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Abstract—When walkers and runners listen to music on their 
phone, they become distracted and disconnected from the world 
around them, and this lack of awareness can lead to trail 
congestion, unexpected collisions, and even dangerous motor 
vehicle accidents. Theia is a wearable system that detects an 
object approaching the user from behind, classifies it as either a 
car, a biker, or a pedestrian, and informs the user through their 
headphones. Three LiDAR sensors and a Raspberry Pi Cam are 
mounted on the user’s back for object detection and recognition, 
with the signal and image processing occurring on a Raspberry 
Pi held in a waist belt. User notification occurs through the Theia 
iOS application, which communicates with the Raspberry Pi 
through a Bluetooth Low Energy (BLE) connection. The system 
is powered using a 4000mAh Lithium Polymer Battery, with a 
total system battery life of over 7 hours.  
 

Index Terms—BLE, Image Processing, k-NN LiDAR, 
Wearable  

I. INTRODUCTION 
EDESTRIANS in the twenty-first century are plugged in, 
listening to music or podcasts, hearing the news, and making 
phone calls whenever they walk and run.  While this can 

promote exercise and increase productivity, it decreases the 
pedestrian’s awareness of the environment around them, 
making them susceptible to accidents with cars, bikers, and 
other pedestrians. The goal of Theia is to help these 
pedestrians by informing them about potentially dangerous 
entities approaching them outside of their visual field. Theia 
is a piece of wearable technology to be used by a walker or 
runner to wear that communicates with their cellphone via 
Bluetooth, informing them through their headphones when 
there is something coming towards them from behind and 
what it is, allowing them to be safer and more aware of their 
surroundings without having to sacrifice the use of their 
headphones.  The goal of Theia is to increase cognizance in 
modern pedestrians through a tool that can be easily 
integrated with their existing devices.  

II. DESIGN REQUIREMENTS 
Our primary goal is to create a device that accurately 

reports objects approaching the user from directly behind 
them and inform them before that object passes.  In order to 
provide the user with this information in enough time, Theia 
needs to detect approaching objects that are up to 8-10 meters 
behind the user. In an average case, we anticipate a roughly 2 
meters per second velocity differential between the user and 
the approaching object, so detection at 10 meters away gives 
Theia 5 seconds to process sensor data and inform the user 
before the object passes in this average case.  Our device will 
handle objects approaching with other speed differences, this 
requirement was designed to best suit our average case. We 
also have a requirement that Theia should only report objects 
getting closer to the user rather than detecting everything 

within 8-10 meters, as the user usually will not need to be 
informed of objects that they recently passed or other objects 
that will never pass them. In addition, we want to detect any 
object that enters the field of view behind the user as close as 
1 meter away, so if a runner turns onto the street 5 meters 
behind the user, the user will still be informed. 8-10 meters 
will simply serve as our requirement for upper limit for 
detection. For accuracy, we set our requirement to inform 
users about approaching objects at least 90% of the time. We 
determined that anything much less than this would not be a 
worthwhile tool for the user, as it would be too unreliable.  

Our secondary goal is for our device to have the 
functionality of object recognition, being able to differentiate 
between pedestrians, bikers, and cars. This task is difficult to 
achieve with high accuracy while maintaining the low latency 
and low power consumption required for the system. 
Therefore, we only require 50% accuracy in this process. We 
assume that the user will turn around when an approaching 
object is approaching, so while we would like to have great 
accuracy in object recognition so that the user can best know 
what to expect, this is not as crucial as accurate object 
detection.  

For informing the user, we require the user to be alerted 
through their headphones, with an auditory alert briefly 
describing the approaching object.  This alert should either 
interrupt or decrease the volume of the background audio, 
returning it to its normal state after the alert has finished. This 
alert should be received to the phone wirelessly, allowing the 
user to maintain a full range of motion throughout their 
exercise and move their phone as they please without 
worrying about a wired connection to the rest of Theia. We 
also require complete cycle from initial object detection to 
alerting the user to be completed in under 5 seconds, as it is 
important for the user to be informed before the object passes, 
which takes approximately 5 seconds in the average case.  The 
shorter the latency is, the better, as it allows the user to have 
more time to respond to the approaching object.   

