
Team D4: KUB Design Document

Kristina Banh, Umang Bhatt, Brian Davis
Department of Electrical and Computer Engineering

Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
Email: {kbanh, umang, briandavis}@cmu.edu

I. INTRODUCTION

KUB is a personalized and portable dance trainer that’s
able to view your movements and offer corrections on a set
of moves. Learning to dance is not only difficult, but also
expensive and inconvenient as you typically have to commute
to a dance studio in order to take class. This makes it harder for
an aspiring or beginner dancer to start dancing, and harder for
experienced dancers to continue dancing. KUB solves these
problems by being accessible and being much less expensive
than conventional teaching options.

Currently, there is an application that utilizes a similar
technology and method as a trainer, but it’s for working out
as opposed to dance. There are also dance games that ”teach”
dance moves, but they offer no correction aspect and dont
actually teach the movement very well since its purely for
entertainment. This gives KUB an advantage edge as it is an
application in a new field. KUB approaches dance correction
using joint variance ranking, which automates the correction
with a trainer feedback goal of 5 seconds after a movement
is complete. This feedback should be relevant, correct, and
useful to the user, with a 4 out of 5 average ranking goal
from beginner to experienced dancers.

II. TECHNICAL PROCEDURE

In this portion of the document, we will review the core
design of the pose estimation pipeline. First, we will describe
how we get the angular ranking Φ from a frame V . Then, we
will describe how pick the angle φj to correct.

First let us introduce some notation. Let V be a video feed
from a user. Let V1, . . . , Vt ∈ V be the t frames of the video
feed. Without loss of generality, let us fix a frame V , which
would be a still image; this allows us to avoid the temporal
nature of pose correction to start.

A. Angle Estimation

For our purposes, we identified that mapping the pose into
the angular domain will give us a much better representation of
the user’s pose characteristics than simply using the 2D points.
It also allows us to bypass the issues of scale and translation
that the Euclidean space suffers from. By identifying the
angles between joints, we no longer have to require the user
to be centered in the same way as our example data, and
we are able to remove the issue of user height entirely. It
also simplifies our problem very nicely without the loss of
important information.

Given V , we identify the user’s pose via Google PoseNet,
f(V) = P ∈ R12×2. PoseNet gives us one tuple pi = (xi, yi)

Fig. 1. Labeled Joints

for each joint i. See Figure 1 for details on all twelve joints,
where the top left of the image is considered (0, 0) and the
bottom right is considered (w, h). Note that we are dealing
with pose estimation measures in a 2D plane and that we are
not retraining Google PoseNet; rather, we are using Google’s
pretrained weights for inference.

We identify ten angles for our angular ranking Θ ∈ R10, as
shown in Figure 2. In Table I, we show the three joint tuples
pi, pj , pk ∈ P used to find all ten angles, θi ∈ Θ. The joints
are written in the following format: Source (S), Pivot (P), and
Target (T). If we assume a triangle between SPT, we want to
identify the angle at P to be θ, as shown in Figure 5. Since
we have three points in Euclidean space, we want to find the
distance between S and P: DSP, between P and T: DPT, and
between S and T DST. We can do this with any real valued
distance metric, d. For example, we can let d be the `2 distance
(which would be the norm of the displacement vector between
two points in 2D), resulting in the following.

Fig. 2. Labeled Angles

Fig. 3. Diagram of angle components

DSP = d(S,P)

=
√

(xs − xp)2 + (ys − yp)2

= ‖S − P‖2
We will also to try out the following distance metrics to see

if the angles between certain joints are more sensitive when
we use different distance metrics to get the side lengths of
triangle SPT.

This would be formulation for the Chebyshev distance,
which would give us the greatest difference along any dimen-

sions (x or y).

DSP = d(S,P)

= ‖S − P‖∞
= max(|xs − xp|, |ys − yp|)

This would be formulation for the Manhattan distance,
which would give us the sum of the difference along all
dimensions.

DSP = d(S,P)

= ‖S − P‖1
= |xs − xp|+ |ys − yp|

We will use the same distance metric d to get all side
lengths. Once we have DSP, DPT, and DST, we will solve the
following to get θ, which follows from the Law of Cosines.
We first present a general vectorized formulation, followed by
a formulation specific to the Euclidean space.

