
18-500 Final Report: 05/08/2019 1

Abstract—When walkers and runners listen to music on their
phone, they become distracted and disconnected from the world
around them, and this lack of awareness can lead to trail
congestion, unexpected collisions, and even dangerous motor
vehicle accidents. Theia is a wearable system that detects an
object approaching the user from behind, classifies it as either a
car, a biker, or a pedestrian, and informs the user through their
headphones. Three LiDAR sensors and a Raspberry Pi Cam are
mounted on the user’s back for object detection and recognition,
with the signal and image processing occurring on a Raspberry
Pi held in a waist belt. User notification occurs through the Theia
iOS application, which communicates with the Raspberry Pi
through a Bluetooth Low Energy (BLE) connection. The system
is powered using a 4000mAh Lithium Polymer Battery, with a
total system battery life of over 7 hours.

Index Terms—BLE, Image Processing, k-NN LiDAR,
Wearable

I. INTRODUCTION
EDESTRIANS in the twenty-first century are plugged in,
listening to music or podcasts, hearing the news, and making
phone calls whenever they walk and run. While this can

promote exercise and increase productivity, it decreases the
pedestrian’s awareness of the environment around them,
making them susceptible to accidents with cars, bikers, and
other pedestrians. The goal of Theia is to help these
pedestrians by informing them about potentially dangerous
entities approaching them outside of their visual field. Theia
is a piece of wearable technology to be used by a walker or
runner to wear that communicates with their cellphone via
Bluetooth, informing them through their headphones when
there is something coming towards them from behind and
what it is, allowing them to be safer and more aware of their
surroundings without having to sacrifice the use of their
headphones. The goal of Theia is to increase cognizance in
modern pedestrians through a tool that can be easily
integrated with their existing devices.

II. DESIGN REQUIREMENTS
Our primary goal is to create a device that accurately

reports objects approaching the user from directly behind
them and inform them before that object passes. In order to
provide the user with this information in enough time, Theia
needs to detect approaching objects that are up to 8-10 meters
behind the user. In an average case, we anticipate a roughly 2
meters per second velocity differential between the user and
the approaching object, so detection at 10 meters away gives
Theia 5 seconds to process sensor data and inform the user
before the object passes in this average case. Our device will
handle objects approaching with other speed differences, this
requirement was designed to best suit our average case. We
also have a requirement that Theia should only report objects
getting closer to the user rather than detecting everything

within 8-10 meters, as the user usually will not need to be
informed of objects that they recently passed or other objects
that will never pass them. In addition, we want to detect any
object that enters the field of view behind the user as close as
1 meter away, so if a runner turns onto the street 5 meters
behind the user, the user will still be informed. 8-10 meters
will simply serve as our requirement for upper limit for
detection. For accuracy, we set our requirement to inform
users about approaching objects at least 90% of the time. We
determined that anything much less than this would not be a
worthwhile tool for the user, as it would be too unreliable.

Our secondary goal is for our device to have the
functionality of object recognition, being able to differentiate
between pedestrians, bikers, and cars. This task is difficult to
achieve with high accuracy while maintaining the low latency
and low power consumption required for the system.
Therefore, we only require 50% accuracy in this process. We
assume that the user will turn around when an approaching
object is approaching, so while we would like to have great
accuracy in object recognition so that the user can best know
what to expect, this is not as crucial as accurate object
detection.

For informing the user, we require the user to be alerted
through their headphones, with an auditory alert briefly
describing the approaching object. This alert should either
interrupt or decrease the volume of the background audio,
returning it to its normal state after the alert has finished. This
alert should be received to the phone wirelessly, allowing the
user to maintain a full range of motion throughout their
exercise and move their phone as they please without
worrying about a wired connection to the rest of Theia. We
also require complete cycle from initial object detection to
alerting the user to be completed in under 5 seconds, as it is
important for the user to be informed before the object passes,
which takes approximately 5 seconds in the average case. The
shorter the latency is, the better, as it allows the user to have
more time to respond to the approaching object.