We require our device to be battery powered and not 
dependent on other resources, like WiFi, that would not be 
available to most runners or walkers outdoors. Our battery 
needs to last for at least one average use case, which we 
marked as at least 45 minutes. We also maintain a couple 
implicit goals regarding the comfort and usability of Theia. 
Theia should be lightweight and comfortable to wear, not 
impeding the running or walking process. The Theia app 
should also be user friendly, allowing those not involved with 
the project to use the product with ease. 
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III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 
The basic architecture of our product includes multiple 

LiDAR sensors and a camera interfacing with a Raspberry Pi 
to detect approaching objects, which will then transmit 
information via Bluetooth to the user’s cellphone, which 
emits an alert to the user. Specifically, we used three TFMini 
- Micro LiDAR sensors, which are arranged at 4.5o relative 
angles on the user’s back to produce a wider field of view, and 
a Raspberry Pi Camera Module V2, all of which are mounted 
on a custom 3D printed board and attached to a GoPro camera 
harness to be worn on the user’s back. These sensors are 
connected to a Raspberry Pi 3 Model B and all of these are 
powered by a 4000mAh Lithium Polymer Battery. The 
Raspberry Pi and the battery are kept in a running hydration 

belt, also worn by the user.  
When the sensors determine that an object is approaching 

from behind the user, the camera is triggered to take a 
picture.  This image is then processed on the Raspberry Pi, 
where the approaching object will be detected and classified 
as either a car, a biker, or a pedestrian. Next, this information 
is transmitted to the user’s iPhone app via Bluetooth.  Finally, 
the user will be alerted about the object which is approaching 
with an audio message played over their headphones. The 
overall architecture has not changed since the Design Review 
Report. This system is visualized in Figure 1.  

 
 
 

Figure 1: Complete Block Diagram 
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IV. DESIGN TRADE STUDIES 

The major design decisions for our project included the 
sensor choices, the machine learning choices, the device 
choices, and communication protocol. Each decision affected 
how well our final device would meet our design 
requirements, so we took into account many possibilities in 
our decision making process. 

A. Sensors 
We initially looked into using ultrasonic sensors for object 

detection, but we quickly determined that the range on the 
ultrasonic sensors we could afford was insufficient and their 
field of view was too wide, making it impossible for us to 
focus on objects directly behind the user without picking up a 
lot of noise which could trigger false positives. We decided to 
switch to LiDAR because of their better long distance range, 
as we required our device to be able to pick up objects 
approaching from up to 10 meters away. With a budget of 
$600, the best LiDAR sensor in our price range was the 
Garmin LiDAR-Lite v3, with great reviews and costing $130. 
With a 40m range, these far exceeded our distance goal, but 
with an 8 mRadian field of view, they could truly only detect 
along a very thin line, and we did not want our product to only 
work if the approaching object was in a super specific line 
behind the user.  If we could have several of these sensors at 
slightly different angles, we could achieve the field of view 
we wanted, but we could not afford it. Instead, we went with 
the Benewake TFMini Micro LiDAR, which has a larger 2.3 
degree field of view with an advertised 12 meter range costing 
roughly $40 each. Using three of these LiDAR sensors at 
slightly different angles, we were able to achieve a 11 degree 
field of view and detect objects 10 meters away, so this was 
the best choice for us. Unfortunately, we later realized that the 
range of these sensors diminished greatly in direct sunlight, 
but of the options we found, this was still the best solution in 
our budget. 

B. Camera and Image Capture 
We chose to have a camera triggered by LiDAR sensors 

rather than constantly streaming video, because this approach 
drains less power, both in terms of the camera use and the 
frequency of heavy computation being done. When choosing 
cameras, we had a Raspberry Pi Camera Module V1 available 
to us, which took decent quality photos, but we decided to buy 
the Raspberry Pi Camera Module V2 to use instead because 
of its improved resolution and faster shutter speed.  We were 
happy with this decision in the end, as the images with the 
new camera were much higher quality, so it was worth the 
minor increase in cost. 