θ = arccos

(~DSP · ~DPT

‖ ~DSP‖‖ ~DPT‖

)

= arccos

(
D2

SP +D2
PT −D2

ST

2DSPDPT

) (1)

ANGLE (θ) SOURCE (S) PIVOT (P) TARGET (T)

θ1 LH LE LS
θ2 LE LS LHI
θ3 RE RS RHI
θ4 RH RE RS
θ5 LHI LK LF
θ6 RHI RK RF
θ7 LS LHI RHI
θ8 LHI RHI RS
θ9 RS LS LHI
θ10 RHI RS LS

TABLE I
COMPREHENSIVE SOURCE, PIVOT, AND TARGET SPECIFICATIONS FOR

EACH TRACKED ANGLE

After consulting with dancers, we learned that it would be
difficult to ask a dancer to correct their left hip (θ7, the angle
between one’s torso and hip line) separately from their right
hip, or their right shoulder (θ10, the interior angle between
one’s torso and shoulder) separately from their left. As such,
we need to edit our angle vector to be the combination of
both, ΘOLD. We define the following two angles.

θ7′ = θ7 − θ8

θ8′ = θ9 − θ10

As such, we define an angle vector Φ ∈ R8, where we the
first six elements of Φ and Θ are the same and then we set
φ7 to θ7′ and set φ8 to θ8′.

B. Angle Correction

Once we identify Φ for the current frame V , we need to
rank all eight angles by how much they vary from the expert
ground truth, E. Let Ua,1, . . . , Ua,t ∈ Ua be video frames
from expert a. Let Ua,t be the same frame as frame Vi from
the user. Using Equation 1, we can find the expert angle vector
Φa ∈ R8.

Since any angle vector Φ is invariant to scale or translation
along the 2D plane of the frame, we take an expectation of
angle over all experts performing a given pose, irrespective
of whether the angle vector estimates come from the same or
multiple instructors. Let U be the set of k expert video feeds.
We can get an aggregate expert angle vector, E = Φagg ∈ R8,
by taking the empirical mean of all angle vectors from the k
experts.

E = Φagg =
1

k

k∑
i=1

Φk

Our goal is to find how much Φ differs from E and in
what elements they differ: we will correct the dimension along
which they differ most. To better identify which dimension of
Φ to correct, we need to make stronger assumptions.

First, since we have k expert angle vectors, we actually have
a distribution in the space of angle vectors. If we assume a
normal distribution over the angle vectors, then we can assume
the following:

Φk ∼ N (µ,Σ)

Thus, the mean vector µ ∈ R8 contains the mean value
for all eight angles of interest in the expert distribution and
the covariance matrix Σ ∈ R8×8 contains the variance for
the eight angles of interest along the diagonal. Therefore, let
ρ = diag(Σ) ∈ R8.

We can then rewrite each element of our user angle vector,
Φ, in terms of the expert mean and expert standard deviation,
effectively finding z-scores in the statistical sense.

φi = µi + αi(
√
ρi)

αi =
φi − µi√

ρi

We are left with eight scalar α values each representing
how many standard deviations away from the expert a user
lies. We then identify which user angle differs most from the
expert distribution: this is the angle we want to correct.

φfix = φi ∈ arg max
i

|αi|

In order to prompt the user to correct her behavior, we need
to tell her which joint to correct and how to correct it. To
start, we fill in the statement below, replacing [DIRECTION]
with either “Increase” or “Decrease” and replacing [JOINT]
with the joint name from Table II. To get the direction of the
correction, we leverage the sign of the α value in question:
positive alpha corresponds to ”Decrease” and negative alpha

ANGLE (φ) JOINT OF INTEREST SUPPORTING JOINT

φ1 RIGHT HAND RIGHT ARM
φ2 RIGHT ARM TORSO
φ3 LEFT ARM TORSO
φ4 LEFT HAND LEFT ARM
φ5 RIGHT LEG RIGHT FOOT
φ6 LEFT LEG RIGHT FOOT
φ7 HIPS N/A
φ8 SHOULDERS N/A

TABLE II
ANGLE-JOINT NAME MAPPING

corresponds to ”Increase”. This output is then sent to a Text-
To-Speech engine to then play back to the user.

