Team D3: Evan Compton, William Mitchell and Alli Scibisz

THEIA

Introduction

A piece of wearable technology for walkers and runners, attached to the back of a vest

Designed for people who like to run/walk with headphones

Acts as a "third eye" for a pedestrian on their back

Use Cases

Allow pedestrians to safely listen to music and be aware of their surroundings

Informs user of cars, bikes, and other pedestrians approaching from behind through headphones

ECE Areas: Software Systems, Signals Processing

Requirements

Distance: detect objects 8-10m away

Accuracy: >70% object recognition classification (Pedestrian, Car, Bike)

Speed: <3 seconds

Weight: <300g

Power: Battery operated one use case

Challenges

- Sensor capture quality/reliability
- User's movement impairs image quality
- 0 Sense objects 8-10m distance away without too much noise
- Minimizing latency
- Sustaining battery

Approach (Pipeline)

Approach (Sensors)

prove insufficient for our distance requirements May switch to a Lidar approach if the ultrasonic sensors

URM37 V5.0 Ultrasonic Sensor

LIDAR-Lite v3 Sensor

Approach (Object Recognition)

the latency and accuracy requirements. Most likely will need to attempt several Object Recognition approaches to meet

- OpenCV with Python
- Machine Learning Algorithms
- k-NN or SVM
- Deep Learning

Approach (iOS Application)

Set up and handle bluetooth communication with Raspberry Pi

Communicate with headphones and potentially other wearables (i.e. watch)

Allow user to set their preferences for the wearable

Testing, Verification, and Metrics

Test if device matches our requirements

Controlled testing:

- Testing accuracy, latency, and distance
- Perform series of experiments with varying approaching objects, speed, and distance, and movement of user

Real world testing:

Testing battery life and accuracy

Division of Labor

Wearable construction, Raspberry Pi interfacing

Evan Compton

Object recognition classification

Alli Scibisz

- iOS application