C. Machine Learning 
For the Image processing part of the project, we chose the 

approach of extracting features and using a fast machine 
learning algorithm like k-NN, rather than a deep learning 
approach, because of the speed and power benefits. Deep 
learning for image classification would have been a good bit 
slower on the Raspberry Pi than the .73 seconds it takes with 
k-NN, and would have been more power intensive and thus 
drained the battery quickly, despite being more accurate.  

D. Raspberry Pi 
We decided to use a Raspberry Pi for the bulk of our 

computation because it is small, which we require for our 
wearable, it has good processing ability, which was important 
for the functionality of our project, and it has numerous ports, 
which is necessary for us since we are using multiple sensors. 
Raspberry Pis are also widely used and fairly well 
documented, so it seemed like a safe choice. We initially 
chose to use a Raspberry Pi 3 Model B because we had one 
available to us, meaning that we could concentrate our budget 
on other items. We also liked that it had Bluetooth 
functionality, which was our ideal method for communicating 
with the user’s cellphone.  Unfortunately, the Raspberry Pi 
did not have enough UART ports for our three LiDAR 
sensors, so we decided to use three WITMOTION USB-
UART 6-in-1 Multifunctional Serial Adapters, allowing us to 
receive data from the LiDAR sensors through three of the Pi’s 
four USB ports.  These adapters did have more functionality 
than we needed, but it was the only option that was both 
available reasonably soon that had overwhelmingly positive 
reviews about their functionality and durability. 

E. Communication 
For transmitting data between the iOS device and the 

Raspberry Pi, we decided to use Bluetooth Low Energy 
(BLE) communication. We decided that communication over 
WiFi, which is one of the most common and well documented 
methods for communicating between a Raspberry Pi and 
another device, is not ideal for us, as we want Theia to work 
even when the user is not in an area with WiFi. We also did 
not want to have a wired connection from the iPhone to the 
Pi, as we want the user to be able to hold their phone however 
they prefer, without being limited by a wire connected to the 
wearable. The Raspberry Pi 3 Model B comes with Bluetooth 
built in, so BLE seemed like the best path to go. We had 
initially planned to use the built in BLE services for 
communication, but they did not suit our purposes.  Bluetooth 
communication proved to be more difficult than any of us 
anticipated, but we found that the Bleno Node.js module 
allowed us to create custom services on the Raspberry Pi with 
relative ease and this path suited our purposes.  By connecting 
the swift application with the UUID of the BLE service we 
created, the iOS device was able to seamlessly connect with 
the Theia wearable and communication between the two 
could happen in under 0.1 seconds. This met our requirement 
to have an app that is user friendly, as the user does not have 
to do anything related to the Bluetooth communication other 
than make sure their iPhone’s Bluetooth is on and that the 
Theia device is on and in range. It also met our latency 
requirement, as this form of communication is very quick. 
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V. SYSTEM DESCRIPTION 

A. Wearable Design 
The wearable design is made up of two major components: 

the sensor harness and the load bearing belt. The sensor 
harness (Figure 2b) is designed to house the sensors on the 
users back while focusing on maintaining stability for 
accurate sensor readings. We purchased a CamKix Chest 
Mount Harness and used it backwards on the users back. We 
chose this style of harness for its proven stability in mounting 
GoPro Cameras with an active user. Since our sensors and 
mounting board are significantly lighter than the GoPro the 
harness is designed for, found similar results in stability with 
our Theia sensors. To attach our four sensors (described 
below) to the harness, we created a custom 3D printed a 
mounting board (Figure 2a). The mounting board is attached 
using GoPro’s standard mounting single-pivot clips and has 
fixtures to bolt our four sensors. We chose to 3D print with 
SLA filament for this mount board because of our need for a 
light, sturdy material with which we can mount sensors at 
varying angles.  

The second wearable is the load bearing belt (Figure 2c). 
We choose to use a manufactured Neoprene Running 
Hydration Belt because of its proven success in carrying water 
bottles and other heavy devices for runners. This device is 
designed to carry loads above 550 grams comfortably around 
the hips of runners. The historic success of this device in 
carrying larger weights comfortably for runners makes it ideal 
to manage holding our heavy components, which includes the 
Raspberry Pi, Lithium Polymer Battery, and three WitMotion 
USB-UART Converters. These devices weigh far less than 
the 550 grams of water the belt is designed to hold, allowing 
the belt to be worn very comfortably for walkers and runners. 
These devices are securely attached to the belt and wired to 
the chest harness with the appropriate sensor connections. We 
used zip ties to hold the wires in place and prevent them from 
blocking the sensors for our final demo.  The entire final 
wearable system is shown in Figure 3.  