“[DIRECTION] the angle between your [JOINT]
and your [SUPPORTING JOINT]”

If φ7 or φ8 need to be corrected, we will use the following
verbiage.

“Level your [JOINT]”
In essence, we take advantage of the variance in the expert

angle distribution to chose which joint to correct. We then
leverage that variance ranking to correct the user’s pose. Every
time the user provides a frame V we correct at most one joint.
To facilitate termination, we impose a lower bound on |αi|.

If |αi| ≤ ε holds, then we do not consider correcting the
i-th angle. We intend to set epsilon to 1: this implies that
we will only correct movements to be within one standard
deviation of the expert mean. Once all eight angles satisfy
the aforementioned condition, we will show the following
message.

“Great job, you’ve mastered this pose!”

C. Temporal Pose Estimation

Our stretch goal involves scaling from one frame V to a
sequence of frames V1, . . . , Vt. In order to meet this goal, we
have to make a handful of edits to the still image estimation
described above. We need identify a frame matching procedure
and then selection for a frame to correct. For now, let us
assume that frame matching is done via the user interface
(we will have a metronome and instructor video to ensure that
the user aligns their movement with that of the instructor).
For every user frame Vj , we calculate a set of eight α values
using the procedure described above. Thereafter, we select the
largest αi value from all possible frames t.

φfix = φi ∈ arg max
i∈[8],j∈[t]

|αi,j |

We repeat this process until all frames are within one
standard deviation of the expert mean at that frame.

III. SYSTEM DESIGN

On a high level, our system has to accomplish a few things:
1) Capture a video feed of the user
2) Extract pose estimates from the user feed

Fig. 4. Block diagram of system components

3) Calculate the distance between the user pose estimates
and the stored examples for the given movement

4) Decide what movements need correction the most
5) Communicate the feedback to the user

The first requirement will be satisfied by the web camera
in whatever device the user is using our application. For our
purposes, we will mount the 1080p streaming camera listed in
the Bill of Materials for better quality. However, the program
will work with any stock web-cam.

The second step will be accomplished using PoseNet. It
can be run locally on a CPU, though we will ultimately try
to utilize our access to Titan X GPUs to speed up as well as
increase the performance of the pose estimates.

The poses are extracted as a JSON object, which we will
then pass to our distance calculator written in python. This
function will extract the angles from the pose, and determine
the difference between them and the corresponding frames
stored in memory for the given movement. These differences
will be ranked using the method discussed, and will return the
highest ranked difference between the user movement and the
instructor’s.

This difference will contain information about the joints that
need to be corrected, and will be passed to a python script that
contains a dictionary that maps this difference to a text script
that the user will be able to understand. Finally, this script will
be passed to the text to the Mozilla text to speech engine and
spoken aloud to the user. The script will also be displayed on
screen for the user to review.

IV. USER INTERFACE DESIGN

Let’s imagine user Bob as he interacts with KUB Trainer.
When he first opens the web application, he is welcomed and
is asked to select which dance pose or movement he wants
to learn. He decides to choose the first arabesque tendu pose
and is then taken to a screen with a demonstration of the
pose by KUB. Bob changes his mind, and decides to choose
a different pose. He goes back to the initial selection screen,
but decides to choose the same pose again. After watching
KUB perform the pose he wants to learn, he’s ready to do
the pose. He chooses to ask the application to wait 5 seconds
so he can back up from his web camera and get into the
correct frame. Once the countdown ends, he tries to copy
KUB’s demonstration, which is still up on the screen next
to his own camera feed that acts as both a mirror and a
way to record his joint data. After 10 seconds, KUB gives
him a correction. Bob wants to see KUB demonstrate once
again to better understand his correction, so he goes back to
the earlier screen where KUB performs his pose. He gets a
better visualization of what his first arabesque tendu should
look like, so he tries the pose again. This time, he gets a
different correction and chooses to try another time, applying
this new correction. After being satisfied with his performance
on the current pose, he decides to try something new and
goes back to the initial selection screen. Bob wants to try a
dance movement instead of a pose this time, so he chooses
a different movement than before. He is guided to a similar
KUB demonstration, except this time KUB also has counts

Fig. 5. User flow

associated with where Bob’s joints should be at a certain time.
After the same countdown as before to perform the movement,
he performs the new movement with the counts he hears.
KUB gives him a correction 10 seconds after he completes
the movement. He continues using KUB Trainer to learn how
to dance.