We require our device to be battery powered and not
dependent on other resources, like WiFi, that would not be
available to most runners or walkers outdoors. Our battery
needs to last for at least one average use case, which we
marked as at least 45 minutes. We also maintain a couple
implicit goals regarding the comfort and usability of Theia.
Theia should be lightweight and comfortable to wear, not
impeding the running or walking process. The Theia app
should also be user friendly, allowing those not involved with
the project to use the product with ease.

Theia
Authors: Evan Compton, Electrical and Computer Engineering, Carnegie Mellon University

William Mitchell, Electrical and Computer Engineering, Carnegie Mellon University
Allison Scibisz, Electrical and Computer Engineering, Carnegie Mellon University

P

18-500 Final Report: 05/08/2019 2
III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
The basic architecture of our product includes multiple

LiDAR sensors and a camera interfacing with a Raspberry Pi
to detect approaching objects, which will then transmit
information via Bluetooth to the user’s cellphone, which
emits an alert to the user. Specifically, we used three TFMini
- Micro LiDAR sensors, which are arranged at 4.5o relative
angles on the user’s back to produce a wider field of view, and
a Raspberry Pi Camera Module V2, all of which are mounted
on a custom 3D printed board and attached to a GoPro camera
harness to be worn on the user’s back. These sensors are
connected to a Raspberry Pi 3 Model B and all of these are
powered by a 4000mAh Lithium Polymer Battery. The
Raspberry Pi and the battery are kept in a running hydration

belt, also worn by the user.
When the sensors determine that an object is approaching

from behind the user, the camera is triggered to take a
picture. This image is then processed on the Raspberry Pi,
where the approaching object will be detected and classified
as either a car, a biker, or a pedestrian. Next, this information
is transmitted to the user’s iPhone app via Bluetooth. Finally,
the user will be alerted about the object which is approaching
with an audio message played over their headphones. The
overall architecture has not changed since the Design Review
Report. This system is visualized in Figure 1.

Figure 1: Complete Block Diagram

18-500 Final Report: 05/08/2019 3
IV. DESIGN TRADE STUDIES

The major design decisions for our project included the
sensor choices, the machine learning choices, the device
choices, and communication protocol. Each decision affected
how well our final device would meet our design
requirements, so we took into account many possibilities in
our decision making process.

A. Sensors
We initially looked into using ultrasonic sensors for object

detection, but we quickly determined that the range on the
ultrasonic sensors we could afford was insufficient and their
field of view was too wide, making it impossible for us to
focus on objects directly behind the user without picking up a
lot of noise which could trigger false positives. We decided to
switch to LiDAR because of their better long distance range,
as we required our device to be able to pick up objects
approaching from up to 10 meters away. With a budget of
$600, the best LiDAR sensor in our price range was the
Garmin LiDAR-Lite v3, with great reviews and costing $130.
With a 40m range, these far exceeded our distance goal, but
with an 8 mRadian field of view, they could truly only detect
along a very thin line, and we did not want our product to only
work if the approaching object was in a super specific line
behind the user. If we could have several of these sensors at
slightly different angles, we could achieve the field of view
we wanted, but we could not afford it. Instead, we went with
the Benewake TFMini Micro LiDAR, which has a larger 2.3
degree field of view with an advertised 12 meter range costing
roughly $40 each. Using three of these LiDAR sensors at
slightly different angles, we were able to achieve a 11 degree
field of view and detect objects 10 meters away, so this was
the best choice for us. Unfortunately, we later realized that the
range of these sensors diminished greatly in direct sunlight,
but of the options we found, this was still the best solution in
our budget.

B. Camera and Image Capture
We chose to have a camera triggered by LiDAR sensors

rather than constantly streaming video, because this approach
drains less power, both in terms of the camera use and the
frequency of heavy computation being done. When choosing
cameras, we had a Raspberry Pi Camera Module V1 available
to us, which took decent quality photos, but we decided to buy
the Raspberry Pi Camera Module V2 to use instead because
of its improved resolution and faster shutter speed. We were
happy with this decision in the end, as the images with the
new camera were much higher quality, so it was worth the
minor increase in cost.