B. Sensor Design 
The wearable contains four sensors: three TFMini - Micro 

LiDAR Module and one Raspberry Pi Camera V2 Module. 
The optical sensor is for Image processing/object 
classification, while the three LiDAR sensors are used in 
conjunction for real time detection of approaching objects 

behind the user. The LiDAR sensors where set to distance 
mode where they are optimized for detecting objects 3 to 12 
meters away and the sensors provide a distance value in cm 
with a strength of accuracy value every 10ms. 

Our goal in approaching object detection was to quickly 
determine that an object was approaching the user from 
behind, while filtering out objects the user was passing by. To 
do this we developed a python script that used a non-blocking 
round-robin scheduling scheme to read the three LiDAR 
sensors continuously. Then the minimum valid value of the 
three at any given time step is recorded as a data point for that 
timestep. If this data point has below a certain (settable 
parameter) strength threshold, or the data point is an outlier 
relative to neighbor data points, it is ignored/remove from the 
next portion of the algorithm. 

After we filter out bad data points we attempt to determine 
if the object that the sensor is picking up is approaching the 
user. To do this we sample every X distance points and 

Figure 2: (a) Design for 3D printed mounting board (b) sensor harness (c) hydration belt for battery and Raspberry Pi 

Figure 3: Final wearable prototype 
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determine if there is negative velocity (relative to user and 
detected object). If the object were approaching for Y points 
of the X samples then we say we detected an approaching 
object. The outlier sensitivity, number of samples (X), 
necessary number of approaching data points (Y), and 
minimum required strength value are all changeable 
parameters used to tune our sensor algorithm to balance the 
latency of detection, limiting false positives, and accurately 
detecting an approaching object. 

For example, increasing the sample size increased latency 
while improving elimination of false positives. Increasing the 
number of required approaching data points would decrease 
false positives but would also increase true negatives. We 
found these relations nonlinear and also dependent on 
environment of use. 

C. Image Processing 
For the image processing part, our goal was at least 

reasonable accuracy (for predominantly blurry images), with 
speed and power prioritized. We had three classes for our 
image processing: pedestrians, bikers and cars. Our approach 
was to use OpenCV to extract features from the image, and 
then use a k-Nearest Neighbors based machine learning 
algorithm (with online training data) to pick the most likely 
class. K-Nearest Neighbors was picked over other machine 
learning algorithms (notably a deep learning approach) 
because it is the best in terms of speed and power.  

After receiving an image from the camera, the first step in 
our pipeline is cropping the image to include only the part 
where our LiDAR sensors would have detected an 
approaching object. Next, we use OpenCV to get the edges, 
and find the SIFT key points of the edges. The key points were 
used as the basis for features because they really capture the 
geometrical differences between the different objects we are 
trying to detect. For example, the key points for a person tend 
to be around the head, the arms, and legs, whereas the key 
points for a car tend to be around the headlights. Once we 
have the key points for the cropped area, we divide it into 
sections and find the most similar parts to a car, a biker, and 
a pedestrian. We look at 5 sections for pedestrians and bikers 
(the 5 columns of the image), and 3 for cars (left half, right 
half, and middle section), based on about how big the objects 

usually are when the camera takes a picture. 
For each section of the image, we extract features from the 

key points, and then use those features to determine how 
similar the section is to the objects we are looking for. For 
extracting features from the key points, we decided to break 
each section it into a 3 column by for 4 row grid and figure 
out the percentage of key points in each block. We then end 
with a 12-element feature vector for each section. This feature 
extraction works reasonably well because the geometries are 
very different between these objects. After extracting features 
from an image, we go through the training data and pick the 
closest 3 training vectors (k=3) for each relevant class (just 
cars for the car sections and pedestrians and bikers for their 
joint sections) based on Euclidean distance. At the end we 
pick the overall closest section for each class by comparing 
distances. It’s almost always accurate with finding the correct 
section of the image an object is in. We then compare the best 
sections together and pick the overall closest one as the 
selected class. 