Our UI is designed to have as few moving parts as possible
so that the user can delve into learning their movements
without having to learn how to use the app first. The app
consists of 3 main pages.

The landing page will be very minimalistic, and will simply
show the list of moves that we currently have available.
One we have different categories of moves, it will show the
categories first, and will reveal the moves when the dropdown
is clicked. Next to each move we will have an example image
of what the instructor looks like while performing it.

Once a user selects a particular move, it will take them
to the instruction page for that movement. Here, they will be
able to repeatedly watch the instructor perform the movement.
They will also be able to set the amount of time the program
will wait for them to get ready to perform the movement
themselves. The user may decide to return to the movement
selection page at any point, allowing them to change their
move.

Once the user is satisfied that they know what to do. They
will select the ”DO POSE” option that will take them to
the performance page. Here, the program will count down
the amount of time that the user specified it to wait. Then,
it will announce the start of the move and record the user’s
performance. There will be a side by side split between the

instructor performing the pose, and the user’s video feed. We
expect them to perform the pose at the same speed as the
instructor, and the instructor video will help them align it
perfectly.

Once recorded, the program will calculate what instructions
need to be made, and show/announce the corrections that need
to be made. Afterwards, the user can either choose to repeat
the movement, watch the instruction video again, or return to
the landing page to choose another movement.

V. VALIDATION AND TESTING

Dancing in general is a very qualitative activity, and is
hard to put hard quantitative measurements on correctness.
Therefore, we will mostly rely on human feedback to test
the correctness of our application. This is especially important
since the app is entirely user-centric and will need to be tuned
to ensure that it provides a suitable user experience.

There are three main metrics that need to be tested for this
app to be successful. The first is for the feedback produced
by the application to be useful, and faithful to what a trained
dancer would also give. The second is for the app to provide
a friendly user experience that is easy to navigate, and simple
to follow at a glance. Lastly, we need to ensure that the app
is reliable, and is able to perform consistently without error.
By focusing on these three metrics, we hope to provide an
application that is able to consistently provide feedback that
is useful for a user to improve, in a way that is easy to interpret
and navigate.

Fig. 6. Schedule

Fig. 7. Bill of Materials

A. Instruction Feedback

Since the ultimate goal of this application is to fully
replace the need for an instructor, it must be able to provide
instructions that are as useful as those that a paid instructor
would provide. For example, we would not want the app to be
critiquing a subtle misalignment of the user’s foot when there
is a larger postural correction that needs to be made first. In
other words, we need to be able to evaluate that the way in
which the application ranks the importance of correcting each
joint is consistent with the rankings of a trained dancer.

The only way that we see to accomplish this is through
surveying real trained dancers. Luckily, since Kristina is a

trained dancer, we will have her guidance during the execution
phase to keep us grounded. For further feedback, we will poll
10 other trained dancers and have them rate the feedback in a
few categories. The categories will be:

1) Feedback correctness
2) Feedback importance
3) Feedback clarity
Feedback correctness refers to the binary judgment of

whether the feedback we provide is correct or not. An example
of incorrect feedback would be if we tell the dancer to raise
their left arm more when in fact they needed to lower it.

Feedback importance refers to the degree to which our

feedback will actually help the user. This is linked to whether
or not we are able to properly rank how important each of
the joints are to a move. Ideally, we would like to correctly
diagnose the most important issue that the dancer needs to
work on, while not mentioning the finer corrections until those
have been worked on.

Feedback clarity refers to the ease at which the user is able
to understand the given feedback. This score will reflect how
clear the prose our app generates is, as well as the placement
of our feedback within the interface.

We will poll the dancers and have them rate us in each of
these 3 categories on a scale of 1 through 5. A successful mark
will be an average of 4 in each of these categories.