C. Machine Learning
For the Image processing part of the project, we chose the

approach of extracting features and using a fast machine
learning algorithm like k-NN, rather than a deep learning
approach, because of the speed and power benefits. Deep
learning for image classification would have been a good bit
slower on the Raspberry Pi than the .73 seconds it takes with
k-NN, and would have been more power intensive and thus
drained the battery quickly, despite being more accurate.

D. Raspberry Pi
We decided to use a Raspberry Pi for the bulk of our

computation because it is small, which we require for our
wearable, it has good processing ability, which was important
for the functionality of our project, and it has numerous ports,
which is necessary for us since we are using multiple sensors.
Raspberry Pis are also widely used and fairly well
documented, so it seemed like a safe choice. We initially
chose to use a Raspberry Pi 3 Model B because we had one
available to us, meaning that we could concentrate our budget
on other items. We also liked that it had Bluetooth
functionality, which was our ideal method for communicating
with the user’s cellphone. Unfortunately, the Raspberry Pi
did not have enough UART ports for our three LiDAR
sensors, so we decided to use three WITMOTION USB-
UART 6-in-1 Multifunctional Serial Adapters, allowing us to
receive data from the LiDAR sensors through three of the Pi’s
four USB ports. These adapters did have more functionality
than we needed, but it was the only option that was both
available reasonably soon that had overwhelmingly positive
reviews about their functionality and durability.

E. Communication
For transmitting data between the iOS device and the

Raspberry Pi, we decided to use Bluetooth Low Energy
(BLE) communication. We decided that communication over
WiFi, which is one of the most common and well documented
methods for communicating between a Raspberry Pi and
another device, is not ideal for us, as we want Theia to work
even when the user is not in an area with WiFi. We also did
not want to have a wired connection from the iPhone to the
Pi, as we want the user to be able to hold their phone however
they prefer, without being limited by a wire connected to the
wearable. The Raspberry Pi 3 Model B comes with Bluetooth
built in, so BLE seemed like the best path to go. We had
initially planned to use the built in BLE services for
communication, but they did not suit our purposes. Bluetooth
communication proved to be more difficult than any of us
anticipated, but we found that the Bleno Node.js module
allowed us to create custom services on the Raspberry Pi with
relative ease and this path suited our purposes. By connecting
the swift application with the UUID of the BLE service we
created, the iOS device was able to seamlessly connect with
the Theia wearable and communication between the two
could happen in under 0.1 seconds. This met our requirement
to have an app that is user friendly, as the user does not have
to do anything related to the Bluetooth communication other
than make sure their iPhone’s Bluetooth is on and that the
Theia device is on and in range. It also met our latency
requirement, as this form of communication is very quick.

18-500 Final Report: 05/08/2019 4

V. SYSTEM DESCRIPTION

A. Wearable Design
The wearable design is made up of two major components:

the sensor harness and the load bearing belt. The sensor
harness (Figure 2b) is designed to house the sensors on the
users back while focusing on maintaining stability for
accurate sensor readings. We purchased a CamKix Chest
Mount Harness and used it backwards on the users back. We
chose this style of harness for its proven stability in mounting
GoPro Cameras with an active user. Since our sensors and
mounting board are significantly lighter than the GoPro the
harness is designed for, found similar results in stability with
our Theia sensors. To attach our four sensors (described
below) to the harness, we created a custom 3D printed a
mounting board (Figure 2a). The mounting board is attached
using GoPro’s standard mounting single-pivot clips and has
fixtures to bolt our four sensors. We chose to 3D print with
SLA filament for this mount board because of our need for a
light, sturdy material with which we can mount sensors at
varying angles.