This works reasonably well (66.7% accuracy amongst our 
tests) and is not much worse with images that are a bit blurry. 
Overall this algorithm takes on average about .73 seconds to 
run on the Raspberry Pi (the bulk of which is extracting the 
key points). Taking the picture takes about .46 seconds, 
making the total time for image processing about 1.19 
seconds. We believe the accuracy would have improved if we 
had time to gather training images from our wearable, as 
opposed to using online images. It is also notably better at 
selecting cars, as opposed to distinguishing between 
pedestrians and bikers, which makes sense because of the 
greater structural similarity between pedestrians and bikers 
than between either pedestrians or bikers and cars.  

D. iOS Application 
The user will interact with Theia though the Theia iOS 

application, which will be on user’s cellphone that they are 
carrying and using to listen to audio (i.e. music) during their 
run or walk. The app will allow the user to connect their phone 
via Bluetooth to the Raspberry Pi on their belt, which is 
receiving information from the sensors on their vest. After 
connecting, the user can begin their session, during which 
they can listen to their own music or podcasts and will be 
alerted when an object is approaching from behind.  In the 

Figure 4: Example workflow of the object recognition algorithm. This image has selected sections for both the biker and the pedestrian 
classes. Since the distribution of key points is closer to the pedestrian training data than the biker, pedestrian is selected. 
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average use case, the user will be alerted through their 
headphones, with a vocal alert informing them that an object 
is approaching and indicating whether the approaching object 
is a car, a biker, or a pedestrian, if the information is available. 
This warning indicating an approaching object will also be 
displayed on the screen of the app. When the user can stop 
their session by hitting the stop button, and they will no longer 
receive notifications of approaching objects unless they hit 
start again.  

This Theia application is written in Swift. While the 
Raspberry Pi 3 does come equipped with on-board Bluetooth, 
the available built in Bluetooth Low Energy (BLE) services 
and characteristics proved insufficient for transmitting data 
from the iPhone to the Raspberry Pi, as none of them had a 
write property. So, instead of using these built in BLE 
services as we had planned to in the design review report, we 
decided to create a Node.js program to run on the Raspberry 
Pi using the Bleno module, which allowed us to create a 
custom BLE service. The Node.js program makes and 
advertises our service, which has writable characteristics for 
start and stop and a notifying characteristic for reporting 
detected objects. In this system, the Raspberry Pi serves as the 
BLE peripheral and the iOS device will serve as the BLE 
central. We used the CoreBluetooth and BlueCapKit swift 
libraries to connect and communicate with the Raspberry Pi 
via Bluetooth. The iOS app writes to the start characteristic to 
indicate when the sensors should start running, writes the stop 
characteristic to indicate when the sensors should stop 
running, and gets notified by the object detected 
characteristic. The Node.js program will write a notification 

to the object detected characteristic of 0, 1, or 2 based on 
whether the object recognition process identifies a pedestrian, 
a biker, or a car, respectively. We used AVAudioPlayer from 
the AVFoundation framework to play the appropriate sound 
file for each of these situations to inform the user of the 
approaching object. We also used the duckOthers category 
option to turn down the volume in the background music 
while the notification is playing and restore the volume to full 
volume when it is finished. We also print the detected object 
on the app so that the user can visually see the last detected 
object on the screen if they miss the auditory notification.  We 
chose to lower the volume of the background audio during the 
notification process rather than pause it because this creates a 
more seamless user experience.  This is also the approach that 
Google Maps takes when providing driving instructions when 
background music is present, so we trusted their success and 
followed their lead. The entire process from the Node.js 
program learning of a newly detected object to the start of the 
audio clip informing the user takes less than 0.1 seconds. This 
communication protocol is illustrated in Figure 5.  

