen. Bob wants to try a dance movement instead of a pose
this time, so he chooses a different movement than before.
He is guided to a similar KUB demonstration, except this
time KUB also specifies key frames that Bob should focus on
hitting throughout the movement. After the same countdown
as before to perform the movement, he performs the new
movement as KUB’s demonstration plays for reference. KUB
gives him a corrections on each of the key frames of his chosen
movement up to 30 seconds after he completes the movement.
He continues using KUB Trainer to learn how to dance.

Our Ul is designed to have as few moving parts as possible
so that the user can delve into learning their movements
without having to learn how to use the app first. The app
consists of 4 main pages.

The landing page simply show the moves that we currently
have available, separated into categories of dance poses and
dance movements. Next to each option, we have an example
image of what each pose is, or an example image of one of
the key frames of each movement.

Once a user selects a particular move, it takes them to the
instruction page for that movement. Here, they are able to see
a demonstration from the instructor as either a picture of the
pose or a video of the movement. These are shown mirrored to
the user so that the screen acts the same way as a mirror in a
dance studio would. For movements, they can also learn what
the key frames are, which are basically the important poses
the chosen movement goes through that the user should focus
on hitting. The user may decide to return to the movement

Redo movement

User flow

selection page at any point, allowing them to change their
move.

Once the user is satisfied that they know what to do, they
can select the "DO POSE” option that takes them to the
performance page. Here, the user can still view the KUB
demonstration, but can also view themselves in a mirrored
video feed. When ready, the user initiates the count down
of 10 seconds, backs up from the web camera, and makes
sure all of their joints are within the frame. At the end of the
countdown, a picture is taken for poses or a video is taken for
movements as the demonstration video plays. Once the media
is captured, it gets saved and the user can start the correction.

The program calculates what instructions need to be made.
When calculation is done, the user is taken to a new screen
with visualizations of the corrections. Dance movements show
up to four corrections for each key frame whereas dance
poses show up to four corrections for the individual pose.
Afterwards, the user can either choose to repeat the movement
or return to the home page to choose another movement.

VII. PROJECT MANAGEMENT
A. Schedule

In our original schedule from the design report, we allotted
some slack time at the end to account for tasks that took longer
than predicted, and the slack time only ran until the final
presentation instead of the final demonstration. Throughout
the course of the semester, some of the initial tasks laid
out took longer than predicted, either due to them being
more complicated than initially thought or due to project
members’ busy schedules. More tasks also were added as

2/3 2/10 2/17 2/24 3/3 3/10 3/17 3/24 3/31 4/7 4/14 4/21 4/28 5/5

Proposal Presentation [
Design Presentation [|
Pose Detection and camera integration [
Pose Detection testing [|
System Design |]
Integration testing]
Application testing]
User feedback/validation]
Final demo! | |
Ul Design]
Gather expert data - Poses []
Ul Implementation []
Gather expert data - Movements |]
Ul Polish |]
Webcam picture and video capture |]
Integration - Ul Framework change |]
Integration - Attach front and back end |]
Aggregation metric design |]
Ground truth aggregation]
AWS set up |]
Running pose estimation on AWS |]
Webcam access with AWS []
AWS speed up testing |]
Integration - AWS to run correction |]
Pose model tuning |]
Joint variance ranking |]
Joint direction detection I
Correction visualization |]
Feedback correction database []
Feeddback refinement []
Frame matching algorithm design |]
Integration - Python correction script []