The second wearable is the load bearing belt (Figure 2c).
We choose to use a manufactured Neoprene Running
Hydration Belt because of its proven success in carrying water
bottles and other heavy devices for runners. This device is
designed to carry loads above 550 grams comfortably around
the hips of runners. The historic success of this device in
carrying larger weights comfortably for runners makes it ideal
to manage holding our heavy components, which includes the
Raspberry Pi, Lithium Polymer Battery, and three WitMotion
USB-UART Converters. These devices weigh far less than
the 550 grams of water the belt is designed to hold, allowing
the belt to be worn very comfortably for walkers and runners.
These devices are securely attached to the belt and wired to
the chest harness with the appropriate sensor connections. We
used zip ties to hold the wires in place and prevent them from
blocking the sensors for our final demo. The entire final
wearable system is shown in Figure 3.

B. Sensor Design
The wearable contains four sensors: three TFMini - Micro

LiDAR Module and one Raspberry Pi Camera V2 Module.
The optical sensor is for Image processing/object
classification, while the three LiDAR sensors are used in
conjunction for real time detection of approaching objects

behind the user. The LiDAR sensors where set to distance
mode where they are optimized for detecting objects 3 to 12
meters away and the sensors provide a distance value in cm
with a strength of accuracy value every 10ms.

Our goal in approaching object detection was to quickly
determine that an object was approaching the user from
behind, while filtering out objects the user was passing by. To
do this we developed a python script that used a non-blocking
round-robin scheduling scheme to read the three LiDAR
sensors continuously. Then the minimum valid value of the
three at any given time step is recorded as a data point for that
timestep. If this data point has below a certain (settable
parameter) strength threshold, or the data point is an outlier
relative to neighbor data points, it is ignored/remove from the
next portion of the algorithm.

After we filter out bad data points we attempt to determine
if the object that the sensor is picking up is approaching the
user. To do this we sample every X distance points and

Figure 2: (a) Design for 3D printed mounting board (b) sensor harness (c) hydration belt for battery and Raspberry Pi

Figure 3: Final wearable prototype

18-500 Final Report: 05/08/2019 5

determine if there is negative velocity (relative to user and
detected object). If the object were approaching for Y points
of the X samples then we say we detected an approaching
object. The outlier sensitivity, number of samples (X),
necessary number of approaching data points (Y), and
minimum required strength value are all changeable
parameters used to tune our sensor algorithm to balance the
latency of detection, limiting false positives, and accurately
detecting an approaching object.

For example, increasing the sample size increased latency
while improving elimination of false positives. Increasing the
number of required approaching data points would decrease
false positives but would also increase true negatives. We
found these relations nonlinear and also dependent on
environment of use.

C. Image Processing
For the image processing part, our goal was at least

reasonable accuracy (for predominantly blurry images), with
speed and power prioritized. We had three classes for our
image processing: pedestrians, bikers and cars. Our approach
was to use OpenCV to extract features from the image, and
then use a k-Nearest Neighbors based machine learning
algorithm (with online training data) to pick the most likely
class. K-Nearest Neighbors was picked over other machine
learning algorithms (notably a deep learning approach)
because it is the best in terms of speed and power.

After receiving an image from the camera, the first step in
our pipeline is cropping the image to include only the part
where our LiDAR sensors would have detected an
approaching object. Next, we use OpenCV to get the edges,
and find the SIFT key points of the edges. The key points were
used as the basis for features because they really capture the
geometrical differences between the different objects we are
trying to detect. For example, the key points for a person tend
to be around the head, the arms, and legs, whereas the key
points for a car tend to be around the headlights. Once we
have the key points for the cropped area, we divide it into
sections and find the most similar parts to a car, a biker, and
a pedestrian. We look at 5 sections for pedestrians and bikers
(the 5 columns of the image), and 3 for cars (left half, right
half, and middle section), based on about how big the objects

usually are when the camera takes a picture.
For each section of the image, we extract features from the

key points, and then use those features to determine how
similar the section is to the objects we are looking for. For
extracting features from the key points, we decided to break
each section it into a 3 column by for 4 row grid and figure
out the percentage of key points in each block. We then end
with a 12-element feature vector for each section. This feature
extraction works reasonably well because the geometries are
very different between these objects. After extracting features
from an image, we go through the training data and pick the
closest 3 training vectors (k=3) for each relevant class (just
cars for the car sections and pedestrians and bikers for their
joint sections) based on Euclidean distance. At the end we
pick the overall closest section for each class by comparing
distances. It’s almost always accurate with finding the correct
section of the image an object is in. We then compare the best
sections together and pick the overall closest one as the
selected class.