VI. VALIDATION AND RESULTS 
We completed a significant amount of testing to determine 

the accuracy of our system in detecting and recognizing a 
variety of objects approaching a user from behind. All of our 
tests occurred outdoors at Carnegie Mellon University on the 
Engineering Quad, the Gesling Stadium track and football 
field, and the Donner Ditch parking lot in cloudy or partially 
cloudy conditions during daytime. For consistency, Evan 

Figure 5: Bluetooth communication protocol between Raspberry Pi and iPhone 
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Compton was the test user for all tests.  

For our first test, we tested just the functionality of the 
LiDAR sensor system in accurately detecting and reporting 
the existence approaching objects. We ran 90 tests, 10 in each 
of 9 different categories illustrated in Table 1. These tests took 
place largely in the absence of other obstacles, there was 
simply the user either standing still, walking, or running with 
their back to the given approaching object. This test was not 
designed to test for false positives, but a false positive during 
the running of a test was recorded as a failure, as it was not an 
accurate reading. Overall, we had 92% accuracy in correctly 
determining if an object was approaching in these trials. 

TABLE I.  ACCURACY IN OBJECT DETECTION 

Approaching 
Object 

Theia User Status 
User Standing User Walking User Running 

Pedestrian 100% 100% 80% 

Bike 100% 80% 70% 

Car 100% 100% 100% 

 
For our second test, we were still testing solely the accuracy 

of the object detection process, not the object recognition 
process, but this test was designed to test the occurrence of 
false positives. We had the user wear the Theia wearable and 
pass other people who were not moving (while the user was 
walking or running), walking (while the user was running), 
and running (while the user was running faster or in the 
opposite direction). A successful trial in these test cases was 
one where nothing was detected. We ran 10 trials for each 
situation. These results are shown in Table 2. We had an 
overall success rate of 86%.  

TABLE II.  ACCURACY IN OBJECT DETECTION (TESTING 
FALSE POSITIVES) 

Theia User Status 
User Standing User Walking User Running 

100% 90% 70% 

 
For our final test, we focused on object recognition. We ran 

21 trials for this, with 7 of each type of object approaching, in 
various locations around campus. For each object type, we ran 
2 tests with the user standing still, 2 with the user walking, 
and 3 with the user running. These results are shown in Table 
3. We had an overall success rate of 67% in these trials. 

TABLE III.  ACCURACY IN OBJECT RECOGNITION 

Approaching 
Object 

Theia User Status 
User Standing User Walking User Running 

Pedestrian 50% 50% 33% 

Bike 100% 50% 67% 

Car 100% 100% 67% 

 
We also tested battery life during all of these tests, 

continuously running the Theia program on the Raspberry Pi 
using the 4000mAh Lithium Polymer Battery.  On average, 

our battery lasted 430 minutes (7 hours and 10 minutes), well 
exceeding our goal of a battery life of one average run or walk 
length of approximately 45 minutes.  

VII. PROJECT MANAGEMENT 

A. Schedule 
Our schedule has changed some as we have progressed 

since the design review report. Getting the LiDAR sensors to 
work dependably and adjusting various parameters ended up 
taking longer than anticipated, while creating the algorithm 
for detecting approaching objects to trigger the camera at the 
appropriate time took less time. Establishing Bluetooth 
communication between the Raspberry Pi and the iOS 
application proved to be more complicated than anticipated, 
so that work extended beyond when we scheduled for it to be 
completed.  Integration was also more challenging and took 
longer than planned. Fortunately, we had built enough slack 
time into our schedule that these minor setbacks did not 
prevent us from having a functional demo on time. Our most 
recently updated schedule is seen on page 9 in Figure 6. 

B. Team Member Responsibilities 
We divided the work such that each of the three of us will 

be primarily responsible for one area. Will was in charge of 
the sensors and the interface between the sensors and the 
Raspberry Pi. Evan was in charge of the object detection and 
recognition algorithms on the Raspberry Pi, using images 
from the Pi Cam. Alli was in charge of building the iOS 
application, interfacing with the Raspberry Pi via Bluetooth, 
and transmitting alerts to the user.  While each person was 
primarily responsible for their designated section, we found 
that working together was necessary for many aspects of this 
project. For example, although Will was technically the one 
on sensors, we all worked together in testing the sensors and 
making decisions about which sensors to use as we moved 
forward, as these tasks go poorly when working alone. 
Similarly, when facing issues with Bluetooth communication, 
Alli sought input from Evan to solve some issues. Likewise, 
collaboration was needed when making significant design 
decisions to ensure that our different components would 
integrate properly. While most of the coding was completed 
independently, integration and testing was a group effort.  