Fig. 7. Schedule

AWS Service Charges $91.65
» Data Transfer $0.00
~ Elastic Compute Cloud $91.65

» No Region -$176.59
~ US East (Ohio) $268.24
Amazon Elastic Compute Cloud running Linux/UNIX $265.08
$0.90 per On Demand Linux p2.xlarge Instance Hour 46.946 Hrs $42.25
$12.24 per On Demand Linux p3.8xlarge Instance Hour 13.028 Hrs $159.46
$3.06 per On Demand Linux c5.18xlarge Instance Hour 0.626 Hrs $1.92
$3.888 per On Demand Linux c5n.18xlarge Instance Hour 0.281 Hrs $1.09
$4.56 per On Demand Linux g3.16xlarge Instance Hour 12.877 Hrs $58.72
$6.912 per On Demand Linux r5d.24xlarge Instance Hour 0.237 Hrs $1.64
EBS $2.37
$0.00 for 14000 Mbps per c5.18xlarge instance-hour (or partial hour) 0.626 Hrs $0.00
$0.00 for 14000 Mbps per g3.16xlarge instance-hour (or partial hour) 12.877 Hrs $0.00
$0.00 for 14000 Mbps per r5d.24xlarge instance-hour (or partial hour) 0.237 Hrs $0.00
$0.00 for 7 Gbps per p3.8xlarge instance-hour (or partial hour) 13.028 Hrs $0.00
$0.00 for 9000 Mbps per c5n.18xlarge instance-hour (or partial hour) 0.281 Hrs $0.00
$0.05 per GB-Month of snapshot data stored - US East (Ohio) 3.344 GB-Mo $0.17
$0.10 per GB-month of General Purpose SSD (gp2) provisioned storage - US East (Ohio) 21.976 GB-Mo $2.20
Elastic IP Addresses $0.79
$0.00 per Elastic IP address not attached to a running instance for the first hour 1 Hrs $0.00
$0.005 per Elastic IP address not attached to a running instance per hour (prorated) 158 Hrs $0.79

Fig. 8. Bill of Materials

we implemented more features, went through testing to meet morphed and changed along with our tasks, responsibilities,
our metrics, found bugs and problems along the way, and and personal schedule to ultimately cover the extra week
polished the application. Due to all of this, our project schedule between presentations and demonstrations. Also, all of our

initially planned slack time was spent working on these extra
tasks and on integration. See Figure 7 for a breakdown of the
final schedule.

B. Team Member Responsibilities

To divide up the work, Kristina was mainly in charge of the
web application design and implementation, which includes
getting user feedback to iterate on both the UI design and the
instructor feedback and making sure all the UI elements work
and flow together. She also worked with Brian to integrate the
algorithms and data with the front end, making sure the back
end scripts had access to local files and could run properly.
She was also responsible for gathering the expert dance trainer
data as well as identifying key frames of each movement, since
she has the dance expertise.

Brian and Umang worked on the algorithm design and
implementation, as well as the data pipelining. While they
mostly worked together, Umang focused more on designing
the aggregation metric and aggregation of the ground truth
data that Kristina gathered, as well as the language model
that translates the raw joint correction into an understandable
statement. Umang also generated the aforementioned z-scores
and took the lead on our AWS integration. That included
running initial tests to see if AWS would give us the necessary
speed up, setting up the instances for our script to run, and
editing the script to work with AWS. Brian focused on the
joint-specific tasks of getting the joint variance ranking from
those z-scores Umang generated, detecting and displaying the
direction of joint correction, the sign of the « value, and
running the algorithm in script form that could be called
from the front end. He took the lead on the design and
implementation of the temporal variant of our procedure, with
the frame matching algorithm and updating his correction
algorithm to work on videos. Brian and Kristina also worked
together to integrate her front end with his back end.

All team members worked together to test integration, the
actual correction of joints, and the overall application. All
team members, of course, also worked together to create all
presentations, reports, and posters about our project.

C. Bill of Materials

KUB is a web application using a Flask Framework with
JavaScript, HTML, and CSS. The PyTorch version of Alpha-
Pose, a multi-person pose estimator, is used to detect and
track location and movement of joints of a person from a JPG
picture or MP4 video and to save the information in JSON
format. Algorithms and processing are written in Python. A
MacBook Pro 2018, 2.2 Ghz, i7, 16GB RAM, 256GB SSD and
its web camera is used to run the web application. Processing
of pictures and videos are done on an AWS instance in order
to utilize a GPU to optimize AlphaPose’s runtime. See Figure
8 for a breakdown of AWS service charges from both testing
and demonstration.

D. AWS Usage and Thanks

We would like to thank Amazon for donating AWS credits
to us for the development of our project. The credits were spent

on accelerating our AlphaPose pose estimation script so that
we could return our dance corrections in a reasonable time.
We consumed the entirety of the 200 allotted dollars (plus a
bit more on accident). The speed up ended up being a very
crucial element of the project.

E. Risk Management

For risk management, we had a pretty loose strategy that
worked well with our group’s communication style and over-
all approach to the project. Our biggest risk was our own
individual commitments taking up time to work and ease to
work together. Between extra-curricular activities that take up
odd hours of the day and week, research conventions and
presentations, many Ph.D visits, and a full course load, we
had to communicate, plan, and schedule well in order to get
our tasks completed.