This works reasonably well (66.7% accuracy amongst our
tests) and is not much worse with images that are a bit blurry.
Overall this algorithm takes on average about .73 seconds to
run on the Raspberry Pi (the bulk of which is extracting the
key points). Taking the picture takes about .46 seconds,
making the total time for image processing about 1.19
seconds. We believe the accuracy would have improved if we
had time to gather training images from our wearable, as
opposed to using online images. It is also notably better at
selecting cars, as opposed to distinguishing between
pedestrians and bikers, which makes sense because of the
greater structural similarity between pedestrians and bikers
than between either pedestrians or bikers and cars.

D. iOS Application
The user will interact with Theia though the Theia iOS

application, which will be on user’s cellphone that they are
carrying and using to listen to audio (i.e. music) during their
run or walk. The app will allow the user to connect their phone
via Bluetooth to the Raspberry Pi on their belt, which is
receiving information from the sensors on their vest. After
connecting, the user can begin their session, during which
they can listen to their own music or podcasts and will be
alerted when an object is approaching from behind. In the

Figure 4: Example workflow of the object recognition algorithm. This image has selected sections for both the biker and the pedestrian
classes. Since the distribution of key points is closer to the pedestrian training data than the biker, pedestrian is selected.

18-500 Final Report: 05/08/2019 6

average use case, the user will be alerted through their
headphones, with a vocal alert informing them that an object
is approaching and indicating whether the approaching object
is a car, a biker, or a pedestrian, if the information is available.
This warning indicating an approaching object will also be
displayed on the screen of the app. When the user can stop
their session by hitting the stop button, and they will no longer
receive notifications of approaching objects unless they hit
start again.

This Theia application is written in Swift. While the
Raspberry Pi 3 does come equipped with on-board Bluetooth,
the available built in Bluetooth Low Energy (BLE) services
and characteristics proved insufficient for transmitting data
from the iPhone to the Raspberry Pi, as none of them had a
write property. So, instead of using these built in BLE
services as we had planned to in the design review report, we
decided to create a Node.js program to run on the Raspberry
Pi using the Bleno module, which allowed us to create a
custom BLE service. The Node.js program makes and
advertises our service, which has writable characteristics for
start and stop and a notifying characteristic for reporting
detected objects. In this system, the Raspberry Pi serves as the
BLE peripheral and the iOS device will serve as the BLE
central. We used the CoreBluetooth and BlueCapKit swift
libraries to connect and communicate with the Raspberry Pi
via Bluetooth. The iOS app writes to the start characteristic to
indicate when the sensors should start running, writes the stop
characteristic to indicate when the sensors should stop
running, and gets notified by the object detected
characteristic. The Node.js program will write a notification

to the object detected characteristic of 0, 1, or 2 based on
whether the object recognition process identifies a pedestrian,
a biker, or a car, respectively. We used AVAudioPlayer from
the AVFoundation framework to play the appropriate sound
file for each of these situations to inform the user of the
approaching object. We also used the duckOthers category
option to turn down the volume in the background music
while the notification is playing and restore the volume to full
volume when it is finished. We also print the detected object
on the app so that the user can visually see the last detected
object on the screen if they miss the auditory notification. We
chose to lower the volume of the background audio during the
notification process rather than pause it because this creates a
more seamless user experience. This is also the approach that
Google Maps takes when providing driving instructions when
background music is present, so we trusted their success and
followed their lead. The entire process from the Node.js
program learning of a newly detected object to the start of the
audio clip informing the user takes less than 0.1 seconds. This
communication protocol is illustrated in Figure 5.