B. UI Design and Ease of Use

We would like to minimize the complexity of the interface
as much as we can so that a user is able to intuitively know
how to operate our program without any guidance. In order to
test this aspect of our app, we will be conducting user surveys
by having people of all backgrounds test the application with
no interjections from us. We will have the user go through
the entire cycle of starting the application, selecting a dance,
performing the movement, and receiving the feedback. We will
then have the user rate us in the following categories:

1) General ease of use
2) Application Flow
3) UI design
The first and most important category is how easy the app

is to use. This score will reflect the general attitude of the
user towards the application. It will reflect whether the user
had trouble navigating to the necessary objectives, and if they
were confused during the process. A score in this category
should be indicative of whether or not a user would use the
app again.

The second category will assess the flow of the application.
It will ask the user whether the links between different pages
is logical and well thought out. If a user thinks that it takes
too much effort to access a certain feature, or that there need
to be fewer/more connections between important pages, it will
be reflected in this category.

The last category will asses the design itself. It will include
what the user thinks of the layout of each individual page,
the placement of the camera/text, and whether the items are
segmented intuitively.

Similar to the feedback score, we will poll the users and
have them rate us in each of these 3 categories on a scale of 1
through 5. A successful mark will be an average of 4 in each
of these categories.

C. Consistency

This aspect of validation is more technical, and will not rely
entirely on user polls. Here, we will take a look at the rates at
which our programs successfully perform in various metrics.
While testing out applications of a similar scope, we realized
that a major problem some of them had was that they would
freeze in the middle of a movement and automatically restart,

or improperly capture movements and get confused. We would
like to minimize this confusion, and have developed 2 metrics
to counteract it.

The first metric measures the program’s ability to extract
all of the joints from a given image. In running PoseNet
solely on our CPUs, we noticed that in some frames joints
were not being detected properly, resulting in incomplete pose
estimates. A full pose it not necessary at every frame, as we
can fill in the information from previous frames. However,
having the joints makes the program more accurate. Therefore,
we will aim to have a 95 percent joint capture rate by tuning
the network parameters and utilizing GPUs.

The other metric relates to the overall speed of the per-
formance. We would like to be consistent in getting feedback
back to the user within 10 seconds. We agreed that 10 seconds
was the maximum wait time we would want to wait as users.
Therefore, for all moves, we would like to achieve a 90 percent
feedback rate within 10 seconds of the completion of the move.
If we can achieve these metrics, we can be sure that the app
will run consistently enough to be convenient.

VI. PROJECT MANAGEMENT

To divide up the work, Kristina is mainly in charge of the
web application design and implementation, which includes
getting user feedback to iterate on design, making sure all the
UI elements work together, and integrating the algorithms and
data with the front end. She is also responsible for gathering
the expert dance trainer data, since she has the dance expertise.

Brian and Umang are working on the algorithm design and
implementation, as well as the data pipelining. While they will
mostly be working together, Umang will be focusing more
on designing the aggregation metric and aggregation of the
ground truth data that Kristina is gathering, as well as the
language model that translates the raw joint correction into
an understandable statement. Umang will be generating the
aforementioned z-scores. Brian will focus on the joint-specific
tasks of getting the joint variance ranking from those z-scores
and detecting the direction of joint correction, the sign of the
α value. He will also lead our stretch goal by designing the
temporal variant of our procedure.

All team members will work together to test integration,
the actual correction of joints, and the overall application. See
Figure 6 for a breakdown of the schedule.

VII. BILL OF MATERIALS

KUB will be a web application using JavaScript, Node.js,
HTML, and CSS. PoseNet, a TensorFlow model, will be used
to detect and track movement of joints in real time and to save
the information in JSON format. Algorithms and processing
will be written in Python. A MacBook Pro 2018, 2.2 Ghz,
i7, 16GB RAM, 256GB SSD will be used to run the web
application and a Logitech HD Pro Webcam C920 will be
used as the web camera. For a stretch goal of better accuracy
and faster processing, two NVIDIA Titan X GPUs will also
be used to run the application. Mozilla TTS will be used as
the text-to-speech platform. See Figure 7 for specifics.