Another big risk that would affect performance of the
project was the pose estimation processing speed. Once we
realized that this was an issue, it became the highest priority
task in order to mitigate the issue. We were able to alter our
design to incorporate AWS for the desired speed up without
too much negative affect on the rest of the project.

Once we realized we had to use AWS, a risk that arose was
that we actually had to track budget. In our original design,
the only possible cost for the project was an external web
camera, but early testing led us to decide that our laptop web
camera was sufficient for our use and easier for a user. Once
we introduced AWS, however, we had to track usage and cost,
making sure to turn off instances when they were unneeded.
We knew it would be too easy to over-spend, so it again
became an important task to monitor this.

A final risk affected integration, and that was that we
had different developmental tools. Two members were using
Macbooks whereas one member was using a Windows laptop.
Since we knew this from the beginning, we made sure to be
aware and familiar of what methods and work-arounds were
system-specific so that it wouldn’t be as big of an issue during
integration.

VIII. RELATED WORK

When we first created our project idea, we looked at other
applications on the market that were in a similar field: giving
you at home access to a personal trainer in a physical activity.
Most of these applications were created to have a database of
workouts a user could choose from that fits their desired fitness
goals and level of experience. Some of these also tracked
users’ workouts so a user could see statistics and log their
exercise. This was the first “type” of application we found,
and was the most abundant. The second “type” is what we
accomplished in our project: an application that gave feedback
and corrections to the user like an actual personal trainer
would. We found only one that accomplished this goal, and it
had its own constraints in that the speed at which you perform
each movement had to be the same as the on screen visual or
else there would be no useful feedback. In our application’s
specific field of dance however, only a couple applications of

“type” 1 exist and we found none of “type” 2. So while there
are other applications on the market in a related field, there
aren’t any that are too similar.

In our capstone class however, there were two other similar
projects. One was for weight-training and fitness and one was
for yoga. Both offered corrections, but all three were different
in implementation and presentation. It was fun to see the
difference and similarities in how we all approached a similar
problem.

IX. SUMMARY

Overall, our system did meet the design specifications that
we set, and our project does work the way we intended. With
our budget and time, we of course are limited in the speed
of processing; a more expensive machine on AWS and a lot
more work on our part would result in faster processing, but
for the time frame and our budget, our system runs an average
15 seconds in processing videos, which is already significantly
under our 30 second specification. If we were to have more
time, it would be effective to speed up our current processing
time.

We also limited the number of dance poses and movements
that our system supports in order to account for time and
access to gather expert trainer data, the amount of time needed
to test our correction algorithms on each of the poses, and
the time needed to design and implement UI to accommodate
many more pose and movement choices. With more time, we
could increase the number and difficulty level of poses and
movements included in the system to allow for greater variety
and to allow more experienced dancers to also benefit from
the application.

Another limitation is with our training data, since we were
starting from scratch. While the data we do have includes
very experienced dancers, they are not professional ballerinas
performing all of these ballet moves. With more time, we
could gather more data to add to our data set, and with even
more time, we could even include professionals in the data.
This would add a level of qualification and authority to the
corrections and feedback given to the user.

After a semester of working on a new project with new
teammates, we have learned a lot of lessons that others could
take away from. A project management lesson we learned is
that every task takes longer than you think it will, especially
since we are students and have a split workload instead of
full-time employees that dedicate 40 hours a week to create
products. Even if you think or know that one task will take
a certain amount of time, budget for more because you never
know what will pop up during the time frame allotted for each
task. Also, it would be useful to use a form of scheduling
that works for the team itself, instead of using the format of
schedules that is required from the class. Even though we were
warned about it, our team also faced a lot of integration issues.
Specifically for us, we found that if we had documented our
software dependencies and had done more testing on our own
components, integration would have been less problematic.
Lastly, know how each teammate operates. All three of us are

constantly late, so we learned throughout the semester that we
should set meeting times much earlier than when we think we
should start working so that we are actually productive in the
time we allotted.

REFERENCES

[1] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh.
Openpose: Realtime multi-person 2d pose estimation using part affinity
fields. CoRR, abs/1812.08008, 2018.

[2] Yuliang Xiu, Jiefeng Li, Haoyu Wang, Yinghong Fang, and Cewu Lu.
Pose flow: Efficient online pose tracking. CoRR, abs/1802.00977, 2018.

[3] Bo Pang, Kaiwen Zha, and Cewu Lu. Human action adverb recognition:
ADHA dataset and A three-stream hybrid model. CoRR, abs/1802.01144,
2018.