VI. VALIDATION AND RESULTS
We completed a significant amount of testing to determine

the accuracy of our system in detecting and recognizing a
variety of objects approaching a user from behind. All of our
tests occurred outdoors at Carnegie Mellon University on the
Engineering Quad, the Gesling Stadium track and football
field, and the Donner Ditch parking lot in cloudy or partially
cloudy conditions during daytime. For consistency, Evan

Figure 5: Bluetooth communication protocol between Raspberry Pi and iPhone

18-500 Final Report: 05/08/2019 7
Compton was the test user for all tests.

For our first test, we tested just the functionality of the
LiDAR sensor system in accurately detecting and reporting
the existence approaching objects. We ran 90 tests, 10 in each
of 9 different categories illustrated in Table 1. These tests took
place largely in the absence of other obstacles, there was
simply the user either standing still, walking, or running with
their back to the given approaching object. This test was not
designed to test for false positives, but a false positive during
the running of a test was recorded as a failure, as it was not an
accurate reading. Overall, we had 92% accuracy in correctly
determining if an object was approaching in these trials.

TABLE I. ACCURACY IN OBJECT DETECTION

Approaching
Object

Theia User Status
User Standing User Walking User Running

Pedestrian 100% 100% 80%

Bike 100% 80% 70%

Car 100% 100% 100%

For our second test, we were still testing solely the accuracy

of the object detection process, not the object recognition
process, but this test was designed to test the occurrence of
false positives. We had the user wear the Theia wearable and
pass other people who were not moving (while the user was
walking or running), walking (while the user was running),
and running (while the user was running faster or in the
opposite direction). A successful trial in these test cases was
one where nothing was detected. We ran 10 trials for each
situation. These results are shown in Table 2. We had an
overall success rate of 86%.

TABLE II. ACCURACY IN OBJECT DETECTION (TESTING
FALSE POSITIVES)

Theia User Status
User Standing User Walking User Running

100% 90% 70%

For our final test, we focused on object recognition. We ran

21 trials for this, with 7 of each type of object approaching, in
various locations around campus. For each object type, we ran
2 tests with the user standing still, 2 with the user walking,
and 3 with the user running. These results are shown in Table
3. We had an overall success rate of 67% in these trials.

TABLE III. ACCURACY IN OBJECT RECOGNITION

Approaching
Object

Theia User Status
User Standing User Walking User Running

Pedestrian 50% 50% 33%

Bike 100% 50% 67%

Car 100% 100% 67%

We also tested battery life during all of these tests,

continuously running the Theia program on the Raspberry Pi
using the 4000mAh Lithium Polymer Battery. On average,

our battery lasted 430 minutes (7 hours and 10 minutes), well
exceeding our goal of a battery life of one average run or walk
length of approximately 45 minutes.

VII. PROJECT MANAGEMENT

A. Schedule
Our schedule has changed some as we have progressed

since the design review report. Getting the LiDAR sensors to
work dependably and adjusting various parameters ended up
taking longer than anticipated, while creating the algorithm
for detecting approaching objects to trigger the camera at the
appropriate time took less time. Establishing Bluetooth
communication between the Raspberry Pi and the iOS
application proved to be more complicated than anticipated,
so that work extended beyond when we scheduled for it to be
completed. Integration was also more challenging and took
longer than planned. Fortunately, we had built enough slack
time into our schedule that these minor setbacks did not
prevent us from having a functional demo on time. Our most
recently updated schedule is seen on page 9 in Figure 6.

B. Team Member Responsibilities
We divided the work such that each of the three of us will

be primarily responsible for one area. Will was in charge of
the sensors and the interface between the sensors and the
Raspberry Pi. Evan was in charge of the object detection and
recognition algorithms on the Raspberry Pi, using images
from the Pi Cam. Alli was in charge of building the iOS
application, interfacing with the Raspberry Pi via Bluetooth,
and transmitting alerts to the user. While each person was
primarily responsible for their designated section, we found
that working together was necessary for many aspects of this
project. For example, although Will was technically the one
on sensors, we all worked together in testing the sensors and
making decisions about which sensors to use as we moved
forward, as these tasks go poorly when working alone.
Similarly, when facing issues with Bluetooth communication,
Alli sought input from Evan to solve some issues. Likewise,
collaboration was needed when making significant design
decisions to ensure that our different components would
integrate properly. While most of the coding was completed
independently, integration and testing was a group effort.

