

KUB Application

Our problem: Learning to dance is time
consuming, expensive, and often
inaccessible to everyone.

Our Application: A portable dance trainer
that can offer corrections on the go.

Solution

Web Application
JavaScript, Node.js, HTML, CSS

AlphaPose PyTorch version

AWS for accelerated pose capture —

Python function library

Approach

CPU AWS Instance
w/ GPU

webcam
FFMPEG conversion of .webm to .mp4

>

Extract
poses with
Alphapose

|poses

.npy mean/std list of correction

matched frames i
et Frame matching Pose correction imegesios
of key frames

Repository of
collected trainer
poses

Instructor’s Pos:

Demo
User chooses what dance step to learn
Fifth position arms

Passé

First arabesque tendu
Port de bras

Demi plié in second position instructors Pose

KUB Trainer shows the movement
User performs movement
KUB Trainer gives back feedback

Well done! We saw nothing wrong with your movement.

Your Pose

straighten your left elbow slightly

Metrics and Validation

Pose Estimation

Requirement: Accurately estimate pose from a video of roughly one hundred frames in
under thirty seconds; Ensure joints are estimated correctly and extracted poses fall
within the confidence interval in question.

Validation: We measure response time with every run and average the confidence
estimates from every frame to get the confidence of the pose estimation of the video

Metrics and Validation

Feedback Quality

Requirement: Monitor feedback correctness (how accurate was the suggested

feedback), feedback relevance (how relevant was the suggested feedback), and
feedback clarity (how clear was the suggested feedback).

Validation: We survey dancers (after every move) to score the correctness, relevance,
and clarity of the feedback from 1 (Low) to 5 (High).

Metrics and Validation

Ul Experience

Requirement: Monitor ease of Ul use (how easy is the Ul to use), Ul flow (how intuitive

is the Ul to use), and Ul design (how well is the Ul designed).

Validation: We survey users to score the ease, flow, and design of the Ul from 1 (Low)

to 5 (High) after they perform and correct five moves.

Project Management

2/3 2/10 2/17 2/24 3/3 3/10 3/17 3/24 3/31 4/7 4/14 4/21 4/28 5/5
Proposal Presentation [l
Design Presentation [
Pose Detection and camera integration]
Pose Detection testing]
System Design |

Integration testing
Application testing

O —
|
User feedback/validation |
 ———
|
|
=1

Final demo! B
Ul Design |
Gather expert data - Poses I
Ul Implementation | —— i Team
Gather expert data - Movements]

Ul Polish ||
Webcam picture and video capture]

Integration - Ul Framework change

M Kristina

B Umang

Integration - Attach front and back end

Aggregation metric design I
Ground truth aggregation e . B ri an
AWS set up |]
Running pose estimation on AWS [
Webcam access with AWS I

AWS speed up testing]
Integration - AWS to run correction
Pose model tuning |]
Joint variance ranking []
Joint direction detection [—

Correction visualization —
Feedback correction database —

Feeddback refinement | |
Frame matching algorithm design]

Integration - Python correction script

| essons Learned

e Everything takes longer than you think it will
o Schedule more time than you predict
o Gantt charts are hard to follow
® Integration causes problems
o Document software dependencies
o Test that components work beforehand
e Set meeting times 30 minutes earlier if you know everyone always runs late :)