C. Budget 
We have been able to stay safely under our $600 budget 

cap. Our complete bill of materials is on page 10 in Figure 7. 
The only change to our budget since the design review report 
was the purchase of an additional LiDAR sensor, as one of 
our LiDAR sensors stopped working and we had to purchase 
a new spare. 

D. Risk Management 
A semester long project that no one has ever done before, 

especially using tools we were not familiar with, inherently 
contains a high level of risk.  To alleviate some of the risk due 
to uncertainty, we initially had several backup plans.  This 
proved useful, as we initially planned to use ultrasonic sensors 
for detecting approaching objects before we realized that their 
range was insufficient, their field of view was too wide, and 
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they would interfere with one another if we used multiple 
sensors together.  When it became clear that ultrasonic 
sensors were not the correct solution area, we had already 
done preliminary research on LiDAR sensors, so we simply 
jumped onto this idea and quickly determined that this was a 
better answer to our design problems. To mitigate other risks 
associated with unfamiliarity, we allowed significant time for 
research before we started implementation, we asked 
questions to others when we were working with new tools, 
and we worked together rather than individually on 
particularly difficult unfamiliar tasks.  

 There is also significant risk associated with 
purchasing parts that we haven’t used before. To help mitigate 
this, we researched all of the items pretty extensively before 
we purchased them, reading reviews and spec sheets and 
ensuring that they were from reputable sources. In addition, 
we purchased spares when we were ordering parts, as we 
knew that parts break in the process of building and testing a 
prototype and we wanted a part failure to throw off our 
schedule.  This added expensive paid off, as we did have 
sensors stop working, and having extras allowed us to 
continue working without waiting for replacements to come 
in.  

VIII. SUMMARY 
Overall, we succeeded in creating the basic prototype that 

we had planned at the beginning of the semester.  The full 
communication pipeline was successfully implemented and 
we hit our targets for accuracy and latency. Due to constraints 
in time, we were unable to reach some of our stretch goals, 
including being able to recognize approaching trains and 
implementing haptic feedback.  If we had another week or so, 
this is what we would have implemented.  Additionally, while 
we were able to meet our requirements for object detection 
distance in certain environments (like indoors or with 
sufficient cloud coverage), with the inexpensive LiDAR 
sensors we used, we found that the range became quite limited 
in direct sunlight. So, even though our latency was far shorter 
than our goal, our system was still not performing ideally in 
direct sunlight conditions when we could only detect 
approaching objects up to 4-5 meters away. We still believe 
LiDAR sensors are a strong candidate for this problem area, 
but the cheap class of LiDARs we utilized are not. If we had 
additional budget to better sensors, or if perhaps we had 
concentrated even more of our given budget on better LiDAR 
sensors, we could have achieved a longer range so that even 
in direct sunlight, we would be able to achieve our distance 
requirement.  

Through our work with the LiDAR sensors, as well as 
various ultrasonic sensors that we were investigating early in 
the semester, we learned that inexpensive sensors are 
inexpensive for a reason.  Often times, the advertised range of 
a sensor is only achievable under extremely ideal conditions, 
which likely will not be the average use case, so we learned 
not to necessarily trust for the sensors to work as well as 
they’re advertised to.  As we were warned by the TAs and 
professors, we learned that sometimes sensors break or just 
spontaneously stop working, so ordering backups is crucial. 
One of our LiDAR sensors stopped working in the middle of 

the semester, but we had ordered a spare so we were able to 
continue working without delay. We also learned that 
integration can be painful and time consuming, so we were 
grateful that we had planned sufficient time for that process. 
Finally, we learned that in a process this long, it is hard to 
know exactly where things might go wrong, so we were glad 
to have left slack time so that certain items were not 
completed on time, it did not throw off our ability to complete 
the project.  
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Figure 6: Final Schedule 
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Figure 7: Final Bill of Materials 