C. Budget
We have been able to stay safely under our $600 budget

cap. Our complete bill of materials is on page 10 in Figure 7.
The only change to our budget since the design review report
was the purchase of an additional LiDAR sensor, as one of
our LiDAR sensors stopped working and we had to purchase
a new spare.

D. Risk Management
A semester long project that no one has ever done before,

especially using tools we were not familiar with, inherently
contains a high level of risk. To alleviate some of the risk due
to uncertainty, we initially had several backup plans. This
proved useful, as we initially planned to use ultrasonic sensors
for detecting approaching objects before we realized that their
range was insufficient, their field of view was too wide, and

18-500 Final Report: 05/08/2019 8
they would interfere with one another if we used multiple
sensors together. When it became clear that ultrasonic
sensors were not the correct solution area, we had already
done preliminary research on LiDAR sensors, so we simply
jumped onto this idea and quickly determined that this was a
better answer to our design problems. To mitigate other risks
associated with unfamiliarity, we allowed significant time for
research before we started implementation, we asked
questions to others when we were working with new tools,
and we worked together rather than individually on
particularly difficult unfamiliar tasks.

 There is also significant risk associated with
purchasing parts that we haven’t used before. To help mitigate
this, we researched all of the items pretty extensively before
we purchased them, reading reviews and spec sheets and
ensuring that they were from reputable sources. In addition,
we purchased spares when we were ordering parts, as we
knew that parts break in the process of building and testing a
prototype and we wanted a part failure to throw off our
schedule. This added expensive paid off, as we did have
sensors stop working, and having extras allowed us to
continue working without waiting for replacements to come
in.

VIII. SUMMARY
Overall, we succeeded in creating the basic prototype that

we had planned at the beginning of the semester. The full
communication pipeline was successfully implemented and
we hit our targets for accuracy and latency. Due to constraints
in time, we were unable to reach some of our stretch goals,
including being able to recognize approaching trains and
implementing haptic feedback. If we had another week or so,
this is what we would have implemented. Additionally, while
we were able to meet our requirements for object detection
distance in certain environments (like indoors or with
sufficient cloud coverage), with the inexpensive LiDAR
sensors we used, we found that the range became quite limited
in direct sunlight. So, even though our latency was far shorter
than our goal, our system was still not performing ideally in
direct sunlight conditions when we could only detect
approaching objects up to 4-5 meters away. We still believe
LiDAR sensors are a strong candidate for this problem area,
but the cheap class of LiDARs we utilized are not. If we had
additional budget to better sensors, or if perhaps we had
concentrated even more of our given budget on better LiDAR
sensors, we could have achieved a longer range so that even
in direct sunlight, we would be able to achieve our distance
requirement.

Through our work with the LiDAR sensors, as well as
various ultrasonic sensors that we were investigating early in
the semester, we learned that inexpensive sensors are
inexpensive for a reason. Often times, the advertised range of
a sensor is only achievable under extremely ideal conditions,
which likely will not be the average use case, so we learned
not to necessarily trust for the sensors to work as well as
they’re advertised to. As we were warned by the TAs and
professors, we learned that sometimes sensors break or just
spontaneously stop working, so ordering backups is crucial.
One of our LiDAR sensors stopped working in the middle of

the semester, but we had ordered a spare so we were able to
continue working without delay. We also learned that
integration can be painful and time consuming, so we were
grateful that we had planned sufficient time for that process.
Finally, we learned that in a process this long, it is hard to
know exactly where things might go wrong, so we were glad
to have left slack time so that certain items were not
completed on time, it did not throw off our ability to complete
the project.

18-500 Final Report: 05/08/2019 9

Figure 6: Final Schedule

18-500 Final Report: 05/08/2019 10

Figure 7: Final Bill of Materials

